Local eigenvalue statistics of 1d random band matrices

M.Shcherbina Institute for Low Temperature Physics, Kharkiv, Ukraine

based on the joint papers with

T.Shcherbina Princeton University, USA

CLASSICAL AND QUANTUM MOTION IN DISORDERED ENVIRONMENT

A random event in honour of Ilya Goldsheid's 70-th birthday Queen Mary, University of London, 19/12/2017

(日) (日) (日) (日) (日)

Band matrices: simplest model

H - hermitian or real symmetric $N\times N$ matrices with independent (up to the symmetry condition) entries H_{ij} such that

$$E\{H_{ij}\} = 0, \quad Var\{H_{ij}\} = (2W)^{-1} 1_{|i-j| \le W}$$

Η =	(·)	·	·	·	•	0	0	0	0	0	0	0	0	0	0 \
	·		•	•	•	•	0	0	0	0	0	0	0	0	0
	.		•	•	•	•		0	0	0	0	0	0	0	0
	·		•	•	•	•			0	0	0	0	0	0	0
			•	•	•	•	•	•	•	0	0	0	0	0	0
	0	•	•	•	•	•	•	•	•	•	0	0	0	0	0
	0	0	•	•	•	•	•	•	•	•	•	0	0	0	0
	0	0	0	•	•	•	•	•	•	•	•	•	0	0	0
	0	0	0	0	•	•	•	•	•	•	•	•	•	0	0
	0	0	0	0	0	•	•	•	•	•	•	•	•	•	0
	0	0	0	0	0	0	·	·	•	•	•	•	·	·	•
	0	0	0	0	0	0	0	·	•	•	•	•	·	·	•
	0 /	0	0	0	0	0	0	0	•	•	•	•	•	•	•)

We are going to study the regimes

 $W \to \infty$, $W/N \to 0$, as $N \to \infty$,

Band matrices: general definition

H - hermitian or real symmetric $N\times N$ matrices with independent (up to the symmetry condition) entries H_{ij} such that $E\{H_{ij}\}=0,$

$$\mathrm{E}\big\{\mathrm{H}_{ij}\mathrm{H}_{lk}\big\}=\delta_{ik}\delta_{jl}\mathrm{W}^{-d}J((i-j)/\mathrm{W}),\quad i,j\in\mathbb{Z}^d$$

and $J \in L_1(\mathbb{R}^d)$ is a piece-wise continuous function (with a finite number of jumps), satisfying the conditions

$$J(x)=J(|x|), \quad 0\leq J(x)\leq C, \quad W^{-d}\sum_j J(j/W)\rightarrow 1, u \text{ is continuous at } x=0$$

Our model-1 (RBM)

$$\mathbb{E}\big\{H_{ij}H_{lk}\big\} = \delta_{ik}\delta_{jl}\big(-W^2\Delta+1\big)_{ij}^{-1} \sim W^{-1}e^{-|i-j|/W},$$

イロト イヨト イヨト イヨト

Our model-2: 1d Wegner type band matrix (RBBM)

H is $N \times N$ hermitian block matrix composed from n^2 blocks of the size $W \times W$ (N = nW). Only 3 block diagonals are non zero.

$$\mathbf{H} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{B}_1 & 0 & 0 & 0 & \dots & 0\\ \mathbf{B}_1^* & \mathbf{A}_2 & \mathbf{B}_2 & 0 & 0 & \dots & 0\\ \mathbf{0} & \mathbf{B}_2^* & \mathbf{A}_3 & \mathbf{B}_3 & 0 & \dots & 0\\ \vdots & \vdots & \mathbf{B}_3^* & \vdots & \vdots & \vdots\\ \vdots & \vdots & \vdots & \vdots & \mathbf{A}_{n-1} & \mathbf{B}_{n-1}\\ \mathbf{0} & \vdots & \vdots & \mathbf{0} & \mathbf{B}_{n-1}^* & \mathbf{A}_n \end{pmatrix}$$

where

 $A_1,\ldots A_n$ - independent $W\times W$ GUE-matrices with entry's variance $(1-2\alpha)/W, \quad \alpha < \frac{1}{4}$

 $B_1, \ldots B_{n-1}$ -independent $W \times W$ Ginibre matrices with entry's variance α/W

