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Band matrices: simplest model

H - hermitian or real symmetric N x N matrices with independent (up to the
symmetry condition) entries H;; such that

E{H;} =0, Var{Hy} = (2W) 'L j<w
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Band matrices: general definition

H - hermitian or real symmetric N x N matrices with independent (up to the
symmetry condition) entries Hj; such that E{H;;} =0,

E{H;jHy} = sudy W4I((1 —j)/W), 1i,jez

and J € L;(RY) is a piece-wise continuous function (with a finite number of
jumps), satisfying the conditions

Jx)=J(x), 0<Jx)<C, w ZJ(J/W) — 1,u is continuous atx =0
i

Our model-1 (RBM)
E{Hinlk} = 5ik5j1( - W3A + 1); ~ W le—lim J|/W
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Our model-2: 1d Wegner type band matrix (RBBM)

H is N x N hermitian block matrix composed from n? blocks of the size
W x W (N =nW). Only 3 block diagonals are non zero.

A, B 0 0 0 ... 0

B A, B, 0 0 ... 0

g | 0 B: Ay By oo 0
B; .

. An—l Bn—l

0 0 By, A,

where

Ay, ... Ay - independent W x W GUE-matrices with entry’s variance
(1-20)/W, a<i

By,...By_1 -independent W x W Ginibre matrices with entry’s variance a/W
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Global regime: results

Let {\}Y, be eigenvalues of H. Define linear eigenvalue statistics of the test

function h as
Nx[h] => "h(X)

Limit of NCM ([Molchanov,Khorunzhy,Pastur:92|)

i N W) = / h(A\)p(A)dA,

where p(A) = 1[_2.9(27) "' V4 — A2

Theorem [MS:15]
If h € Hg with s > 2, then

vV W/N(Nx[h] — E{Nx[h]}) = V(u)N(0,1)

Previous results:

L.Li, A. Soshnikov (2013), and I. Jana, K. Saha, and A.Soshnikov (2014):
CLT for band matrices with W2 >> N;
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"Anderson transition" for random band matrices
(conjectures)

Let £ be a typical localization length of eigenvectors of H.

Localization and delocalization regimes

Localization regime means that £ << N and delocalization regime means that
¢ ~ N. Varying W, we can see the crossover between localization and
delocalization regimes.

W = 0O(1) [~ random Schrédinger] <«+— W = N [Wigner matrices]

Conjecture (in the bulk of the spectrum):

d=1: ¢~W2 W2>N Delocalization, local GUE statistics
W2 « N Localization, Poisson statistics

d=2: ¢~e"’ W2 1logN Delocalization, local GUE statistics
W2 <« logN Localization, local Poisson statistics

d>3: /~N W > W, Delocalization, local GUE statistics
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Second order correlation function
RQ()\l, )\2) = /pN(/\l, coog )\N)d)\g 500 d)\N,
where pn (A1, ..., AN) is a joint eigenvalue distribution.

Ro(A1, A2) = gi_1>r(1)(7rN)_2E{%Tr(H — A1 —ie)STr(H — Ap —ie)}

In the case of bulk local regime we take A1 2 = E + &1 2/p(E)N, E € (—2,2).

v

Crossover for the second order correlation function
In the delocalization region (for d = 1, when W >> v/N)

2 &1 &2 sin®(m(&1 — &)
(Np(E)) " Re (E WO R p(E)N> 1T E g

In the localization region (for d = 1 when W << v/N)

(No(E)) R, (E+ p(g)N,E 4 p(gN) Y

v
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Previous results: d =1

e Fyodorov, Mirlin (1991) — existence of the crossover for W2 ~ N
(on the level of rigour of theoretical physics)

Schenker (2009) ¢ < W® — localization techniques;

e Erdés, Yau, Yin (2011) £ > W — RM methods;

Erdss, Knowles (2011): £ > W7/6;

o Erdss, Knowles, Yau, Yin (2012): £ > W5/4;

T.Shcherbina (2013): GUE statistics for Wegner band matrix (fixed n);
e Bourgade, Erdés, Yau, Yin (2016) GUE statistics for W ~ n.

e S.Sodin (2010): Edge universality iff W >> N/6
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Main objects

