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Interacting N-body Anderson model:

hN = −∆ + λVω(x) +
∑

1≤j<k≤N
U(xj − xk) in `2(ZNd)

Vω(x) =
N∑
j=1

ωxj , x = (x1, . . . , xN) ∈ ZNd

Known: If λ ≥ λ0(N) > 0, then hN is localized
(Chulaevsky/Suhov, Aizenman/Warzel, Klein/Nguyen).

Problem: λ0(N)→∞ as N →∞, localization not uniform in N,
(similar issue with Lifshitz tail regime)



Physics question (e.g. Gornyi/Mirlin/Polyakov,
Basko/Aleiner/Altshuler,...):

Are there regimes/variants of the interacting N-body Anderson
model where suitable forms of localization hold uniformly in N
(e.g. in the thermodynamic limit of an electron gas at positive
particle density)?

“Many-body Localization (MBL)”

First question for mathematics (also for physics):

What is this???

Next thought:

Start with something easier!



Disordered quantum spin systems (chains):

H =
∑
j∈Z

hj ,j+1 +
∑
j∈Z

tj in H =
⊗
j∈Z

C2

For simplicity:

I hj ,j+1 translation invariant interaction of spins at j and j + 1

I tj i.i.d. random 2× 2-matrices acting on spin at j

Note: Single-particle Hilbert space is C2 (for spins) rather than
`2(Zd) (as for d-dimensional “electrons”), so that single-particle
physics becomes trivial



1st toy model: XY chain in random transversal field:

HXY =
∑
j

(σXj σ
X
j+1 + σYj σ

Y
j+1) +

∑
j

ωjσ
Z
j

Can be used to start clarifying MBL phenomena:

Jordan-Wigner transform =⇒

HXY
∼= 2dΓa(h) + E0 on Fa(`2(Z))

where h is the 1D Anderson model. Free fermion system!

Physically “trivial”:

Anderson localization =⇒ (Full) many-body localization



MBL manifestations in random XY chain:

I Zero-velocity Lieb-Robinson bound for group/information
transport (Hamza/Sims/St. 2012), “Dynamical MBL”

I Exponential decay of spatial correlations of all eigenstates and
thermal states (Klein/Perez 1990, Sims/Warzel 2016)

I Area law for bipartite entanglement of all eigenstates, incl.
dynamical entanglement (Pastur/Slavin 2014, Survey by
Abdul-Rahman/Nachtergaele/Sims/St. 2017)

Proofs need to deal with (given Anderson localization):

Antisymmetry and non-locality of Jordan-Wigner



More challenging: Disordered XXZ (or XXX) chains

Physics (numerics): Expect MBL-transition∗ at low disorder (note
that system is 1D).

Recent works by Beaud/Warzel, Elgart/Klein/St.:

Localization properties of the droplet spectrum
in the Ising phase of the XXZ chain in random field

∗Don’t ask: We have nothing to say about the delocalized/thermalized phase...



The free XXZ chain:

H0 = H0
XXZ = −1

4

∑
j

[
1

∆
(σXj σ

X
j+1 + σYj σ

Y
j+1) + (σZj σ

Z
j+1 − 1)

]
Assume Ising phase: ∆ > 1

True (but not so important for us): H0 exactly diagonalizable via
Bethe ansatz.

Important for us:

H0 preserves number of down-spins (“particles”):

H0 =
⊕
N≥0

H0
N



The N-particle operators:

H0
0 = 0 on 1D space spanned by | . . . ↑↑↑↑ . . .〉 (vacuum)

N ≥ 1:

H0
N
∼= −

1

2∆
AN + W on `2(XN),

where

XN = {x ∈ ZN : x1 < x2 < . . . < xN} (down-spin sites)

AN = Adjacency operator on `2(XN)

W (x) = number of connected components of (x1, . . . , xN)

(next neighbor attraction of hard core bosons)

(i) W minimized for droplets (single cluster of down-spins), (ii)
small hopping (∆ > 1)

=⇒ Droplet regime at low energy (Nachtergaele/Starr 2002)



Figure:



Droplet bands: (with cosh(ρ) = ∆)

δN =

[
tanh(ρ) · cosh(Nρ)− 1

sinh(Nρ)
, tanh(ρ) · cosh(Nρ) + 1

sinh(Nρ)

]
→

√
1− 1

∆2
as N →∞

Droplet spectrum of H0 (potentially including gap):

I1 :=

[
1− 1

∆
, 2
(

1− 1

∆

))
Range of spectral projection χI1(H0) is spanned by states
exponentially close to droplets. (Not fully localized, but close.)



Conjecture (suggested by B. Nachtergaele):

Adding disorder should fully localize the droplets, as these can be
seen as a single quasi-particle in the one-dimensional XXZ model.
Thus eigenstates to droplet spectrum should have only one
“many-body localization center” (one cluster of downspins).

Recent rigorous proofs:

Beaud/Warzel 2017, Elgart/Klein/St. 2017



Infinite XXZ chain in random field:

H = H0
XXZ + λ

∑
i

ωjNj where Nj =

(
0 0
0 1

)
j

= 1
2 (I − σZj )

Assume: λ > 0 and

ωj i.i.d., dµ(ωj) = ρ(ωj) dωj , ‖ρ‖∞ <∞, supp ρ = [0, ωmax ]

Finite volume chain on H(L) =
⊗L

j=−LC2:

H(L) = H
0,[−L,L]
XXZ + λ

L∑
j=−L

ωjNj + β(N−L +NL)

Assume: β ≥ 1
2 (1− 1

∆ ) (“droplet b.c.”, Nachtergaele/Starr)



Many-body eigencorrelator localization:

Theorem (Elgart/Klein/St. 2017)

Let δ > 0, λ > 0 and ∆ > 1 be such that λ
√

∆− 1 is sufficiently
large. Then there exist C and m > 0 such that

E

 ∑
E∈σ(H(L))∩I1,δ

‖NjψE‖‖NkψE‖

 ≤ Ce−m|j−k| (1)

uniformly in L > 0, j , k ∈ [−L, L].

Here ψE is the (almost surely unique) normalized eigenstate to
E ∈ σ(H(L)) and

I1,δ :=

[
1− 1

∆
, (2− δ)

(
1− 1

∆

)]



Remarks (instead of proof):

I Proof reduces to showing uniform dynamical localization
(in N) of the operators

HN = − 1

2∆
AN + W (x) + λ

N∑
j=1

ωxj in `2(XN)

I Crucial fact: (i) Attractive W -interaction, (ii) small degree of
XN at droplet configurations (uniform in N)

I Regime allows extension of known methods (here: Fractional
moments method), works uniform in N

I IDS of HN on I1,δ decays exponentially in N (large deviations)
=⇒ Summability in (1)



I Higher energies? Method of proof should extend to
“k droplets” (i.e., MBL for E ≤ Ck if ∆ ≥ ∆0(k)).

Not good enough for physics! (They call our result “zero
temperature localization” and really want E ≤ ρL for MBL.)

I MBL of droplet spectrum for more general geometries (in
preparation):

Yes for quasi-1D systems (e.g. strips).

No for higher dimensional systems (droplet band of HN
0 grows

as N(d−1)/d , the surface area of “ball” of volume N).

I Models without particle number preservation? General results
for spin chains with large disorder? (Imbrie’s work)
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Happy Birthday, Ilya!


