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Band matrices: simplest model
H - hermitian or real symmetric N×N matrices with independent (up to the
symmetry condition) entries Hij such that

E
{
Hij} = 0, Var{Hij} = (2W)−11|i−j|≤W

H =



· · · · · 0 0 0 0 0 0 0 0 0 0
· · · · · · 0 0 0 0 0 0 0 0 0
· · · · · · · 0 0 0 0 0 0 0 0
· · · · · · · · 0 0 0 0 0 0 0
· · · · · · · · · 0 0 0 0 0 0
0 · · · · · · · · · 0 0 0 0 0
0 0 · · · · · · · · · 0 0 0 0
0 0 0 · · · · · · · · · 0 0 0
0 0 0 0 · · · · · · · · · 0 0
0 0 0 0 0 · · · · · · · · · 0
0 0 0 0 0 0 · · · · · · · · ·
0 0 0 0 0 0 0 · · · · · · · ·
0 0 0 0 0 0 0 0 · · · · · · ·


We are going to study the regimes

W→∞, W/N→ 0, as N→∞,
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Band matrices: general definition
H - hermitian or real symmetric N×N matrices with independent (up to the
symmetry condition) entries Hij such that E

{
Hij} = 0,

E
{
HijHlk

}
= δikδjlW−dJ((i− j)/W), i, j ∈ Zd

and J ∈ L1(Rd) is a piece-wise continuous function (with a finite number of
jumps), satisfying the conditions

J(x) = J(|x|), 0 ≤ J(x) ≤ C, W−d
∑

j

J(j/W)→ 1, u is continuous at x = 0

Our model-1 (RBM)

E
{
HijHlk

}
= δikδjl

(
−W2∆ + 1

)−1
ij ∼W−1e−|i−j|/W,
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Our model-2: 1d Wegner type band matrix (RBBM)

H is N×N hermitian block matrix composed from n2 blocks of the size
W ×W (N = nW). Only 3 block diagonals are non zero.

H =


A1 B1 0 0 0 . . . 0
B∗1 A2 B2 0 0 . . . 0
0 B∗2 A3 B3 0 . . . 0
. . B∗3 . . . .
. . . . . An−1 Bn−1
0 . . . 0 B∗n−1 An


where
A1, . . .An - independent W ×W GUE-matrices with entry’s variance
(1− 2α)/W, α < 1

4

B1, . . .Bn−1 -independent W ×W Ginibre matrices with entry’s variance α/W
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Global regime: results
Let {λi}Ni=1 be eigenvalues of H. Define linear eigenvalue statistics of the test
function h as

NN[h] =
∑

h(λi)

Limit of NCM ([Molchanov,Khorunzhy,Pastur:92])

lim
N,W→∞

N−1NN(h) =

∫
h(λ)ρ(λ)dλ,

where ρ(λ) = 1[−2,2](2π)−1
√

4− λ2

Theorem [MS:15]
If h ∈ Hs with s > 2, then√

W/N(NN[h]− E{NN[h]})→ V(u)N (0, 1)

Previous results:
L.Li, A. Soshnikov (2013), and I. Jana, K. Saha, and A.Soshnikov (2014):
CLT for band matrices with W2 >> N;
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"Anderson transition" for random band matrices
(conjectures)
Let ` be a typical localization length of eigenvectors of H.

Localization and delocalization regimes
Localization regime means that ` << N and delocalization regime means that
` ∼ N. Varying W, we can see the crossover between localization and
delocalization regimes.

W = O(1) [∼ random Schrödinger] ←→ W = N [Wigner matrices]

Conjecture (in the bulk of the spectrum):
d = 1 : ` ∼W2 W2 � N Delocalization, local GUE statistics

W2 � N Localization, Poisson statistics
d = 2 : ` ∼ eW

2
W2 � log N Delocalization, local GUE statistics
W2 � log N Localization, local Poisson statistics

d ≥ 3 : ` ∼ N W ≥W0 Delocalization, local GUE statistics
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Second order correlation function

R2(λ1, λ2) =

∫
pN(λ1, . . . , λN)dλ3 . . . dλN,

where pN(λ1, . . . , λN) is a joint eigenvalue distribution.

