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Chebyshev Polynomials

It is well known that monic orthogonal polynomials
minimize the L2(e, dµ) norm if µ is a measure with
compact support, e ⊂ C.

Chebyshev polynomials just
replace L2 by L∞ (so only the support matters).
Specifically, let e ⊂ C be a compact, infinite, set of points.
For any function, f , define

‖f‖e = sup {|f(z)| | z ∈ e}

The Chebyshev polynomial of degree n is the monic
polynomial, Tn, with

‖Tn‖e = inf {‖P‖e | deg(P ) = n and P is monic}

The minimizer is unique (as we’ll see below in the case that
e ⊂ R), so it is appropriate to speak of the Chebyshev
polynomial rather than a Chebyshev polynomial.
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Chebyshev Polynomials

Chebyshev invented his explicit polynomials which obey
Qn(cos(θ)) = cos(nθ) not because of their functional
relation but because they are the best approximation on
[−1, 1] to xn by polynomials of degree n− 1. In this regard,
Sodin and Yuditskii unearthed the following quote from a
1926 report by Lebesgue on the work of S. N. Bernstein.

I assume that I am not the only one who does not
understand the interest in and significance of these strange
problems on maxima and minima studied by Chebyshev in
memoirs whose titles often begin with, “On functions
deviating least from zero . . . ”. Could it be that one must
have a Slavic soul to understand the great Russian Scholar?

This quote is a little bizarre given that, as we’ll see, Borel
(who was Lebesgue’s thesis advisor) made important
contributions to the subject in 1905!
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The Alternation Theorem

We will focus for most of this talk on the case e ⊂ R, in
which case, Tn is real, since on R, |Re(Tn)| is smaller than
|Tn|.

We say that Pn, a degree n polynomial, has an alternating
set in e ⊂ R if there exists {xj}nj=0 ⊂ e with

x0 < x1 < . . . < xn

and so that

Pn(xj) = (−1)n−j‖Pn‖e
While the basic idea of the following theorem goes back to
Chebyshev, the result itself is due to Borel and Markov,
independently, around 1905.
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The Alternation Theorem

The Alternation Theorem The Chebyshev polynomial of
degree n has an alternating set.

Conversely, any monic
polynomial with an alternating set is the Chebyshev
polynomial.

If Tn is the Chebyshev polynomial, let y0 < y1 < . . . < yk
be the set of all the points in e where its takes the value
±‖Tn‖e. If there are fewer than n sign changes among
these ordered points we can find a degree at most n− 1
polynomial, Q, non-vanishing at each yj and with the same
sign as Tn at those points. For ε small and positive,
Tn − εQ will be a monic polynomial with smaller ‖·‖e. Thus
there must be at least n sign flips and therefore an
alternating set.
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The Alternation Theorem

Conversely, let Pn be a degree n monic polynomial with an
alternating set and suppose that ‖Tn‖e < ‖Pn‖e.

Then at
each point, xj , in the alternating set for Pn, Q ≡ Pn − Tn
has the same sign as Pn, so Q has at least n zeros, which is
impossible, since it is of degree at most n− 1. `

The alternation theorem implies uniqueness of the
Chebyshev polynomial. For, if Tn and Sn are two
minimizers, so is Q ≡ 1

2(Tn + Sn).

At the alternating points for Q, we must have Tn = Sn, so
they must be equal polynomials since there are n+ 1 points
and their difference has degree at most n− 1.
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alternating set and suppose that ‖Tn‖e < ‖Pn‖e. Then at
each point, xj , in the alternating set for Pn, Q ≡ Pn − Tn
has the same sign as Pn, so Q has at least n zeros, which is
impossible, since it is of degree at most n− 1. `

The alternation theorem implies uniqueness of the
Chebyshev polynomial. For, if Tn and Sn are two
minimizers, so is Q ≡ 1

2(Tn + Sn).

At the alternating points for Q, we must have Tn = Sn,

so
they must be equal polynomials since there are n+ 1 points
and their difference has degree at most n− 1.
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Alternation and Zeros

If Tn is the Chebyshev polynomial for e ⊂ R and
x0 < x1 < . . . < xn is an alternating set for Tn,

there must
be at least one zero (in R, not necessarily in e) between
xj−1 and xj because of the sign change. Since this
accounts for all n zeros:

Fact 1 All the zeros of the Chebyshev polynomials of a set
e ⊂ R lie in R and all are simple and lie in cvh(e).

Here, cvh(e) is the convex hull of e and that result follows
from x0, xn ∈ e.
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Alternation and Zeros

By a gap of e ⊂ R, we mean a bounded connected
component of R \ e.

If there are only finitely many gaps and
no component of e is a single point, we speak of a finite gap
set. Between any two zeros of Tn, there is a point in the
alternating set so

Fact 2 Each gap of e ⊂ R has at most one zero of Tn.

Above the top zero (resp. below the bottom zero) of Tn,
|Tn(x)| is monotone increasing (resp. decreasing). It follows
that xn = supy∈e y (resp x0 = infy∈e y) so

Fact 3 At the end points of cvh(e) ⊂ R we have that
|Tn(x)| = ‖Tn‖e and

en ≡ T−1
n ([−‖Tn‖e, ‖Tn‖e]) ⊂ cvh(e)
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Coulomb Energies and All That

Szegő realized that Chebyshev polynomials are intimately
connected with two dimensional potential theory, so I want
to review some of the basics of that subject.