イロン イヨン イヨン イヨン

Global regime: results

Let $\{\lambda_i\}_{i=1}^N$ be eigenvalues of H. Define linear eigenvalue statistics of the test function h as

$$\mathcal{N}_{
m N}[{
m h}] = \sum {
m h}(\lambda_{
m i})$$

Limit of NCM ([Molchanov,Khorunzhy,Pastur:92])

$$\lim_{N,W\to\infty} N^{-1} \mathcal{N}_N(h) = \int h(\lambda) \rho(\lambda) d\lambda,$$

where $\rho(\lambda) = \mathbb{1}_{[-2,2]} (2\pi)^{-1} \sqrt{4-\lambda^2}$

Theorem [MS:15]

If $h \in \mathcal{H}_s$ with s > 2, then

 $\sqrt{W/N}(\mathcal{N}_N[h] - E\{\mathcal{N}_N[h]\}) \to V(u)\mathcal{N}(0,1)$

Previous results:

L.Li, A. Soshnikov (2013), and I. Jana, K. Saha, and A.Soshnikov (2014): CLT for band matrices with $W^2 >> N$;

M.Shcherbina Institute for Low Temper

local statistics of RBM

19.12.2017 5 / 26

"Anderson transition" for random band matrices (conjectures)

Let ℓ be a typical localization length of eigenvectors of H.

Localization and delocalization regimes

Localization regime means that $\ell << N$ and delocalization regime means that $\ell \sim N$. Varying W, we can see the crossover between localization and delocalization regimes.

$$\begin{split} W &= O(1) \ [\sim \ random \ Schrödinger] &\longleftrightarrow W = N \ [Wigner \ matrices] \\ \hline Conjecture \ (in the bulk of the spectrum): \\ d &= 1: \ \ell \sim W^2 \qquad W^2 \gg N \\ W^2 \ll N \qquad Delocalization, \ local \ GUE \ statistics \\ d &= 2: \ \ell \sim e^{W^2} \qquad W^2 \gg \log N \\ W^2 \ll \log N \qquad Delocalization, \ local \ GUE \ statistics \\ W^2 \ll \log N \qquad Delocalization, \ local \ GUE \ statistics \\ d &\geq 3: \ \ell \sim N \qquad W \geq W_0 \qquad Delocalization, \ local \ GUE \ statistics \\ \hline \\ \end{bmatrix}$$

<ロ> (四) (四) (日) (日) (日)

Second order correlation function

$$\mathrm{R}_2(\lambda_1,\lambda_2) = \int \mathrm{p}_\mathrm{N}(\lambda_1,\ldots,\lambda_\mathrm{N})\mathrm{d}\lambda_3\ldots\mathrm{d}\lambda_\mathrm{N},$$

where $p_N(\lambda_1, \ldots, \lambda_N)$ is a joint eigenvalue distribution.

$$R_{2}(\lambda_{1},\lambda_{2}) = \lim_{\varepsilon \to 0} (\pi N)^{-2} E\{\Im Tr(H - \lambda_{1} - i\varepsilon)\Im Tr(H - \lambda_{2} - i\varepsilon)\}$$

In the case of bulk local regime we take $\lambda_{1,2} = E + \xi_{1,2}/\rho(E) N$, $E \in (-2,2)$.

Crossover for the second order correlation function

In the delocalization region (for d = 1, when $W >> \sqrt{N}$)

$$(N\rho(E))^{-2}R_2\left(E + \frac{\xi_1}{\rho(E)N}, E + \frac{\xi_2}{\rho(E)N}\right) \longrightarrow 1 - \frac{\sin^2(\pi(\xi_1 - \xi_2))}{\pi^2(\xi_1 - \xi_2)^2},$$

In the localization region (for d = 1 when $W \ll \sqrt{N}$)

$$(N\rho(E))^{-2}R_2\left(E + \frac{\xi_1}{\rho(E)N}, E + \frac{\xi_2}{\rho(E)N}\right) \longrightarrow 1$$

M.Shcherbina Institute for Low Temper

Previous results: d = 1

- Fyodorov, Mirlin (1991) existence of the crossover for $W^2 \sim N$ (on the level of rigour of theoretical physics)
- Schenker (2009) $\ell \leq W^8$ localization techniques;
- Erdős, Yau, Yin (2011) $\ell \geq W RM$ methods;
- Erdős, Knowles (2011): $\ell \gg W^{7/6}$;
- Erdős, Knowles, Yau, Yin (2012): $\ell \gg W^{5/4}$;
- T.Shcherbina (2013): GUE statistics for Wegner band matrix (fixed n);
- Bourgade, Erdős, Yau, Yin (2016) GUE statistics for $W \sim n$.
- S.Sodin (2010): Edge universality iff $W >> N^{5/6}$