R2(λ1, λ2) = lim
ε→0

(πN)−2E{=Tr(H− λ1 − iε)=Tr(H− λ2 − iε)}

In the case of bulk local regime we take λ1,2 = E + ξ1,2/ρ(E)N, E ∈ (−2, 2).

Crossover for the second order correlation function
In the delocalization region (for d = 1, when W >>

√
N)

(Nρ(E))−2R2

(
E +

ξ1
ρ(E)N

,E +
ξ2

ρ(E)N

)
−→ 1− sin2(π(ξ1 − ξ2))

π2(ξ1 − ξ2)2
,

In the localization region (for d = 1 when W <<
√
N)

(Nρ(E))−2R2

(
E +

ξ1
ρ(E)N

,E +
ξ2

ρ(E)N

)
−→ 1,
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Previous results: d = 1

Fyodorov, Mirlin (1991) – existence of the crossover for W2 ∼ N
(on the level of rigour of theoretical physics)
Schenker (2009) ` ≤W8 – localization techniques;
Erdős, Yau, Yin (2011) ` ≥W – RM methods;
Erdős, Knowles (2011): `�W7/6;
Erdős, Knowles, Yau, Yin (2012): `�W5/4;
T.Shcherbina (2013): GUE statistics for Wegner band matrix (fixed n);
Bourgade, Erdős, Yau, Yin (2016) GUE statistics for W ∼ n.

S.Sodin (2010): Edge universality iff W >> N5/6
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Main objects

"Generalised" correlation functions

R1(z1, z′1) := E
{det(H− z′1)

det(H− z1)

}
R2(z1, z′1; z2, z′2) := E

{det(H− z′1) det(H− z′2))

det(H− z1) det(H− z2))

}
We study these functions for z1,2 = E + ξ1,2/ρ(E)N, z′1,2 = E + ξ′1,2/ρ(E)N

Link with the spectral correlation functions:

E{Tr(H− z1)−1Tr(H− z2)−1} =
d2

dz′1dz′2
R(z1, z′1; z2, z′2)

∣∣∣
z′1=z1,z′2=z2

Correlation function of the characteristic polynomials:

R0(λ1, λ2) = E
{
det(H− λ1) det(H− λ2)

}
, λ1,2 = λ0 ± ξ/n.
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Integral representations for R0,1,2

There are a scalar kernel K0(X1,X2), 2× 2 matrix kernel K1(X1,X2), and
70× 70 matrix kernel K2(X1,X2) (containing z1,2, z′1,2 as parameters) such that

R0(λ1, λ2) = CN

∫
g0(X1)K0(X1,X2) . . .K0(Xn−1,Xn)f0(Xn)

∏
dXi,

Xj = (xj, yj,Uj), xj, yj ∈ R, Uj ∈ Ů(2)

R1(z1, z′1) = W2
∫

g1(X1)K1(X1,X2) . . .K1(Xn−1,Xn)f1(Xn)
∏

dXi,

Xj = (xj, yj), xj, yi ∈ R,

R2(z1, z′1; z2, z′2) = W4
∫

g2(X1)K2(X1,X2) . . .K2(Xn−1,Xn)f2(Xn)
∏

dXi

Xj = (xj, yj,Uj, Sj, ), xj, yj ∈ R2, Uj ∈ Ů(2), Sj ∈ Ů(1, 1)

dX means an integration over the Haar measure of X,

Recall that the hyperbolic matrix S satisfies the relation

S ∈ Ů(1, 1) ⇔ S∗LS = L, L = diag{1,−1}
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Idea of the transfer operator approach

Observation
Let K(X,Y) be the p-dimensional matrix kernel of the compact integral
operator in ⊕p

i=1L2[X, dµ(X)]. Then∫
g(X1)K(X1,X2) . . .K(Xn−1,Xn)f(Xn)

∏
dµ(Xi) = (Kn−1f, ḡ)

=
∞∑
j=0

λn−1
j (K)cj, with cj = (f, ψj)(g, ψ̃j) (1)