Given a
probability measure, dµ, of compact support on C, we
define its Coulomb energy, E(µ) by

E(µ) =

∫
dµ(x) dµ(y) log |x− y|−1

and we define the Robin constant, of a compact set e ⊂ C

R(e) = inf{E(µ) | supp(µ) ⊂ e andµ(e) = 1}

If R(e) =∞, we say e is a polar set or has capacity zero. If
something holds except for a polar set, we say it holds q.e.
(for quasi-everywhere). The capacity, C(e), of e is defined
by

C(e) = exp(−R(e)) R(e) = log(1/C(e))
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Equilibrium Measures and All That

If e is not a polar set, it follows from weak lower
semicontinuity of E(·) and weak compactness of the family
of probability measures that there is a probability measure
whose Coulomb energy is R(e).

Since E(·) is strictly convex
on the probability measures, this minimizer is unique. It is
called the equilibrium measure or harmonic measure of e
and denoted dρe. The second name comes from the fact
that if f is a continuous function on e, there is a unique
function, uf , harmonic on (C ∪ {∞}) \ e, which approaches
f(x) for q.e. x ∈ e (i.e., solves the Dirichlet problem) and

uf (∞) =

∫
e
f(x)dρe(x)

The function Φe(z) =
∫
e dρe(x) log |x− z|−1 is called the

equilibrium potential.
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Green’s Function

The Green’s function, Ge(z), of a compact subset, e ⊂ C, is
defined by

Ge(z) = R(e)− Φe(z)

It is the unique function harmonic on C \ e with q.e.
boundary value 0 on e and so that Ge(z)− log |z| is
harmonic at ∞. Moreover, Ge(z) ≥ 0 everywhere and near
∞

Ge(z) = log |z|+R(e) + O(1/|z|)

equivalently,

exp(Ge(z)) =
|z|
C(e)

+ O(1)
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Szegő’s Lower Bound

Let e ⊂ C.

Define fn = {z | |Tn(z)| ≤ ‖Tn‖e} so that e ⊂ fn
and thus

C(e) ≤ C(fn)

The function, G(z) = n−1 log (|Tn(z)|/‖Tn‖e) is the
Green’s function of fn (check properties) so

C(fn) = ‖Tn‖1/ne ⇒ ‖Tn‖e ≥ C(e)n

an inequality of Szegő with a new proof (not that his proof
was complicated).
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Schiefermayr’s Theorem

Similarly if e ⊂ R, we define

en = {z ∈ C |Tn(z) ∈ [−‖Tn‖e, ‖Tn‖e]}
which the alternation theorem implies is a union of n
intervals in which Tn is monotone (the intervals can touch).
As in the complex case, we have that

C(e) ≤ C(en)

but now the Green’s function is

Gen(z) =
1

n
log

∣∣∣∣∣
(
Tn(z)

‖Tn‖e
+

√
Tn(z)2

‖Tn‖2e
− 1

)∣∣∣∣∣
For z near ∞ the argument inside the log is close to
2zn/‖Tn‖e which leads to

C(en) = (‖Tn‖e/2)1/n ⇒ ‖Tn‖e ≥ 2C(e)n

an inequality of Schiefermayr with a new and simpler proof.
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Schiefermayr’s Theorem

The harmonic measure of a set e ⊂ R is the boundary value
of the harmonic conjugate of the Green’s function

(a
formula called the Thouless formula by physicists after the
recent Nobel Laureate, David Thouless). That shows that
each of the sets between two opposite sign extrema of Tn
has en–harmonic measure 1/n. This, in turn implies each
connected component of en has harmonic measure k/n for
some integer k. Such a set is called a period–n set.

If e is a period–n set, one can prove that en = e so that all
the period–n sets are precisely the possible en’s.
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Example

Example (∂D, the unit circle)

Its Green’s function is log |z|
so R(e) = 0 and C(e) = 1. Since Tn is monic∫ 2π

0 exp(−inθ)Tn(exp(iθ)) dθ/2π = 1

we see that ‖Tn‖e ≥ 1 so that

Tn(z) = zn; ‖Tn‖e = 1 = C(e)n

Example ([−1, 1]) It is known (and follows from results
later) that C(e) = 1

2 . By the Alternation Theorem, the
polynomials given by Qn(cos(θ)) = cos(nθ) (i.e. “the
Chebyshev polynomials of the first kind”) are multiples of
Chebyshev polynomials as we’ve defined them, so

Tn(cos(θ)) = 2−n+1 cos(nθ); ‖Tn‖e = 2−n+1 = 2C(e)n

so one can have equality in both lower bounds.
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FFS Theorem

Theorem (Faber–Fekete–Szegő Theorem) For any compact
subset e ⊂ C, we have that

lim
n→∞

‖Tn‖1/ne = C(e)

Given Szegő’s lower bound, we get a lower bound on the
lim inf by C(e). One can get an upper bound on ‖Tn‖1/ne by

sup
zj∈e

∏
1≤j 6=k≤n+1

|zj − zk|1/n(n+1)

using suitable trial monic polynomials. Fekete proved that
as n→∞, this last quantity had a limit that he called the
transfinite diameter. One can view this sup as the
exponential of the negative of a discrete Coulomb energy of
n+ 1 point charges, each of charge about 1

n+1 , so Szegő’s
proof that this is C(e) is natural from a Coulomb energy
point of view.
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History

Faber’s name is associated to this theorem because of a
1919 paper in which he proved a result that is both much
more restrictive and much stronger than what we call the
FFS Theorem.

