Disordered Quantum-Spin Chains

Günter Stolz
University of Alabama at Birmingham
Joint with Alexander Elgart and Abel Klein (et al)

In honour of Ilya Goldsheid's 70-th birthday
Queen Mary University, London, December 19, 2017

Interacting N-body Anderson model:

$$
\begin{gathered}
h_{N}=-\Delta+\lambda V_{\omega}(x)+\sum_{1 \leq j<k \leq N} U\left(x_{j}-x_{k}\right) \text { in } \ell^{2}\left(\mathbb{Z}^{N d}\right) \\
V_{\omega}(x)=\sum_{j=1}^{N} \omega_{x_{j}}, x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}^{N d}
\end{gathered}
$$

Known: If $\lambda \geq \lambda_{0}(N)>0$, then h_{N} is localized (Chulaevsky/Suhov, Aizenman/Warzel, Klein/Nguyen).

Problem: $\lambda_{0}(N) \rightarrow \infty$ as $N \rightarrow \infty$, localization not uniform in N, (similar issue with Lifshitz tail regime)

Physics question (e.g. Gornyi/Mirlin/Polyakov, Basko/Aleiner/Altshuler,...):

Are there regimes/variants of the interacting N-body Anderson model where suitable forms of localization hold uniformly in N (e.g. in the thermodynamic limit of an electron gas at positive particle density)?

"Many-body Localization (MBL)"

First question for mathematics (also for physics):

What is this???

Next thought:
Start with something easier!

Disordered quantum spin systems (chains):

$$
H=\sum_{j \in \mathbb{Z}} h_{j, j+1}+\sum_{j \in \mathbb{Z}} t_{j} \quad \text { in } \quad \mathcal{H}=\bigotimes_{j \in \mathbb{Z}} \mathbb{C}^{2}
$$

For simplicity:

- $h_{j, j+1}$ translation invariant interaction of spins at j and $j+1$
- t_{j} i.i.d. random 2×2-matrices acting on spin at j

Note: Single-particle Hilbert space is \mathbb{C}^{2} (for spins) rather than $\ell^{2}\left(\mathbb{Z}^{d}\right)$ (as for d-dimensional "electrons"), so that single-particle physics becomes trivial

1st toy model: XY chain in random transversal field:

$$
H_{X Y}=\sum_{j}\left(\sigma_{j}^{X} \sigma_{j+1}^{X}+\sigma_{j}^{Y} \sigma_{j+1}^{Y}\right)+\sum_{j} \omega_{j} \sigma_{j}^{Z}
$$

Can be used to start clarifying MBL phenomena: Jordan-Wigner transform \Longrightarrow

$$
H_{X Y} \cong 2 d \Gamma_{a}(h)+E_{0} \quad \text { on } \mathcal{F}_{a}\left(\ell^{2}(\mathbb{Z})\right)
$$

where h is the 1D Anderson model. Free fermion system!
Physically "trivial":
Anderson localization \Longrightarrow (Full) many-body localization

MBL manifestations in random XY chain:

- Zero-velocity Lieb-Robinson bound for group/information transport (Hamza/Sims/St. 2012), "Dynamical MBL"
- Exponential decay of spatial correlations of all eigenstates and thermal states (Klein/Perez 1990, Sims/Warzel 2016)
- Area law for bipartite entanglement of all eigenstates, incl. dynamical entanglement (Pastur/Slavin 2014, Survey by Abdul-Rahman/Nachtergaele/Sims/St. 2017)

Proofs need to deal with (given Anderson localization):

Antisymmetry and non-locality of Jordan-Wigner

More challenging: Disordered XXZ (or XXX) chains
Physics (numerics): Expect MBL-transition* at low disorder (note that system is 1D).

Recent works by Beaud/Warzel, Elgart/Klein/St.:
Localization properties of the droplet spectrum in the Ising phase of the XXZ chain in random field

[^0]The free $X X Z$ chain:

$$
H^{0}=H_{X X Z}^{0}=-\frac{1}{4} \sum_{j}\left[\frac{1}{\Delta}\left(\sigma_{j}^{X} \sigma_{j+1}^{X}+\sigma_{j}^{Y} \sigma_{j+1}^{Y}\right)+\left(\sigma_{j}^{Z} \sigma_{j+1}^{Z}-1\right)\right]
$$

Assume Ising phase: $\Delta>1$
True (but not so important for us): H^{0} exactly diagonalizable via Bethe ansatz.

Important for us:
H^{0} preserves number of down-spins ("particles"):

$$
H^{0}=\bigoplus_{N \geq 0} H_{N}^{0}
$$

The N-particle operators:
$H_{0}^{0}=0$ on 1D space spanned by $|\ldots \uparrow \uparrow \uparrow \uparrow \ldots\rangle$ (vacuum)
$N \geq 1$:

$$
H_{N}^{0} \cong-\frac{1}{2 \Delta} A_{N}+W \quad \text { on } \ell^{2}\left(\mathcal{X}^{N}\right)
$$

where
$\mathcal{X}^{N}=\left\{x \in \mathbb{Z}^{N}: x_{1}<x_{2}<\ldots<x_{N}\right\} \quad$ (down-spin sites)
$A_{N}=$ Adjacency operator on $\ell^{2}\left(\mathcal{X}^{N}\right)$
$W(x)=$ number of connected components of $\left(x_{1}, \ldots, x_{N}\right)$ (next neighbor attraction of hard core bosons)
(i) W minimized for droplets (single cluster of down-spins), (ii) small hopping ($\Delta>1$)
\Longrightarrow Droplet regime at low energy (Nachtergaele/Starr 2002)
$\sigma\left(l_{N}\right)$ for general N