Here {λj(K)}∞j=0 are the eigenvalues of K ( |λ0| ≥ |λ1| ≥ . . . ), ψj are
corresponding eigenvectors and ψ̃j are the eigenvectors of K∗
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Main technical problems
K0,1,2 are not self adjoint operators, hence we can not use a standard
perturbation theory;

R0 contains the integration over unitary group U(2)/U(1)×U(1),
and R2, contains the integration over unitary and hyperbolic
(U(1, 1)/U(1)×U(1)) groups, hence we need to work with corresponding
special functions;

K1 is a 2× 2 matrix kernel, containing the Jordan cell, and K2 is a
28 × 28 matrix kernel, containing 4× 4 Jordan cell in the main block.
Using the symmetry of the problem, K2 could be replaced by 70× 70
matrix kernel.
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Resolvent version of the transfer operator approach
Observation 2

(Knf, ḡ) = − 1
2πi

∮
L
zn(G(z)f, ḡ)dz, G(z) = (K − z)−1

where L is any closed contour which contains all eigenvalues of K. It is
sufficient to take L = L0 = {|z| = 1 + Cn−1},

We choose L = L1 ∪ L2 where L2 = {z : |z| = 1− log2 n/n}, and L1 is some
special contour, containing all eigenvalues between L0 and L2. Then

(Kn
αf, ḡ) = − 1

2πi

∮
L1

zn(Gα(z)f, ḡ)dz− 1
2πi

∮
|z|=1−log2 n/n

zn(Gα(z)f, ḡ)dz

The second integral is small since |z|n ≤ e− log2 n

Definition of asymptotically equivalent operators (n,W→∞)

AWn ∼ BWn ⇔
∮

L1

zn((AWn − z)−1f, ḡ)dz =

∮
L1

zn((BWn − z)−1f, ḡ)dz + o(1)

for some certain L1
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Mechanism of the crossover for R0

Key technical step

K0ξ ∼ K∗ξ ⊗A,
K∗ξ(U1,U2) = e−iξν(U1)/NK∗(U1U∗2)e−iξν(U2)/N, K0ξ : L2(Ů(2))→ L2(Ů(2)),

A(x1, x2, y1, y2) = A1(x1, x2)A2(y1, y2), L2(R2)→ L2(R2).

Here ξ1 = −ξ2 = ξ, and ν(U) = π(1− 2|U12|2)

Then

R0 = (KN
∗ξ ⊗ANf, ḡ)(1 + o(1)) = (KN

∗ξf0, f0)(ANf1, ḡ1)(1 + o(1)).

Here we used that both f, g asymptotically can be replaced by f0(U)⊗ f1(x, y)
(f0 = 1). If we introduce the normalization constant

D2 = R0(E,E).
then

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
=

(KN
∗ξf0, f0)

(KN
∗0f0, f0)

(1 + o(1))
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Spectral analysis of K∗ξ

A good news is that K∗0 with a kernel

K∗0 = t∗W2e−t∗W2|(U1U∗2)12|2

is a self-adjoint "difference" operator. It is known that his eigenfunctions are
Legendre polynomials Pj. Moreover, it is easy to check that corresponding
eigenvalues have the form:

λj = 1− t∗j(j + 1)/W2 + O((j(j + 1)/W2)2), j = 0, 1 . . . .

Besides,
K∗ξ = K∗0 − 2iξν̂/N + O(N−2)

where ν̂ is the operator of multiplication by ν. Thus the eigenvalues of K∗ξ are
in the N−1-neighbourhood of λj.
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Mechanism of the Poisson behavior for W2 << N

For W−2 >> N−1 (the spectral gap is much less then the perturbation norm)

λ0(K∗ξ) = 1− 2N−1iξ(νf0, f0) + o(N−1),

|λ1(K∗ξ)| ≤ 1−O(W−2) ⇒ |λj(K∗ξ)|N → 0, (j = 1, 2, . . . ).