It is more restrictive in that he only studied
the special case where e is a single (closed) analytic Jordan
curve. But in this case, he proved much more — first he
proved that limn→∞‖Tn‖e/C(e)n = 1.

He also obtained asymptotics for the polynomials
themselves. The unbounded component, Ω, of
(C ∪ {∞}) \ e is simply connected, so Ge(z) has a single
valued harmonic conjugate and thus, by exponentiating,
there is a function, Be(z), on Ω with
|Be(z)| = exp(−Ge(z)) with an overall phase determined by
demanding that as z →∞, we have that
Be(z)

−1 = z
C(e) + O(1). Since the curve is analytic, Be(z)

has an analytic continuation to a neighborhood of e.
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History

Faber proved that uniformly on Ω plus a neighborhood of e,
Tn(z)Be(z)

n → 1.

Faber didn’t mention Green’s functions
or capacities at all! In this case, Be(z)

−1 can be described
as the Riemann map of Ω to (C ∪ {∞} \ D) (with positive
“derivative” at ∞) and the capacity appears as inverse of
the value of that “derivative”.

Interestingly enough, for these polynomials, Faber had
“Szegő asymptotics” three years before Szegő had his
asymptotics (for OPUC, not Chebyshev polynomials).

Fekete’s work on transfinite diameters and its connection to
capacity for some special cases is from 1923. Szegő had the
full theorem in a 1924 paper whose title started “Comments
on a paper by Mr. M. Fekete”.
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In 1969, Widom published a 100+ page brilliant, seminal
work on asymptotics of Chebyshev and orthogonal
polynomials. In his set up, e is a finite union of (closed)
analytic Jordan curves and/or (open) Jordan arcs.

The
cases with e ⊂ R are exactly the finite gap sets.

As in the work of Faber, it is natural to look for an analytic
function, Be(z), with |Be(z)| = exp(−Ge(z)) on Ω, the
unbounded component of (C ∪ {∞}) \ e. The problem is
that Ω is no longer simply connected so the magnitude of
Be(z) is single valued but its phase is multivalued.

Put differently, Be(z) can be continued along any curve in
Ω and there is a map from the fundamental group of Ω to
∂D, which is a character (i.e. group homomorphism), so
that after continuation around a closed curve, Be(z) is
multiplied by the character applied to that curve.
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Indeed, if the curve loops around a subset g ⊂ e, the phase
changes by −2πρe(g).

If Tn(z)Be(z)
nC(e)−n had a limit, that limit cannot be n

independent since the character is n dependent. Widom had
the idea that there should be functions Fχ(z) defined for
each χ in the character group and continuous in χ so the
limit is the Fχ, call it Fn, associated to the character of
Be(z)

n. As a function of n, the limit will be almost periodic!
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Widom’s Minimizers

He even found a candidate for the functions! Let Fχ(z) be
that function among all character automorphic functions,
A(z), on Ω with character χ and with A(∞) = 1, that
minimizes supz∈Ω{|A(z)|}.

Widom proved uniqueness of the minimizer and found a
formula for it (in terms of some theta functions and
solutions of some implicit equations). He also proved that
‖Fχ‖Ω is continuous in χ. Because of the uniqueness, one
can prove that the functions, Fχ(z), defined for z ∈ Ω, are
continuous in χ on the compact set of characters, uniformly
locally in z (but as functions on the covering space not
uniformly in all z).
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Widom’s Theorems and Conjecture

The Widom minimizers are analogs of the Ahlfors function
for which Fisher found a simple elegant proof of uniqueness.

By modifying his proof, in Part 2 we find a simple proof of
uniqueness for any compact set e ⊂ C.

Theorem (Widom) Let e be a finite union of disjoint
analytic Jordan curves. Let Fn(z) be as above for the
character of Be(z)

n. Then:

lim
n→∞

‖Tn‖e
C(e)n‖Fn‖Ω

= 1; lim
n→∞

[
Tn(z)Be(z)

n

C(e)n
− Fn(z)

]
= 0

where the limit is uniform on compact subsets of Ω.

Since |Be(z)| → 1 and ‖Fn‖Ω is taken as z → e , the z
asymptotics and norm limit fit together.
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Widom’s Theorems and Conjecture

Theorem (Widom) Let e be a finite gap subset of R. Let
Fn(z) be as above. Then

lim
n→∞

‖Tn‖e
2C(e)n‖Fn‖Ω

= 1

Conjecture (Widom) Let e be a finite gap subset of R. Let
Fn(z) be as above. Then:

lim
n→∞

[
Tn(z)Be(z)

n

C(e)n
− Fn(z)

]
= 0

uniformly on compact subsets of Ω.