イロン イヨン イヨン イヨン

Main objects

"Generalised" correlation functions

$$\begin{split} &\mathcal{R}_1(z_1, z_1') := \mathbb{E}\Big\{\frac{\det(H - z_1')}{\det(H - z_1)}\Big\} \\ &\mathcal{R}_2(z_1, z_1'; z_2, z_2') := \mathbb{E}\Big\{\frac{\det(H - z_1')\det(H - z_2'))}{\det(H - z_1)\det(H - z_2))}\Big\} \end{split}$$

We study these functions for $z_{1,2} = E + \xi_{1,2}/\rho(E)N$, $z'_{1,2} = E + \xi'_{1,2}/\rho(E)N$

Link with the spectral correlation functions:

$$\mathbb{E}\{\mathrm{Tr}(\mathrm{H}-\mathrm{z}_{1})^{-1}\mathrm{Tr}(\mathrm{H}-\mathrm{z}_{2})^{-1}\} = \frac{\mathrm{d}^{2}}{\mathrm{d}\mathrm{z}_{1}^{\prime}\mathrm{d}\mathrm{z}_{2}^{\prime}}\mathcal{R}(\mathrm{z}_{1},\mathrm{z}_{1}^{\prime};\mathrm{z}_{2},\mathrm{z}_{2}^{\prime})\Big|_{\mathrm{z}_{1}^{\prime}=\mathrm{z}_{1},\mathrm{z}_{2}^{\prime}=\mathrm{z}_{2}}$$

Correlation function of the characteristic polynomials:

$$\mathcal{R}_0(\lambda_1,\lambda_2) = \mathbb{E}\Big\{\det(H-\lambda_1)\det(H-\lambda_2)\Big\}, \quad \lambda_{1,2} = \lambda_0 \pm \xi/n.$$

M.Shcherbina Institute for Low Temper

Integral representations for $\mathcal{R}_{0,1,2}$

There are a scalar kernel $\mathcal{K}_0(X_1, X_2)$, 2×2 matrix kernel $\mathcal{K}_1(X_1, X_2)$, and 70×70 matrix kernel $\mathcal{K}_2(X_1, X_2)$ (containing $z_{1,2}, z'_{1,2}$ as parameters) such that

$$\begin{split} \mathcal{R}_0(\lambda_1,\lambda_2) &= C_N \int g_0(X_1) \mathcal{K}_0(X_1,X_2) \dots \mathcal{K}_0(X_{n-1},X_n) f_0(X_n) \prod dX_i, \\ X_j &= (x_j,y_j,U_j), \, x_j,y_j \in \mathbb{R}, \, U_j \in \mathring{U}(2) \\ \mathcal{R}_1(z_1,z_1') &= W^2 \int g_1(X_1) \mathcal{K}_1(X_1,X_2) \dots \mathcal{K}_1(X_{n-1},X_n) f_1(X_n) \prod dX_i, \\ X_j &= (x_j,y_j), \quad x_j,y_i \in \mathbb{R}, \\ \mathcal{R}_2(z_1,z_1';z_2,z_2') &= W^4 \int g_2(X_1) \mathcal{K}_2(X_1,X_2) \dots \mathcal{K}_2(X_{n-1},X_n) f_2(X_n) \prod dX_i \\ X_j &= (x_j,y_j,U_j,S_j,), \, x_j,y_j \in \mathbb{R}^2, \, U_j \in \mathring{U}(2), \, S_j \in \mathring{U}(1,1) \end{split}$$

dX means an integration over the Haar measure of X,

Recall that the hyperbolic matrix S satisfies the relation

$$\mathrm{S}\in \mathring{\mathrm{U}}(1,1) \quad \Leftrightarrow \quad \mathrm{S}^*\mathrm{L}\mathrm{S}=\mathrm{L}, \quad \mathrm{L}=\mathrm{diag}\{1,-1\}$$