Since
(νf0, f0) = 0,

we obtain that
λ0(K∗ξ) = 1 + o(N−1),

and

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
=
λN

0 (K∗ξ)

λN
0 (K∗0)

(1 + o(1))→ 1

The relation corresponds to the Poisson local statistics.
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Mechanism of the GUE behavior for W2 >> N

In the regime W−2 << N−1 we have KN
∗0 → I in the strong vector topology,

hence one can prove that

K∗ξ ∼ 1 + O(W−2)−N−12iξν ⇒ (KN
∗ξf0, f0)→ (e−2iξν̂ f0, f0)

and

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
=

(e−2iξt∗ν̂ f0, f0)

(f0, f0)
(1 + o(1))→ sin(2πξ)

2πξ
.

The expression for D−1
2 R0 coincides with that for GUE.
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In the regime W−2 = C∗N−1 observe that K∗ξ is reduced by the subspace E0
of the functions depending only on |U12|2.
Recall also that the Laplace operator on Ů(2) is reduced by E0 and have the
form

∆U = − d
dx

x(1− x)
d
dx
, x = |U12|2.

Besides, the eigenvectors of ∆U and K∗0 coincide (they are Legendre’s
polynomials Pj) and corresponding eigenvalues of ∆U are

λ∗j = j(j + 1).

Hence we can write K∗ξ as

K∗ξ ∼ 1−N−1(C∗t∗∆U + 2iξν) + o(N−1)⇒ (KN
∗ξf0, f0)→ (e−C∆U−2iξν̂ f0, f0)
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Results for R0

Theorem 1 [TS:14]
N <W2−θ, where 0 < θ < 1, and E ∈ (−2, 2) we have

lim
N,W→∞

D−1
2 R0

(
λ0 +

ξ

Nρ(λ0)
, λ0 −

ξ

Nρ(λ0)

)
=

sin(2πξ)

2πξ
,

i.e. the limit coincides with that for GUE. The limit is uniform in ξ varying in
any compact set C ⊂ R. Here

D2 = R0(λ0, λ0).

Theorem 2 [TS,MS:16]
N > CW2 logW

lim
N,W→∞

D−1
2 R0

(
λ0 +

ξ

Nρ(λ0)
, λ0 −

ξ

Nρ(λ0)

)
= 1

The limit is uniform in ξ varying in any compact set C ⊂ R.
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Theorem 3 [TS: in preparation]
For 1d RBM with N = C∗W2, E ∈ (−2, 2), we have

lim
N→∞

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
= (e−C∗t∗∆U−2iξν̂ f0, f0),

where t∗ = (2πρ(E))2, and the limit is uniform in ξ varying in any compact
subset of R.
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Result for R1

K1 ∼ F(x1, y1)A1(x1, x2)A2(y1, y2)F(x2, y2)

(
1 + L(x̄, ȳ)/W2 −1
−L(x̄, ȳ) 1

)
Operators A1 and A2 contain a large parameter W in the exponent, hence
only W−1/2 neighbourhood of the stationary point (x∗, y∗) gives essential
contribution. The function L(x̄, ȳ) here satisfies the relation

L(x̄, ȳ) = 0
∣∣∣
x̄=x̄∗,ȳ=ȳ∗

Hence the main order of our operator contains the Jordan cell.
The spectral gap of A1,2 is O(W−1) >> N−1, hence AN

1,2 ∼ λN
0 (A1,2)P1,2

(rankP1,2 = 1)

Theorem 3 [MS,TS:16]
Let N ≥ C0WlogW, and |λ0| ≤ 4

√
2/3 ≈ 1.88. Then we have for the first

correlation function R1 (the first marginal density)

|R1(E)− ρ(E)| ≤ C/W
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Sigma-model R(σ)
2

The model can be obtained by some scaling limit (α = β/W, W→∞,
β,n-fixed) from the expression for R2.
The crossover is expected for β ∼ n.