The norm, ‖Tn‖e is twice as large as one might expect!
Note: This is Widom’s conjecture for e ⊂ R; he made the
conjecture for more general cases of e ⊂ C.
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Back to [−1, 1]

Example We return to the case of [−1, 1]

where Ω is
simply connected so Fn(z) ≡ 1. We have that
Be(z) = z −

√
z2 − 1. Notice that B−1

e (z) = z +
√
z2 − 1.

On [−1, 1], of course, Be(x) has magnitude 1 (since
Ge(x) = 0) so Be(x) = exp(iθ) and
cos(θ) = 1

2 [Be(x) +B−1
e (x)] = x.

Thus, by Tn(cos(θ)) = 2−n+1 cos(nθ), we see that
Tn(z) = 2−n[Bn

e (z) +B−ne (z)]. For z ∈ [−1, 1], both terms
contribute and at some points add to 2 and we get
‖Tn‖e = 2−n+1 = 2C(e)n. On Ω, |Be(z)| < 1 so the Bn

term is negligible as n→∞ and we lose the factor of 2.

It was this example that led Widom to his conjecture.
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On [−1, 1], of course, Be(x) has magnitude 1 (since
Ge(x) = 0) so Be(x) = exp(iθ) and
cos(θ) = 1

2 [Be(x) +B−1
e (x)] = x.

Thus, by Tn(cos(θ)) = 2−n+1 cos(nθ), we see that

Tn(z) = 2−n[Bn
e (z) +B−ne (z)]. For z ∈ [−1, 1], both terms

contribute and at some points add to 2 and we get
‖Tn‖e = 2−n+1 = 2C(e)n. On Ω, |Be(z)| < 1 so the Bn

term is negligible as n→∞ and we lose the factor of 2.

It was this example that led Widom to his conjecture.
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Outer Approximation for General Sets

In order to extend Markov and other polynomial inequalities
to general sets, Totik proved that:

Theorem (Totik’s Approximation Theorem) For any
compact set e ⊂ R, there exist period n sets ẽn ⊃ e so that
C(ẽn)→ C(e)

This result was proven by approximating e by finite gap sets
and then proving this result for finite gap set (the finite gap
set result was proven independently by Bogatyrëv,
McKean-van Moerbeke, Peherstorfer, Robinson). It was
later used by Totik and by Simon to extend Lubinsky’s first
sinc kernel universality result from [−1, 1] to general sets e.

Totik published his approximation theorem in 2001. In
2009, he published an improvement for finite gap case:
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Totik–Widom bounds

Theorem (Totik’s 1/n bound) If e is a finite gap set, the
period n sets ẽn ⊃ e can be chosen so that
C(ẽn) ≤ C(e)

(
1 + E

n

)
for some constant E.

Because ‖Tn‖e = 2C(en)n, this bound is equivalent to

Theorem (Totik–Widom bounds in the finite gap case) If e
is a finite gap set, then for a constant D we have that

‖Tn‖e ≤ DC(e)n

This complements the 2C(e)n lower bound. Because of his
asymptotic result, Widom already had this bound in 1969
but Totik’s proof was much simpler. Neither proof has very
explicit estimates for D. Even though they only had the
result for finite gap sets, we will say that a general set e has
Totik–Widom bounds, if there is an upper bound of the
above form.
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Canonical Generators

I now want to discuss the case where e might have infinitely
many components – in the real case, infinitely many gaps.

The character group, π∗1, is in general an infinite dimensional
torus. It contains a distinguished element, χe, the character
of Be. We will say that e ∈ R has a canonical generator if
and only if the powers of χe are dense in the character
group. This is equivalent to saying that if e is decomposed
into ` closed disjoint sets, the only rational relation among
their harmonic masses is that their total sum is 1.

It seems to us likely that, in some sense, this condition holds
generically. It follows from results of Totik that among the
2ν dimensional set of unions of exactly ν disjoint unions,
the set where the condition fails is a countable union of
varieties of dimension ν + 1 so the set where it fails is both
of 2ν Lebesgue measure zero and a nowhere dense Fσ.
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PW and DCT sets

To state the main new results in part 2, I need to discuss
PW (for Parreau–Widom) and DCT (for Direct Cauchy
Theorem) sets.

We’ll act as if these are properties of e
although they are really properties of Ω ≡ (C ∪ {∞}) \ e as
an infinitely connected Riemann surface. Each has been
heavily studied in the literature on such surfaces and each is
known to be a family of many different looking equivalent
conditions. I’ll define the properties via a condition that
relates directly to the Widom minimizer problem.

Let χ ∈ π∗1 and let H∞(Ω, χ) be the family of bounded
character automorphic analytic functions on Ω. We say that
a compact set, e ∈ C, has the PW property if and only if
for every χ ∈ π∗1, we have that H∞(Ω, χ) contains
non–constant functions.
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Lifted up to the universal cover, for χ ≡ 1, this question is
equivalent to the existence of automorphic functions, a
problem solved in the finitely connected case by Klein and
Poincaré.

For subsets of R, it is often but not always true.
We’ll say more about when it fails later but if e ⊂ R is
perfect, then e locally has positive 1D Lebesgue measure,
so, for example, the classical Cantor set does not have the
PW property. On the other hand, it is known that
homogeneous sets in the sense of Carleson do. It is also
known that e ⊂ C has the PW property iff

PW (e) ≡
∑
w∈C

Ge(w) <∞

where C is the set of critical points of Ge (i.e. points in the
unbounded component of Ω where G′e(w) = 0). In
particular, any connected set has PW.
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In the case of e ⊂ R which are regular (i.e. Ge continuous
on e), there is one critical point in each gap and the value
of Ge there is the maximum value in the gap.