Idea of the transfer operator approach

Observation

Let $\mathcal{K}(X, Y)$ be the p-dimensional matrix kernel of the compact integral operator in $\bigoplus_{i=1}^{p} L_2[X, d\mu(X)]$. Then

$$\int g(X_1)\mathcal{K}(X_1, X_2) \dots \mathcal{K}(X_{n-1}, X_n) f(X_n) \prod d\mu(X_i) = (\mathcal{K}^{n-1}f, \bar{g})$$
$$= \sum_{j=0}^{\infty} \lambda_j^{n-1}(\mathcal{K}) c_j, \quad \text{with} \quad c_j = (f, \psi_j) (g, \tilde{\psi}_j)$$
(1)

Here $\{\lambda_j(\mathcal{K})\}_{j=0}^{\infty}$ are the eigenvalues of \mathcal{K} ($|\lambda_0| \ge |\lambda_1| \ge ...$), ψ_j are corresponding eigenvectors and $\tilde{\psi}_j$ are the eigenvectors of \mathcal{K}^*

<ロ> (四) (四) (日) (日) (日)

Main technical problems

- $\mathcal{K}_{0,1,2}$ are not self adjoint operators, hence we can not use a standard perturbation theory;
- \mathcal{R}_0 contains the integration over unitary group U(2)/U(1) × U(1), and \mathcal{R}_2 , contains the integration over unitary and hyperbolic (U(1,1)/U(1) × U(1)) groups, hence we need to work with corresponding special functions;
- \mathcal{K}_1 is a 2 × 2 matrix kernel, containing the Jordan cell, and \mathcal{K}_2 is a $2^8 \times 2^8$ matrix kernel, containing 4 × 4 Jordan cell in the main block. Using the symmetry of the problem, \mathcal{K}_2 could be replaced by 70 × 70 matrix kernel.

イロト イヨト イヨト イヨト

Resolvent version of the transfer operator approach Observation 2

$$(\mathcal{K}^{\mathrm{n}}\mathrm{f},\bar{\mathrm{g}}) = -\frac{1}{2\pi\mathrm{i}} \oint_{\mathrm{L}} \mathrm{z}^{\mathrm{n}}(\mathcal{G}(\mathrm{z})\mathrm{f},\bar{\mathrm{g}})\mathrm{d}\mathrm{z}, \quad \mathcal{G}(\mathrm{z}) = (\mathcal{K}-\mathrm{z})^{-1}$$

where L is any closed contour which contains all eigenvalues of \mathcal{K} . It is sufficient to take $L = L_0 = \{|z| = 1 + Cn^{-1}\},\$

We choose $L = L_1 \cup L_2$ where $L_2 = \{z : |z| = 1 - \log^2 n/n\}$, and L_1 is some special contour, containing all eigenvalues between L_0 and L_2 . Then

$$(\mathcal{K}^n_\alpha f,\bar{g}) = -\frac{1}{2\pi i} \oint_{L_1} z^n (\mathcal{G}_\alpha(z)f,\bar{g}) dz - \frac{1}{2\pi i} \oint_{|z|=1-\log^2 n/n} z^n (\mathcal{G}_\alpha(z)f,\bar{g}) dz$$

The second integral is small since $|z|^n \leq e^{-\log^2 n}$

Definition of asymptotically equivalent operators $(n, W \rightarrow \infty)$

$$\mathcal{A}_{Wn} \sim \mathcal{B}_{Wn} \quad \Leftrightarrow \oint_{L_1} z^n ((\mathcal{A}_{Wn} - z)^{-1} f, \bar{g}) dz = \oint_{L_1} z^n ((\mathcal{B}_{Wn} - z)^{-1} f, \bar{g}) dz + o(1)$$

Mechanism of the crossover for \mathcal{R}_0

Key technical step

$$\begin{split} &\mathcal{K}_{0\xi} \sim \mathcal{K}_{*\xi} \otimes \mathcal{A}, \\ &\mathcal{K}_{*\xi}(U_1, U_2) = e^{-i\xi\nu(U_1)/N} K_*(U_1 U_2^*) e^{-i\xi\nu(U_2)/N}, \quad \mathcal{K}_{0\xi} : L_2(\mathring{U}(2)) \to L_2(\mathring{U}(2)), \\ &\mathcal{A}(x_1, x_2, y_1, y_2) = A_1(x_1, x_2) A_2(y_1, y_2), \qquad L_2(\mathbb{R}^2) \to L_2(\mathbb{R}^2). \\ &\text{Here } \xi_1 = -\xi_2 = \xi, \text{ and } \nu(U) = \pi(1 - 2|U_{12}|^2) \end{split}$$