Droplet bands: (with $\cosh (\rho)=\Delta$)

$$
\begin{aligned}
\delta_{N} & =\left[\tanh (\rho) \cdot \frac{\cosh (N \rho)-1}{\sinh (N \rho)}, \tanh (\rho) \cdot \frac{\cosh (N \rho)+1}{\sinh (N \rho)}\right] \\
& \rightarrow \sqrt{1-\frac{1}{\Delta^{2}}} \text { as } N \rightarrow \infty
\end{aligned}
$$

Droplet spectrum of H^{0} (potentially including gap):

$$
I_{1}:=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right)
$$

Range of spectral projection $\chi_{1_{1}}\left(H^{0}\right)$ is spanned by states exponentially close to droplets. (Not fully localized, but close.)

Conjecture (suggested by B. Nachtergaele):

Adding disorder should fully localize the droplets, as these can be seen as a single quasi-particle in the one-dimensional XXZ model. Thus eigenstates to droplet spectrum should have only one "many-body localization center" (one cluster of downspins).

Recent rigorous proofs:

$$
\text { Beaud/Warzel 2017, Elgart/Klein/St. } 2017
$$

Infinite XXZ chain in random field:

$$
H=H_{X X Z}^{0}+\lambda \sum_{i} \omega_{j} \mathcal{N}_{j} \text { where } \mathcal{N}_{j}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)_{j}=\frac{1}{2}\left(I-\sigma_{j}^{Z}\right)
$$

Assume: $\lambda>0$ and

$$
\omega_{j} \text { i.i.d., } d \mu\left(\omega_{j}\right)=\rho\left(\omega_{j}\right) d \omega_{j},\|\rho\|_{\infty}<\infty, \operatorname{supp} \rho=\left[0, \omega_{\max }\right]
$$

Finite volume chain on $\mathcal{H}^{(L)}=\bigotimes_{j=-L}^{L} \mathbb{C}^{2}$:

$$
H^{(L)}=H_{x X Z}^{0,[-L, L]}+\lambda \sum_{j=-L}^{L} \omega_{j} \mathcal{N}_{j}+\beta\left(\mathcal{N}_{-L}+\mathcal{N}_{L}\right)
$$

Assume: $\beta \geq \frac{1}{2}\left(1-\frac{1}{\Delta}\right)$ ("droplet b.c.", Nachtergaele/Starr)

Many-body eigencorrelator localization:
Theorem (Elgart/Klein/St. 2017)
Let $\delta>0, \lambda>0$ and $\Delta>1$ be such that $\lambda \sqrt{\Delta-1}$ is sufficiently large. Then there exist C and $m>0$ such that

$$
\begin{equation*}
\mathbb{E}\left(\sum_{E \in \sigma\left(H^{(L)}\right) \cap l_{1, \delta}}\left\|\mathcal{N}_{j} \psi_{E}\right\|\left\|\mathcal{N}_{k} \psi_{E}\right\|\right) \leq C e^{-m|j-k|} \tag{1}
\end{equation*}
$$

uniformly in $L>0, j, k \in[-L, L]$.
Here ψ_{E} is the (almost surely unique) normalized eigenstate to $E \in \sigma\left(H^{(L)}\right)$ and

$$
\iota_{1, \delta}:=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]
$$

Remarks (instead of proof):

- Proof reduces to showing uniform dynamical localization (in N) of the operators

$$
H_{N}=-\frac{1}{2 \Delta} A_{N}+W(x)+\lambda \sum_{j=1}^{N} \omega_{x_{j}} \text { in } \ell^{2}\left(\mathcal{X}^{N}\right)
$$

- Crucial fact: (i) Attractive W-interaction, (ii) small degree of \mathcal{X}^{N} at droplet configurations (uniform in N)
- Regime allows extension of known methods (here: Fractional moments method), works uniform in N
- IDS of H_{N} on $I_{1, \delta}$ decays exponentially in N (large deviations) \Longrightarrow Summability in (1)
- Higher energies? Method of proof should extend to " k droplets" (i.e., MBL for $E \leq C k$ if $\Delta \geq \Delta_{0}(k)$).

Not good enough for physics! (They call our result "zero temperature localization" and really want $E \leq \rho L$ for MBL.)

- MBL of droplet spectrum for more general geometries (in preparation):

Yes for quasi-1D systems (e.g. strips).
No for higher dimensional systems (droplet band of H_{0}^{N} grows as $N^{(d-1) / d}$, the surface area of "ball" of volume N).

- Models without particle number preservation? General results for spin chains with large disorder? (Imbrie's work)

ICMP XIX, July 24-28, Montréal:
https://icmp2018.org/

Financial support available (in particular for junior researchers).

Happy Birthday, Ilya!

[^0]: * Don't ask: We have nothing to say about the delocalized/thermalized phase...