Once one has the PW condition, one can prove there exists
a unique Widom minimizer, Fχ, which minimizes ‖A‖∞
among all character automorphic functions with that
character and A(∞) = 1. One can also consider the dual
Widom maximizer, the function, Qχ, which is character
automorphic with norm 1, non–negative at ∞ that
maximizes the value at ∞. It is easy to see that

Qχ = Fχ/‖Fχ‖∞, Fχ = Qχ/Qχ(∞),

Qχ(∞) = 1/‖Fχ‖∞



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

PW and DCT sets

In the case of e ⊂ R which are regular (i.e. Ge continuous
on e), there is one critical point in each gap and the value
of Ge there is the maximum value in the gap.

Once one has the PW condition, one can prove there exists
a unique Widom minimizer, Fχ, which minimizes ‖A‖∞
among all character automorphic functions with that
character and A(∞) = 1.

One can also consider the dual
Widom maximizer, the function, Qχ, which is character
automorphic with norm 1, non–negative at ∞ that
maximizes the value at ∞. It is easy to see that

Qχ = Fχ/‖Fχ‖∞, Fχ = Qχ/Qχ(∞),

Qχ(∞) = 1/‖Fχ‖∞



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

PW and DCT sets

In the case of e ⊂ R which are regular (i.e. Ge continuous
on e), there is one critical point in each gap and the value
of Ge there is the maximum value in the gap.

Once one has the PW condition, one can prove there exists
a unique Widom minimizer, Fχ, which minimizes ‖A‖∞
among all character automorphic functions with that
character and A(∞) = 1. One can also consider the dual
Widom maximizer, the function, Qχ, which is character
automorphic with norm 1, non–negative at ∞ that
maximizes the value at ∞. It is easy to see that

Qχ = Fχ/‖Fχ‖∞, Fχ = Qχ/Qχ(∞),

Qχ(∞) = 1/‖Fχ‖∞



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

PW and DCT sets

In the case of e ⊂ R which are regular (i.e. Ge continuous
on e), there is one critical point in each gap and the value
of Ge there is the maximum value in the gap.

Once one has the PW condition, one can prove there exists
a unique Widom minimizer, Fχ, which minimizes ‖A‖∞
among all character automorphic functions with that
character and A(∞) = 1. One can also consider the dual
Widom maximizer, the function, Qχ, which is character
automorphic with norm 1, non–negative at ∞ that
maximizes the value at ∞. It is easy to see that

Qχ = Fχ/‖Fχ‖∞, Fχ = Qχ/Qχ(∞),

Qχ(∞) = 1/‖Fχ‖∞



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

PW and DCT sets

As the name implies the basic DCT condition has
something to do with validity of a Cauchy formula involving
boundary values of H∞ functions but for us a more useful
definition is an equivalent condition:

we say that e obeys
the DCT condition if and only if it is a PW set and the map
χ 7→ Qχ(∞) is a continuous function of π∗1 to (0, 1). This
implies various functions like n 7→ Fχn

e
(z) are almost

periodic.
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Totik Widom Bounds

Recall that we say that e ⊂ R obeys a Totik-Widom bound
if there is a D with ‖Tn‖e ≤ DC(e)n and that this was only
known for finite gap sets.

One of the (two) main results in
Part 1 is

Theorem If e ⊂ R is a regular Parreau-Widom set, then

‖Tn‖e ≤ 2 exp(PW (e))C(e)n

Homogeneous sets are regular and obey a Parreau Widom
condition (a theorem of Jones and Marshall). This explicit
constant is interesting even for the finite gap case. We also
proved a weak converse:
Theorem If e ⊂ C is a regular set for which a TW bound
holds and e has a canonical generator, then e is a PW set.
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Totik Widom Bounds

The proof is not hard.

A TW bound implies that
Tn(z)Be(z)

n/C(e)n is a family of uniformly bounded
character automorphic functions which are = 1 at ∞, so by
Montel’s theorem one gets that H∞(Ω, χ) is non–empty for
any limit point of {χne }.

Interesting Open Question Does potential theory
regularity + Parreau-Widom ⇒ Totik-Widom bound for
general e ⊂ C (our proof is only for e ⊂ R).

For a time I suspected the answer was yes but now I’d guess
not. A key example is the solid Koch snowflake. Since it is
simply connected, it is a PW set. On the other hand the
fact that its boundary has dimension greater than 1 makes
it a candidate for failure of TW bounds if the theorem does
not extend to the general complex case.
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Widom’s Conjecture

The other main result of Part 1 settled a 45 year old
conjecture:

Theorem Widom’s conjecture on the almost periodic Szegő
asymptotics outside e for the Chebyshev polynomials of
finite gap sets is true.

In Part 2, we extended this:
Theorem Szegő–Widom asymptotics outside e holds for the
Chebyshev polynomials of any e ⊂ R for any e that is both
PW and DCT.