Then

$$\mathcal{R}_0 = (\mathcal{K}^{\mathrm{N}}_{*\xi} \otimes \mathcal{A}^{\mathrm{N}}\mathrm{f}, \bar{\mathrm{g}})(1 + \mathrm{o}(1)) = (\mathcal{K}^{\mathrm{N}}_{*\xi}\mathrm{f}_0, \mathrm{f}_0)(\mathcal{A}^{\mathrm{N}}\mathrm{f}_1, \bar{\mathrm{g}}_1)(1 + \mathrm{o}(1)).$$

Here we used that both f, g asymptotically can be replaced by $f_0(U) \otimes f_1(x, y)$ $(f_0 = 1)$. If we introduce the normalization constant

$$D_2 = \mathcal{R}_0(E, E).$$

then

$$D_2^{-1} \mathcal{R}_0 \left(E + \frac{\xi}{N\rho(E)}, E - \frac{\xi}{N\rho(E)} \right) = \frac{\left(\mathcal{K}_{*\xi}^N f_0, f_0 \right)}{\left(\mathcal{K}_{*0}^N f_0, f_0 \right)^{\frac{1}{p}}} \left(1 + o(1) \right) = \frac{12.2017}{14/26}$$

M.Shcherbina Institute for Low Temper

Spectral analysis of $\mathcal{K}_{*\xi}$

A good news is that \mathcal{K}_{*0} with a kernel

$$\mathcal{K}_{*0} = t_* W^2 e^{-t_* W^2 |(U_1 U_2^*)_{12}|^2}$$

is a self-adjoint "difference" operator. It is known that his eigenfunctions are Legendre polynomials P_j . Moreover, it is easy to check that corresponding eigenvalues have the form:

$$\lambda_j = 1 - t_* j(j+1) / W^2 + O((j(j+1)/W^2)^2), \quad j = 0, 1 \dots.$$

Besides,

$$\mathcal{K}_{*\xi} = \mathcal{K}_{*0} - 2i\xi\hat{\nu}/N + O(N^{-2})$$

where $\hat{\nu}$ is the operator of multiplication by ν . Thus the eigenvalues of $\mathcal{K}_{*\xi}$ are in the N⁻¹-neighbourhood of λ_i .

イロト イヨト イヨト イヨト

Mechanism of the Poisson behavior for $W^2 << N$

For $W^{-2} >> N^{-1}$ (the spectral gap is much less then the perturbation norm)

$$\begin{split} \lambda_0(\mathcal{K}_{*\xi}) &= 1 - 2N^{-1}i\xi(\nu f_0, f_0) + o(N^{-1}), \\ |\lambda_1(\mathcal{K}_{*\xi})| &\leq 1 - O(W^{-2}) \quad \Rightarrow \quad |\lambda_j(\mathcal{K}_{*\xi})|^N \to 0, \ (j = 1, 2, \dots). \end{split}$$

Since

$$(\nu \mathbf{f}_0, \mathbf{f}_0) = 0,$$

we obtain that

$$\lambda_0(\mathcal{K}_{*\xi}) = 1 + \mathrm{o}(\mathrm{N}^{-1}),$$

and

$$D_2^{-1}\mathcal{R}_0\left(E + \frac{\xi}{N\rho(E)}, E - \frac{\xi}{N\rho(E)}\right) = \frac{\lambda_0^N(\mathcal{K}_{*\xi})}{\lambda_0^N(\mathcal{K}_{*0})}(1 + o(1)) \to 1$$

The relation corresponds to the Poisson local statistics.

イロト イヨト イヨト イヨ

Mechanism of the GUE behavior for $W^2 >> N$

In the regime $W^{-2}<< N^{-1}$ we have $\mathcal{K}^N_{*0}\to I$ in the strong vector topology, hence one can prove that

$$\mathcal{K}_{*\xi} \sim 1 + O(W^{-2}) - N^{-1}2i\xi\nu \Rightarrow (\mathcal{K}_{*\xi}^N f_0, f_0) \rightarrow (e^{-2i\xi\hat{\nu}}f_0, f_0)$$

and

$$D_2^{-1} \mathcal{R}_0 \Big(E + \frac{\xi}{N\rho(E)}, E - \frac{\xi}{N\rho(E)} \Big) = \frac{(e^{-2i\xi t^*\hat{\rho}} f_0, f_0)}{(f_0, f_0)} (1 + o(1)) \to \frac{\sin(2\pi\xi)}{2\pi\xi}$$

The expression for $D_2^{-1}\mathcal{R}_0$ coincides with that for GUE.