R(σ)
2 =

∫
exp

{β
4

∑
StrQjQj+1 +

ε+ iξ
4n

∑
StrQjΛ

}
×
∏

(1− 2ρ1jτ1jρ2jτ2j)
∏

dQj

Here Qj is a 4× 4 super matrix of the block form:

Qj =

(
U∗j 0
0 S−1

j

)(
T1j T2j
T3j T4j

)(
Uj 0
0 Sj

)
, Λ =

(
L 0
0 −L

)

T1j = diag{1 + 2ρ1jτ1j;−(1 + 2ρ2jτ2j)} T4j = diag{−1 + 2ρ1jτ1j; 1− 2ρ2jτ2j)}
T2j = diag{2τ1j; 2τ2j}; T3j = diag{2ρ1j; 2ρ2j}

Here {Uj}nj=1 are unitary matrices, {Sj}nj=1 are hyperbolic matrices and

dQj = dUjdSjdρ1jdρ2jdτ1jdτ2j
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Transfer operator for R(σ)
2

The kernel of the transfer operator for R(σ)
2 has a form

K(σ)
2 = F̂Q̂F̂

where F̂ and Q̂ are 6× 6 matrix kernels, s.t. F̂µν are multiplication operators
and Q̂µν = Q̂µν(U1U∗2, S1S−1

2 ) are "difference" operators.
The key step is to prove

F̂Q̂F̂ ∼ F̃K̂0F̃,

where K̂0 and F̃ are 4× 4 matrices of the form

K̂0 =


K K̃1 K̃2 K̃3

0 K 0 K̃2

0 0 K K̃1
0 0 0 K

 , F̃ = F


1 F̃1 F̃2 F̃1F̃2

0 1 0 F̃2

0 0 1 F̃1
0 0 0 1


where K = KU ⊗KS

KU(U1,U2) ∼ βe−β|(U1U∗2)12|2 , KS(S1,S2) ∼ βe−β|(S1S−1
2 )12|2

K̃i = K̃i(U1U∗2; S1S−1
2 ) ∼ β−1∆U,V , F is an operator of multiplication by

eϕ(U,S)/2n, and F̃1,2 are operators of multiplication by n−1ϕ1,2(U,S)
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Result for R(σ)
2

Theorem 4 [MS,TS:17] (submitted to JSP)
For the sigma-model in the regime Cβ/ log2 β > n

lim
n→∞

R(σ)
2 = (F̂0 f̃, g̃)

where

F̂0 = F0


1 F1 F2 F1F2
0 1 0 F2
0 0 1 F1
0 0 0 1

 ,

F0 ∼ eϕ(U,S), F1,2 ∼ ϕ1,2(U, S)

f̃ = (e4 − e1), g̃ = (e1 − e4)

Corollary
For |E| ≤

√
2 the second order correlation function of RBBM with α = β/W in

the limit W→∞ and then β,n→∞, (β >> n) coincides with that for GUE.
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Transfer operator for R2

The kernel of the transfer operator for R2 has a form

K2 = F̂Q̂ÂF̂

where F̂, Q̂ and Â are 70× 70 matrix kernels, s.t. F̂µν are the operators of
multiplication by some function of U, S,

Q̂µν = KUKSQµν(U1U∗2; S1S−1
2 ),

KU = αWe−αWt(x̄,ȳ)|(U1U∗2)12|2 , KS = αWe−αWt(x̄,ȳ)|(S1S−1
2 )12|2 ,

and

Âµν = A1(x1, x2)A2(y1, y2)A3(x′1, x
′
2)A4(y′1, y

′
2)Aµ,ν(x̄, ȳ)

Aδ(x, y) = (αW/2π)1/2e−Wα(x−y)2/2+W(fδ(x)+fδ(y)), δ = 1, 2, 3, 4.

The spectral gap for Aδ is O(1).
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Result for R2

After a rather involved asymptotic analysis we obtain

K2 ∼ F̃K̂0F̃

where K̂0 and F̃ are 4× 4 matrices similar to that for sigma-model.

Theorem 5 [MS,TS:17] (in preparation)
For |E| ≤

√
2 and W2/ log2 W > CN,

lim
n→∞

R2 = (F̂0 f̃, g̃)

where F̂0, f̃, g̃ are the same as in Theorem 4.

Corollary
For |E| <

√
2 the second order correlation function of 1d RBBM in the limit

N,W→∞, W2/ log2 W > CN, coincides with that for GUE.
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