The proof of this in Part 2 is simpler than the proof of Part
1 (and doesn’t require Widom’s result on the norm apriori
but rather proves it).
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We believe we have a proof (some details to check):

Probable Theorem If e ⊂ R is a regular set PW set for
which n 7→ Aχn

e
is almost periodic in n and which has a

canonical generator, then e is a DCT set.

Since almost periodicity of the limit is part of Szegő–Widom
asymptotics, this is a kind of converse to

DCT⇒Szegő–Widom asymptotics.
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Proof modulo Lemma

We turn to the proof of TW bounds from Part 1:

Lemma Let e ⊂ en ⊂ R be a compact subset and its
canonical period n superset. Let K be a gap of e and dρn,
the equilibrium measure of en. Then ρn(K) ≤ 1/n.
Accepting this for the moment, let h(z) ≡ Ge(z)−Gen(z)
which is harmonic at infinity with

h(∞) = R(e)−R(en) = log
[
C(en)
C(e)

]
Since dρn is harmonic measure and h(x) = Ge(x) on en, if
{Kj}Mj=1 are the gaps for e, then, using the Lemma

h(∞) ≤
∑M

j=1 ρn(Kj) maxx∈Kj (Ge(x)) ≤ 1
n

∑M
j=1Ge(wj)

since regularity of e implies Ge vanishes at the ends of each
gap so the maximum is taken a critical point wj .
Exponentiating and using ‖Tn‖e ≤ 2C(en)n we get the
result. `
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Proof of the Lemma

Because the integrated equilibrium measure of en is
1
πn arccos

(
Tn(x)
‖Tn‖e

)
, each band of en has ρen measure 1

n and
the part of a band from a zero of Tn to a nearby band edge
has ρen measure 1

2n .

Recall that any gap K has at most
one zero.

Case 1 (Tn has no zero in K) Then there are zeros above
and below K not in K. Thus K contains at most two half
bands. (In fact, using the Alternation Theorem, one can
show at most one half band).

Case 2 (Tn has a zero in K) By the Alternation Theorem,
one of the two extreme points immediately below the zero
must lie in e, so there is at most a half band below the zero.
Similarly, at most a half band above, so no more than a full
band. `
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Size of en \ e

In fact, one can prove if there is a zero not too close to a
gap edge and n is large, then there is exactly a full
exponentially small (in Lebesgue measure) band of en
totally inside K.

This implies that if K is a gap and nj is such as j →∞
and any zeros of Tnj in K go to the edges, then
asymptotically there is none of enj in K in the sense that⋂∞
k=1

⋃∞
j=k(K ∩ enj ) = ∅.

Similarly if, for j large Tnj has a zero, xj , in K and
xj → x∞ ∈ K, then only x∞ is asymptotically in enj ∩K
in the sense that

⋂∞
k=1

⋃∞
j=k(K ∩ enj ) = {x∞}.
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gap edge and n is large, then there is exactly a full
exponentially small (in Lebesgue measure) band of en
totally inside K.

This implies that if K is a gap and nj is such as j →∞
and any zeros of Tnj in K go to the edges,

then
asymptotically there is none of enj in K in the sense that⋂∞
k=1

⋃∞
j=k(K ∩ enj ) = ∅.

Similarly if, for j large Tnj has a zero, xj , in K and
xj → x∞ ∈ K, then only x∞ is asymptotically in enj ∩K
in the sense that
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Finally, some remarks on the proof of SW asymptotics. For
any x ∈ Ω, we can look at the lifts of x in the universal
cover, thought of as the unit disk

and form the product of
Blaschke factors with those zeros. If e is PW, then one can
prove this Blaschke product converges to a function
vanishing precisely at the those lifts. This defines a
character automorphic function, B(z, x), which is the
unique character automorphic function with infinity norm 1,
positive at ∞ with zero’s precisely at x (and its images
under the deck transformations).
R \ e is a disjoint union of bounded open components (plus
two unbounded components), K ∈ G. We’ll call these the
gaps and G the set of gaps. A gap collection is a subset
G0 ⊂ G. A gap set is a gap collection, G0, and for each
Kk ∈ G0 a point xk ∈ Kk.



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

Overall Strategy

Finally, some remarks on the proof of SW asymptotics. For
any x ∈ Ω, we can look at the lifts of x in the universal
cover, thought of as the unit disk and form the product of
Blaschke factors with those zeros.

If e is PW, then one can
prove this Blaschke product converges to a function
vanishing precisely at the those lifts. This defines a
character automorphic function, B(z, x), which is the
unique character automorphic function with infinity norm 1,
positive at ∞ with zero’s precisely at x (and its images
under the deck transformations).
R \ e is a disjoint union of bounded open components (plus
two unbounded components), K ∈ G. We’ll call these the
gaps and G the set of gaps. A gap collection is a subset
G0 ⊂ G. A gap set is a gap collection, G0, and for each
Kk ∈ G0 a point xk ∈ Kk.



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

Overall Strategy

Finally, some remarks on the proof of SW asymptotics. For
any x ∈ Ω, we can look at the lifts of x in the universal
cover, thought of as the unit disk and form the product of
Blaschke factors with those zeros. If e is PW, then one can
prove this Blaschke product converges to a function
vanishing precisely at the those lifts.