イロト イヨト イヨト イヨト

In the regime $W^{-2} = C_* N^{-1}$ observe that $\mathcal{K}_{*\xi}$ is reduced by the subspace \mathcal{E}_0 of the functions depending only on $|U_{12}|^2$. Recall also that the Laplace operator on $\mathring{U}(2)$ is reduced by \mathcal{E}_0 and have the form

$$\Delta_{\mathrm{U}} = -\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}} \mathrm{x} (1-\mathrm{x}) \frac{\mathrm{d}}{\mathrm{d} \mathrm{x}}, \quad \mathrm{x} = |\mathrm{U}_{12}|^2.$$

Besides, the eigenvectors of Δ_U and \mathcal{K}_{*0} coincide (they are Legendre's polynomials P_j) and corresponding eigenvalues of Δ_U are

$$\lambda_j^* = j(j+1).$$

Hence we can write $\mathcal{K}_{*\mathcal{E}}$ as

$$\mathcal{K}_{*\xi} \sim 1 - N^{-1}(C_* t_* \Delta_U + 2i\xi\nu) + o(N^{-1}) \Rightarrow (\mathcal{K}^N_{*\xi} f_0, f_0) \rightarrow (e^{-C\Delta_U - 2i\xi\hat{\nu}} f_0, f_0)$$

イロン イヨン イヨン イヨン

Results for \mathcal{R}_0

Theorem 1 [TS:14]

 $N < W^{2-\theta}$, where $0 < \theta < 1$, and $E \in (-2, 2)$ we have

$$\lim_{N,W\to\infty} D_2^{-1} \mathcal{R}_0 \Big(\lambda_0 + \frac{\xi}{N\rho(\lambda_0)}, \lambda_0 - \frac{\xi}{N\rho(\lambda_0)} \Big) = \frac{\sin(2\pi\xi)}{2\pi\xi},$$

i.e. the limit coincides with that for GUE. The limit is uniform in ξ varying in any compact set $C \subset \mathbb{R}$. Here

$$\mathrm{D}_2 = \mathcal{R}_0(\lambda_0,\lambda_0).$$

Theorem 2 [TS,MS:16]

 $N > CW^2 \log W$

$$\lim_{N,W\to\infty} D_2^{-1} \mathcal{R}_0 \Big(\lambda_0 + \frac{\xi}{N\rho(\lambda_0)}, \lambda_0 - \frac{\xi}{N\rho(\lambda_0)} \Big) = 1$$

The limit is uniform in ξ varying in any compact set $C \subset \mathbb{R}$.

Theorem 3 [TS: in preparation]

For 1d RBM with $N = C_*W^2$, $E \in (-2, 2)$, we have

$$\lim_{N\to\infty} D_2^{-1} \mathcal{R}_0 \Big(E + \frac{\xi}{N\rho(E)}, E - \frac{\xi}{N\rho(E)} \Big) = (e^{-C_* t_* \Delta_U - 2i\xi\hat{\nu}} f_0, f_0),$$

where $t^* = (2\pi\rho(E))^2$, and the limit is uniform in ξ varying in any compact subset of \mathbb{R} .

(ロ) (日) (日) (日) (日)

Result for \mathcal{R}_1

$$\mathcal{K}_1 \sim F(x_1, y_1) A_1(x_1, x_2) A_2(y_1, y_2) F(x_2, y_2) \left(\begin{array}{cc} 1 + L(\bar{x}, \bar{y}) / W^2 & -1 \\ -L(\bar{x}, \bar{y}) & 1 \end{array} \right)$$

Operators A_1 and A_2 contain a large parameter W in the exponent, hence only $W^{-1/2}$ neighbourhood of the stationary point (x^*, y^*) gives essential contribution. The function $L(\bar{x}, \bar{y})$ here satisfies the relation

$$\mathrm{L}(\bar{\mathrm{x}}, \bar{\mathrm{y}}) = 0 \Big|_{\bar{\mathrm{x}} = \bar{\mathrm{x}}^*, \bar{\mathrm{y}} = \bar{\mathrm{y}}^*}$$