"Generalised" correlation functions
A det(H - le)
Ra(m,7) = ]E{ det(H — 2;) }
det(H — 7,) det(H — 7)) }
det(H — z1) det(H — 22))

Ra(z1,7y;22,25) = E{

We study these functions for z; o = E + &1 2/p(E)N, 2} , = E+ &7 5/p(E)N

Link with the spectral correlation functions:

d2

E{Tr(H — z;) " 'Tr(H — 2z5) "'} =
{T(H =) " Te(H - 22) ™} = e

R(z1,2}; 22, 74)

YA Y
71 =71,25=22

Correlation function of the characteristic polynomials:

Ro(M, o) = ]E{ det(H — ;) det(H — Ag)}, Ar2 = Xo £ &/n.
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Integral representations for Ry 2

There are a scalar kernel Ko(X1,X3), 2 x 2 matrix kernel (X7, X2), and
70 x 70 matrix kernel KCp(X1, X2) (containing z; 2,7) , as parameters) such that

Ro(A1, A2) = CN/go(Xl)ICO(Xl,Xg)...ICO(Xn_l,Xn)fO(Xn)HdXi,
X; = (x5,55, Uj), x5,55 € R, U GU( )
Ri(z1,7,) = W? /gl(x1 K1 (X1, Xz) . K1 (Xa1, X1 (Xa) [ ] dXi,
Xj=(x¥), %,y €R,
Ro(z1,7); 72, 75) = W* /g2(X1 K2(X1,X2) .. Ko(Xno1, Xa )2 (Xa) [ [ dXi
X; = (x3,55, U3, S5 ), X5, 75 € R%, U € U(2), S5 € U(1,1)

dX means an integration over the Haar measure of X,

Recall that the hyperbolic matrix S satisfies the relation
ScU(1,1) < SLS=L, L=diag{l,—1}
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Idea of the transfer operator approach

Observation

Let K(X,Y) be the p-dimensional matrix kernel of the compact integral
operator in @ ;Lo[X, du(X)]. Then

/g(Xl)K(XlaXQ)---’C(Xn 1, X Hdu = (K", g)
=Y TN K, with o = (£, 95)(, %) (1)
j=0

Here {\j(K)}52, are the eigenvalues of IC ( [Ao| > [M| > ...), ¢ are
corresponding eigenvectors and 'lz;j are the eigenvectors of IC*
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Main technical problems

e [Cp,1,2 are not self adjoint operators, hence we can not use a standard
perturbation theory;

@ Ry contains the integration over unitary group U(2)/U(1) x U(1),
and R, contains the integration over unitary and hyperbolic
(U(1,1)/U(1) x U(1)) groups, hence we need to work with corresponding
special functions;

e /i is a 2 X 2 matrix kernel, containing the Jordan cell, and K5 is a
28 x 2% matrix kernel, containing 4 x 4 Jordan cell in the main block.
Using the symmetry of the problem, Ky could be replaced by 70 x 70
matrix kernel.
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Resolvent version of the transfer operator approach

Observation 2
ne =\ _ 1 n = _ o —1
(C6.8) = ~3= § 2 (OB 6 = (K—2)

where L is any closed contour which contains all eigenvalues of K. It is
sufficient to take L = Ly = {|z| = 1 + Cn~!},

We choose L = Ly ULy where Ly = {z: |z] = 1 — log?n/n}, and L; is some
special contour, containing all eigenvalues between Ly and Ls. Then

) 1
(Kaf,g) =

1
“om . Zn(ga(z)fv g)dz 5= zn(ga(z)f, g)dz

2mi |z|=1—log? n/n

. . . — 2
The second integral is small since |z|* < e~ 08" n

Definition of asymptotically equivalent operators (n, W — 00)

Awn ~ Bwn < ¢ 2*((Awn —2) " 'f,8)dz = 7{ 2" ((Bwn — z) " 'f,8)dz + o(1)
Ly

L1
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Mechanism of the crossover for Ry

Key technical step

Koe ~ Kie ® A,
Kue(Ur, Uy) = e 1 (UD/NK (U, U3)e @V joo, - Ly(T(2)) — La(U(2)),

A(x1,%2,¥1,y2) = A1(x1,x2)A2(y1,¥2), Ly(R?) — Ly(R?).