This defines a
character automorphic function, B(z, x), which is the
unique character automorphic function with infinity norm 1,
positive at ∞ with zero’s precisely at x (and its images
under the deck transformations).
R \ e is a disjoint union of bounded open components (plus
two unbounded components), K ∈ G. We’ll call these the
gaps and G the set of gaps. A gap collection is a subset
G0 ⊂ G. A gap set is a gap collection, G0, and for each
Kk ∈ G0 a point xk ∈ Kk.



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

Overall Strategy

Finally, some remarks on the proof of SW asymptotics. For
any x ∈ Ω, we can look at the lifts of x in the universal
cover, thought of as the unit disk and form the product of
Blaschke factors with those zeros. If e is PW, then one can
prove this Blaschke product converges to a function
vanishing precisely at the those lifts. This defines a
character automorphic function, B(z, x), which is the
unique character automorphic function with infinity norm 1,
positive at ∞ with zero’s precisely at x (and its images
under the deck transformations).

R \ e is a disjoint union of bounded open components (plus
two unbounded components), K ∈ G. We’ll call these the
gaps and G the set of gaps. A gap collection is a subset
G0 ⊂ G. A gap set is a gap collection, G0, and for each
Kk ∈ G0 a point xk ∈ Kk.



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

Overall Strategy

Finally, some remarks on the proof of SW asymptotics. For
any x ∈ Ω, we can look at the lifts of x in the universal
cover, thought of as the unit disk and form the product of
Blaschke factors with those zeros. If e is PW, then one can
prove this Blaschke product converges to a function
vanishing precisely at the those lifts. This defines a
character automorphic function, B(z, x), which is the
unique character automorphic function with infinity norm 1,
positive at ∞ with zero’s precisely at x (and its images
under the deck transformations).
R \ e is a disjoint union of bounded open components (plus
two unbounded components), K ∈ G. We’ll call these the
gaps and G the set of gaps.

A gap collection is a subset
G0 ⊂ G. A gap set is a gap collection, G0, and for each
Kk ∈ G0 a point xk ∈ Kk.



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

Overall Strategy

Finally, some remarks on the proof of SW asymptotics. For
any x ∈ Ω, we can look at the lifts of x in the universal
cover, thought of as the unit disk and form the product of
Blaschke factors with those zeros. If e is PW, then one can
prove this Blaschke product converges to a function
vanishing precisely at the those lifts. This defines a
character automorphic function, B(z, x), which is the
unique character automorphic function with infinity norm 1,
positive at ∞ with zero’s precisely at x (and its images
under the deck transformations).
R \ e is a disjoint union of bounded open components (plus
two unbounded components), K ∈ G. We’ll call these the
gaps and G the set of gaps. A gap collection is a subset
G0 ⊂ G.

A gap set is a gap collection, G0, and for each
Kk ∈ G0 a point xk ∈ Kk.



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

Overall Strategy

Finally, some remarks on the proof of SW asymptotics. For
any x ∈ Ω, we can look at the lifts of x in the universal
cover, thought of as the unit disk and form the product of
Blaschke factors with those zeros. If e is PW, then one can
prove this Blaschke product converges to a function
vanishing precisely at the those lifts. This defines a
character automorphic function, B(z, x), which is the
unique character automorphic function with infinity norm 1,
positive at ∞ with zero’s precisely at x (and its images
under the deck transformations).
R \ e is a disjoint union of bounded open components (plus
two unbounded components), K ∈ G. We’ll call these the
gaps and G the set of gaps. A gap collection is a subset
G0 ⊂ G. A gap set is a gap collection, G0, and for each
Kk ∈ G0 a point xk ∈ Kk.



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Lower Bounds
and Special Sets

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

Main Results

Totik Widom
Bounds

Szegő–Widom
Asymptotics

Overall Strategy

For any gap set, S, we define the associated Blaschke
product

BS(z) =
∏

Kk∈G0

Be(z, xk)

To prove Szegő–Widom asymptotics, it suffices, by Montel’s
theorem and uniqueness of minimizers, to show that any
limit point of the Ln(z) ≡ Tn(z)Be(z)

n/C(e)n is a Widom
minimizer. We’ll instead look at

Mn(z) = B(z)n/Bn(z)n

which obeys

|Mn(z)| = exp(−hn(z)); hn(z) ≡ Ge(z)−Gen(z)

so that on can write Ln in terms of Mn
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Overall Strategy

Ln(z) = (1 +Bn(z)2n)Hn(z)

Hn(z) =
C(en)n

C(e)n
B(z)n

Bn(z)n
=

Mn(z)

Mn(∞)

This means it suffices to prove that any limit point of the
Mn is a dual Widom maximizer. Moreover, we can pass to
subsequences and suppose that for the limit point is also
true that the zeros in each gap have a limit or else leave the
gap (through the edges). The limit points of zeros then
define a gap set.