Hence the main order of our operator contains the Jordan cell. The spectral gap of $A_{1,2}$ is $O(W^{-1}) >> N^{-1}$, hence $A_{1,2}^N \sim \lambda_0^N(A_{1,2})P_{1,2}$ (rank $P_{1,2} = 1$)

Theorem 3 [MS,TS:16]

Let $N \ge C_0 W \log W$, and $|\lambda_0| \le 4\sqrt{2}/3 \approx 1.88$. Then we have for the first correlation function R_1 (the first marginal density)

$$|R_1(E) - \rho(E)| \le C/W$$

M.Shcherbina Institute for Low Temper

Sigma-model $\mathcal{R}_2^{(\sigma)}$

The model can be obtained by some scaling limit ($\alpha = \beta/W, W \to \infty$, β , n-fixed) from the expression for \mathcal{R}_2 . The crossover is expected for $\beta \sim n$.

$$\begin{aligned} \mathcal{R}_{2}^{(\sigma)} &= \int \exp\left\{\frac{\beta}{4}\sum \operatorname{Str} Q_{j}Q_{j+1} + \frac{\varepsilon + i\xi}{4n}\sum \operatorname{Str} Q_{j}\Lambda\right\} \\ &\times \prod (1 - 2\rho_{1j}\tau_{1j}\rho_{2j}\tau_{2j}) \prod dQ_{j} \end{aligned}$$

Here Q_j is a 4×4 super matrix of the block form:

$$Q_j = \left(\begin{array}{cc} U_j^* & 0 \\ 0 & S_j^{-1} \end{array} \right) \left(\begin{array}{cc} T_{1j} & T_{2j} \\ T_{3j} & T_{4j} \end{array} \right) \left(\begin{array}{cc} U_j & 0 \\ 0 & S_j \end{array} \right), \quad \mathsf{A} = \left(\begin{array}{cc} L & 0 \\ 0 & -L \end{array} \right)$$

$$\begin{split} T_{1j} &= diag\{1 + 2\rho_{1j}\tau_{1j}; -(1 + 2\rho_{2j}\tau_{2j})\} \quad T_{4j} = diag\{-1 + 2\rho_{1j}\tau_{1j}; 1 - 2\rho_{2j}\tau_{2j})\}\\ T_{2j} &= diag\{2\tau_{1j}; 2\tau_{2j}\}; \quad T_{3j} = diag\{2\rho_{1j}; 2\rho_{2j}\} \end{split}$$

Here $\{U_j\}_{j=1}^n$ are unitary matrices, $\{S_j\}_{j=1}^n$ are hyperbolic matrices and

 $dQ_j = dU_j dS_j d\rho_{1j} d\rho_{2j} d\tau_{1j} d\tau_{2j}$

・ロト ・四ト ・ヨト ・ヨト

Transfer operator for $\mathcal{R}_2^{(\sigma)}$

The kernel of the transfer operator for $\mathcal{R}_2^{(\sigma)}$ has a form

$$\mathcal{K}_2^{(\sigma)} = \hat{\mathbf{F}}\hat{\mathbf{Q}}\hat{\mathbf{F}}$$

where \hat{F} and \hat{Q} are 6×6 matrix kernels, s.t. $\hat{F}_{\mu\nu}$ are multiplication operators and $\hat{Q}_{\mu\nu} = \hat{Q}_{\mu\nu}(U_1U_2^*, S_1S_2^{-1})$ are "difference" operators. The key step is to prove

$$\hat{F}\hat{Q}\hat{F}\sim\tilde{F}\hat{K}_{0}\tilde{F}$$

where \hat{K}_0 and \tilde{F} are 4×4 matrices of the form

$$\hat{K}_0 = \begin{pmatrix} K & \tilde{K}_1 & \tilde{K}_2 & \tilde{K}_3 \\ 0 & K & 0 & \tilde{K}_2 \\ 0 & 0 & K & \tilde{K}_1 \\ 0 & 0 & 0 & K \end{pmatrix}, \quad \tilde{F} = F \begin{pmatrix} 1 & \tilde{F}_1 & \tilde{F}_2 & \tilde{F}_1 \tilde{F}_2 \\ 0 & 1 & 0 & \tilde{F}_2 \\ 0 & 0 & 1 & \tilde{F}_1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where $K = K_U \otimes K_S$

$$K_U(U_1, U_2) \sim \beta e^{-\beta |(U_1 U_2^*)_{12}|^2}, \ K_S(S_1, S_2) \sim \beta e^{-\beta |(S_1 S_2^{-1})_{12}|^2}$$