Here & = —& = €, and v(U) = m(1 — 2|Up2|?)

Then
Ro = (K3 © AN, 8)(1 + (1)) = (Klfo, fo) (ANf1, 81)(1 + o(1)).

Here we used that both f, g asymptotically can be replaced by f(U) ® f;(x,y)
(fo = 1). If we introduce the normalization constant

Dy = Ro(E, E).
then
. ¢ £y (Ko fo)
Dy 'R (B + 1,55 E ~ o) ~ i o)
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Spectral analysis of IC,¢

A good news is that .o with a kernel

Kuo = t*WQQ—t*W2\(U1U§)12\2

is a self-adjoint "difference" operator. It is known that his eigenfunctions are
Legendre polynomials P;. Moreover, it is easy to check that corresponding
eigenvalues have the form:

N=1-tjG+1)/W2+0((GG + 1)/WH?), j=0,1....

Besides,
Kae = Kuo — 2i€0/N + O(N™2)

where © is the operator of multiplication by v. Thus the eigenvalues of K,¢ are
in the N~!-neighbourhood of \;.
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Mechanism of the Poisson behavior for W2 << N

For W=2 >> N~! (the spectral gap is much less then the perturbation norm)

Mo(Kug) = 1 — 2N 1ig(vfo, fo) +o(N™1),
MK <1-0(W™2) = NEKN=0,(G=1,2,...).
Since
(vfo,fo) =0,

we obtain that
M(Kie) =1+0(N71),

and

—1 £ S A (Kae)
D; R0<E+ O Np(E)) = A%(K*z)(l +o(1)) = 1

The relation corresponds to the Poisson local statistics.
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Mechanism of the GUE behavior for W2 >> N

In the regime W~2 << N~! we have K, — I in the strong vector topology,
hence one can prove that

Kue ~ 1+ O(W™?) = N"12i¢v = (Klufo, fo) = (e 276, fy)

and

_ 3 £\ _ (77, f) sin(27¢)
D;'Ro(E + ot NP(E)) =gy (e e

The expression for D, 'R coincides with that for GUE.
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In the regime W2 = C,N~! observe that K,¢ is reduced by the subspace &
of the functions depending only on |U12|2~°

Recall also that the Laplace operator on U(2) is reduced by &, and have the
form

d d ,
Ay = —d—Xx(l —X)&, x = |Upa]”.

Besides, the eigenvectors of Ay and K, coincide (they are Legendre’s
polynomials P;j) and corresponding eigenvalues of Ay are

)\Jf“ =jG+1).
Hence we can write KC.¢ as

Kue ~ 1= N7 Cut Ay + 2i€v) + o(N~1) = (KXo, fo) — (e CAV 347, fy)
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Results for Ry

Theorem 1 [TS:14]
N < W2=9 where 0 < § < 1, and E € (—2,2) we have

: - in(27E)

lim D;'Ro () T )zsm(

MWD 2 AT 00 T Np(h) orE

i.e. the limit coincides with that for GUE. The limit is uniform in £ varying in
any compact set C C R. Here

D3y = Ro(Xo, Ao)-

Theorem 2 [TS,MS:16]
N > CW?2log W

lim D! d S S
N,V%/'ﬂoo 2 RO ()\0_'_ Np()\0)7>\0 Np()\o)>

The limit is uniform in £ varying in any compact set C C R.

y
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Theorem 3 [TS: in preparation]
For 1d RBM with N = C,W2, E € (2, 2), we have

Ii D—IR B E E— § _ —C*t*Au—Qiﬁfzf f
Novoo 2 0( t No®)’ Np(E)) (e 0.fo),

where t* = (2mp(E))?, and the limit is uniform in ¢ varying in any compact
subset of R.
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Result for R,

ICl ~ F(XhY1)A1(X1’XQ)AQ(Y17Y2)F(X27Y2) < : +—L£)_({;_(};_’37§W2 _11 >

Operators A; and A, contain a large parameter W in the exponent, hence
only W—1/2 neighbourhood of the stationary point (x*,y*) gives essential
contribution. The function L(X,¥) here satisfies the relation

L(x,7)=0

R=%*,§=7*

Hence the main order of our operator contains the Jordan cell.
The spectral gap of Ay is O(W™1) >> N1 hence AYy ~ AJ(A12)P12
(rank Py o = 1)

Theorem 3 [MS,TS:16|

Let N > CoWlog W, and |\g| < 4\/5/3 =~ 1.88. Then we have for the first
correlation function Ry (the first marginal density)

[R1(E) — p(E)| < C/W
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Sigma-model Ré”)

The model can be obtained by some scaling limit (o = 8/W, W — oo,
B,n-fixed) from the expression for Ro.
The crossover is expected for 5 ~ n.