The proof has two steps: first, prove that the limit is the
Blaschke product of this gap set and, secondly, prove that
any such product is a dual Widom maximizer. The proof of
the second half follows, in part, ideas of Volberg–Yuditskii,
who considered a related problem and uses some deep 1997
results of Sodin–Yuditskii on the Abel map in this setting.
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Limits of Mn are Gap Blaschke Products

Rather than control Mn globally, it suffices, by a little
complex analysis, to prove convergence of the absolute
values and only for z in a small neighborhood of ∞. Taking
into account the formula we had for |Mn(z)| and taking
logs, it suffices to prove that, for z near ∞, we have that

nhn(z)→
∑
Kk∈G0

Ge(xk, z)

where Ge(x, z) is the Green’s function with pole at x (so
that Ge(∞, z) is what we called Ge(z)).
Part 1, we proved Totik–Widom bounds for PW sets, e ⊂ R
by using that when z =∞, we have that

hn(∞) =

∫
⋃

Kj∈G Kj

Ge(x)dρn(x)
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A Poisson Formula

We proved this by thinking of dρn as harmonic measure at
∞, i.e. if H is harmonic on (C ∪ {∞}) \ en with boundary
values H(x) on en, then H(∞) =

∫
en
H(x)dρn(x).

If we
wrote the analog of this for general z, we’d get

H(z) =

∫
en

H(x)dρn(x, z)

varying the harmonic measure. Instead we use

hn(z) =

∫
⋃

Kj∈G Kj

Ge(x, z)dρn(x)

which follows from noting that hn vanishes on e and, on
(C ∪ {∞}) \ e obeys, ∆hn = dρn � (en \ e) so this is just
the Poisson formula (proven by checking that the difference
is harmonic on Ω and vanishes on e).
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Limits of Mn are Gap Blaschke Products

By using the PW bound and the fact that∫
Ge(x, z)δ(x− xk) = Ge(xk, z), it suffices to prove that,

for all K ∈ G, we have that

ndρ � K →
{
δ(x− xk), if K ∈ G0

0, if K /∈ G0

If the zeros in a gap have a limit, xk, in the gap, there is a
single narrow band of ρn–weight 1/n near the point so the
first case is handled. If there is a zero that approaches an
edge, the limit is 0 since regularity implies the Green’s
function Ge(x, z) = Ge(z, x) vanishes as x approaches e. `
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 1 is devoted to real analysis. From one point of view, 
it presents the infi nitesimal calculus of the twentieth century with the ultimate 
integral calculus (measure theory) and the ultimate differential calculus (distribu-
tion theory). From another, it shows the triumph of abstract spaces: topological 
spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, 
locally convex spaces, Fréchet spaces, Schwartz space, and Lp  spaces. Finally it 
is the study of big techniques, including the Fourier series and transform, dual 
spaces, the Baire category, fi xed point theorems, probability ideas, and Hausdorff 
dimension. Applications include the constructions of nowhere differentiable func-
tions, Brownian motion, space-fi lling curves, solutions of the moment problem, 
Haar measure, and equilibrium measures in potential theory.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2A is devoted to basic complex analysis. It inter-
weaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, 
respectively. Cauchy’s view focuses on the differential and integral calculus of 
functions of a complex variable, with the key topics being the Cauchy integral 
formula and contour integration. For Riemann, the geometry of the complex plane 
is central, with key topics being fractional linear transformations and conformal 
mapping. For Weierstrass, the power series is king, with key topics being spaces 
of analytic functions, the product formulas of Weierstrass and Hadamard, and 
the Weierstrass theory of elliptic functions. Subjects in this volume that are often 
missing in other texts include the Cauchy integral theorem when the contour is 
the boundary of a Jordan region, continued fractions, two proofs of the big Picard 
theorem, the uniformization theorem, Ahlfors’s function, the sheaf of analytic 
germs, and Jacobi, as well as Weierstrass, elliptic functions.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 2B provides a comprehensive look at a number of 
subjects of complex analysis not included in Part 2A. Presented in this volume 
are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-
Robinson proof of Picard’s theorem, and Bell’s proof of the Painlevé smoothness 
theorem), topics in analytic number theory (including Jacobi’s two- and four-
square theorems, the Dirichlet prime progression theorem, the prime number 
theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the 
theory of Fuschian differential equations, asymptotic methods (including Euler’s 
method, stationary phase, the saddle-point method, and the WKB method), univa-
lent functions (including an introduction to SLE), and Nevanlinna theory. The 
chapters on Fuschian differential equations and on asymptotic methods can be 
viewed as a minicourse on the theory of special functions.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 3 returns to the themes of Part 1 by discussing point-
wise limits (going beyond the usual focus on the Hardy-Littlewood maximal 
function by including ergodic theorems and martingale convergence), harmonic 
functions and potential theory, frames and wavelets, H p  spaces (including bounded 
mean oscillation (BMO)) and, in the fi nal chapter, lots of inequalities, including 
Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
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A Comprehensive Course in Analysis by Poincaré Prize 
winner Barry Simon is a fi ve-volume set that can serve as 
a graduate-level analysis textbook with a lot of additional 
bonus information, including hundreds of problems and 
numerous notes that extend the text and provide important 
historical background. Depth and breadth of exposition 
make this set a valuable reference source for almost all 
areas of classical analysis.

Part 4 focuses on operator theory, especially on a Hilbert 
space. Central topics are the spectral theorem, the theory of trace class and 
Fredholm determinants, and the study of unbounded self-adjoint operators. There 
is also an introduction to the theory of orthogonal polynomials and a long chapter 
on Banach algebras, including the commutative and non-commutative Gel’fand-
Naimark theorems and Fourier analysis on general locally compact abelian groups.
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