 $\tilde{K}_i = \tilde{K}_i(U_1U_2^*; S_1S_2^{-1}) \sim \beta^{-1}\Delta_{U,V}$, F is an operator of multiplication by $e^{\varphi(U,S)/2n}$, and $\tilde{F}_{1,2}$ are operators of multiplication by $n_{AB}^{-1}\varphi_{1,2}(U,S)$.

Result for $\mathcal{R}_2^{(\sigma)}$

Theorem 4 [MS,TS:17] (submitted to JSP)

For the sigma-model in the regime $C\beta/\log^2\beta > n$

$$\lim_{\mathbf{n}\to\infty}\mathcal{R}_2^{(\sigma)}=(\hat{\mathrm{F}}_0\tilde{\mathrm{f}},\tilde{\mathrm{g}})$$

where

$$\begin{split} \hat{F}_0 &= F_0 \begin{pmatrix} 1 & F_1 & F_2 & F_1 F_2 \\ 0 & 1 & 0 & F_2 \\ 0 & 0 & 1 & F_1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \\ F_0 &\sim e^{\varphi(U,S)}, \quad F_{1,2} &\sim \varphi_{1,2}(U,S) \\ \tilde{f} &= (e_4 - e_1), \quad \tilde{g} &= (e_1 - e_4) \end{split}$$

Corollary

For $|\mathbf{E}| \leq \sqrt{2}$ the second order correlation function of RBBM with $\alpha = \beta/W$ in the limit $W \to \infty$ and then $\beta, n \to \infty$, ($\beta >> n$) coincides with that for GUE.

Transfer operator for \mathcal{R}_2

The kernel of the transfer operator for \mathcal{R}_2 has a form

$$\mathcal{K}_2 = \hat{F}\hat{Q}\hat{A}\hat{F}$$

where \hat{F} , \hat{Q} and \hat{A} are 70 × 70 matrix kernels, s.t. $\hat{F}_{\mu\nu}$ are the operators of multiplication by some function of U, S,

$$\begin{split} \hat{Q}_{\mu\nu} &= K_U K_S Q_{\mu\nu} (U_1 U_2^*; S_1 S_2^{-1}), \\ K_U &= \alpha W e^{-\alpha W t(\bar{x}, \bar{y}) |(U_1 U_2^*)_{12}|^2}, \quad K_S &= \alpha W e^{-\alpha W t(\bar{x}, \bar{y}) |(S_1 S_2^{-1})_{12}|^2}, \end{split}$$

and

$$\begin{split} \hat{A}_{\mu\nu} &= A_1(x_1, x_2) A_2(y_1, y_2) A_3(x_1', x_2') A_4(y_1', y_2') \mathcal{A}_{\mu,\nu}(\bar{x}, \bar{y}) \\ A_\delta(x, y) &= (\alpha W/2\pi)^{1/2} e^{-W\alpha (x-y)^2/2 + W(f_\delta(x) + f_\delta(y))}, \quad \delta = 1, 2, 3, 4. \end{split}$$

The spectral gap for A_{δ} is O(1).

(ロ) (日) (日) (日) (日)

Result for \mathcal{R}_2

After a rather involved asymptotic analysis we obtain

 $\mathcal{K}_2\sim \tilde{F}\hat{K}_0\tilde{F}$

where \hat{K}_0 and \tilde{F} are 4×4 matrices similar to that for sigma-model.

Theorem 5 [MS,TS:17] (in preparation) For $|E| \le \sqrt{2}$ and $W^2 / \log^2 W > CN$, $\lim_{n \to \infty} \mathcal{R}_2 = (\hat{F}_0 \tilde{f}, \tilde{g})$

where $\hat{F}_0, \tilde{f}, \tilde{g}$ are the same as in Theorem 4.

Corollary

For $|E| < \sqrt{2}$ the second order correlation function of 1d RBBM in the limit $N, W \rightarrow \infty, W^2/\log^2 W > CN$, coincides with that for GUE.

(ロ) (日) (日) (日) (日)