R(QU) :/exp {g Z Str Q;Qs41 + % ZSU Qj/\}
X H(l — 2p1jT1jP2iT2j) Hde

Here Qj is a 4 x 4 super matrix of the block form:
Q= Uj" 01 Ty Ty U; 0 _ L 0
] 0 SJ_ ng T4j 0 Sj ’ 0 -L
le = diag{l + 2p1j7'1j; —(1 + 2p2j7'2j)} T4j = diag{—l + 2p1j71j; 1-— 2p2j7'2j)}
Toj = diag{27j; 270;};  Tsj = diag{2p1j; 2p9}

Here {U;}}L, are unitary matrices, {S;}iL; are hyperbolic matrices and

de = dededp]jdijdledT2j
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Transfer operator for R( ?)
The kernel of the transfer operator for ’R( ) has a form

K = QR

where I and Q are 6 x 6 matrix kernels, s.t. EA“W are multiplication operators

and Quu = QW(UlU;, 8182_1) are "difference" operators.
The key step is to prove

FQF ~ FK,F,

where Ko and F are 4 x 4 matrices of the form

e}
Fe
[\v]

K K K 1 1Fa

KO _ 0 K 0 I~<2 ’ FeF 0 1 0 }‘:2
0 0 K K o0 1 1
0O O 0 K 0 O 0 1

where K = Ky ® Kg
Ky(Uy, Up) ~ BePIU1UDl T Ky(S),8,) ~ BefI5182 Daal”

K =K, (U, U3; SlS Y~ B~ 1Ay , F is an operator of multiplication by
e?(U:8)/2n and Fl o are operators of multiplication by n~ (pl 2(U, S)
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Result for Ré”)

Theorem 4 [MS,TS:17] (submitted to JSP)
For the sigma-model in the regime C3/log® § > n

lim RS = (Fof, )

n—o0
where
1 F;, Fy FF,
_ 0 1 O Fq
Fo=Fol o o 1 F, g
0 0 O 1
Fo ~e?(US) | Fy 5~ 5(U,S)
f:(e4—61), ~:(61—134)
Corollary

For |E| < v/2 the second order correlation function of RBBM with a = 3/W in
the limit W — oo and then 5,n — oo, (8 >> n) coincides with that for GUE.

W

M.Shcherbina Institute for Low Temper| local statistics of RBM 19.12.2017 24 / 26



Transfer operator for Ro

The kernel of the transfer operator for Ro has a form
Ky = FQAFR

where F, Q and A are 70 x 70 matrix kernels, s.t. 13‘,“, are the operators of
multiplication by some function of U, S,

Quv = KuKsQu (U1 U3; 81851,

Ky = aWe @WHEDIUUl Ky = qWe e WHEDIE:S; el
and

AW = Al(X1, X2)A2(Y17 YQ)A3(X/1; Xlg)AzL(ylp ylz)Aw/()_(, }_’)
As(x,y) = (aw/gﬂ-)l/?e*Wa(X*Y)Q/2+W(f<s(X)+fé(Y))7 §=1,2,3,4.

The spectral gap for As is O(1).
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Result for Ro
After a rather involved asymptotic analysis we obtain
Koy ~ FRoF
where K and F are 4 x 4 matrices similar to that for sigma-model.

Theorem 5 [MS,TS:17| (in preparation)
For |E| < v/2 and W?/log> W > CN,

lim Ry = (Fof, &)

n—oo

where ﬁ‘o, f, g are the same as in Theorem 4.

Corollary

For |E| < v/2 the second order correlation function of 1d RBBM in the limit
N, W — oo, VV2/10g2 W > CN, coincides with that for GUE.
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