Local eigenvalue statistics of 1d random band matrices

M.Shcherbina

Institute for Low Temperature Physics, Kharkiv, Ukraine

based on the joint papers with

T.Shcherbina

Princeton University, USA

CLASSICAL AND QUANTUM MOTION IN DISORDERED ENVIRONMENT

A random event in honour of Ilya Goldsheid's 70-th birthday Queen Mary, University of London, 19/12/2017

Band matrices: simplest model

H - hermitian or real symmetric $\mathrm{N} \times \mathrm{N}$ matrices with independent (up to the symmetry condition) entries H_{ij} such that

$$
\begin{gathered}
\mathrm{E}\left\{\mathrm{H}_{\mathrm{ij}}\right\}=0, \quad \operatorname{Var}\left\{\mathrm{H}_{\mathrm{ij}}\right\}=(2 \mathrm{~W})^{-1} 1_{|\mathrm{i}-\mathrm{j}| \leq \mathrm{W}} \\
\mathrm{H}=\left(\begin{array}{ccccccccccccccc}
. & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & . & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & . & . & . & . & . & . & . & . & . & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & . & . & . & . & . & . & . & . & . & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . & . & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . & . & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . & . & . & . & . & .
\end{array}\right)
\end{gathered}
$$

We are going to study the regimes

$$
\mathrm{W} \rightarrow \infty, \quad \mathrm{~W} / \mathrm{N} \rightarrow 0, \quad \text { as } \quad \mathrm{N} \rightarrow \infty,
$$

Band matrices: general definition

H - hermitian or real symmetric $\mathrm{N} \times \mathrm{N}$ matrices with independent (up to the symmetry condition) entries H_{ij} such that $\mathrm{E}\left\{\mathrm{H}_{\mathrm{ij}}\right\}=0$,

$$
\mathrm{E}\left\{\mathrm{H}_{\mathrm{ij}} \mathrm{H}_{\mathrm{lk}}\right\}=\delta_{\mathrm{ik}} \delta_{\mathrm{jl}} \mathrm{~W}^{-\mathrm{d}} \mathrm{~J}((\mathrm{i}-\mathrm{j}) / \mathrm{W}), \quad \mathrm{i}, \mathrm{j} \in \mathbb{Z}^{\mathrm{d}}
$$

and $J \in L_{1}\left(\mathbb{R}^{d}\right)$ is a piece-wise continuous function (with a finite number of jumps), satisfying the conditions

$$
\mathrm{J}(\mathrm{x})=\mathrm{J}(|\mathrm{x}|), \quad 0 \leq \mathrm{J}(\mathrm{x}) \leq \mathrm{C}, \quad \mathrm{~W}^{-\mathrm{d}} \sum_{\mathrm{j}} \mathrm{~J}(\mathrm{j} / \mathrm{W}) \rightarrow 1, \mathrm{u} \text { is continuous at } \mathrm{x}=0
$$

Our model-1 (RBM)

$$
\mathbb{E}\left\{\mathrm{H}_{\mathrm{ij}} \mathrm{H}_{\mathrm{lk}}\right\}=\delta_{\mathrm{ik}} \delta_{\mathrm{jl}}\left(-\mathrm{W}^{2} \Delta+1\right)_{\mathrm{ij}}^{-1} \sim \mathrm{~W}^{-1} \mathrm{e}^{-|\mathrm{i}-\mathrm{j}| / \mathrm{w}},
$$

Our model-2: 1d Wegner type band matrix (RBBM)

H is $\mathrm{N} \times \mathrm{N}$ hermitian block matrix composed from n^{2} blocks of the size $\mathrm{W} \times \mathrm{W}(\mathrm{N}=\mathrm{nW})$. Only 3 block diagonals are non zero.

$$
\mathrm{H}=\left(\begin{array}{ccccccc}
\mathrm{A}_{1} & \mathrm{~B}_{1} & 0 & 0 & 0 & \ldots & 0 \\
\mathrm{~B}_{1}^{*} & \mathrm{~A}_{2} & \mathrm{~B}_{2} & 0 & 0 & \ldots & 0 \\
0 & \mathrm{~B}_{2}^{*} & \mathrm{~A}_{3} & \mathrm{~B}_{3} & 0 & \ldots & 0 \\
. & \cdot & \mathrm{B}_{3}^{*} & . & . & . & . \\
. & \cdot & \cdot & . & . & \mathrm{A}_{\mathrm{n}-1} & \mathrm{~B}_{\mathrm{n}-1} \\
0 & \cdot & . & . & 0 & \mathrm{~B}_{\mathrm{n}-1}^{*} & \mathrm{~A}_{\mathrm{n}}
\end{array}\right)
$$

where
$\mathrm{A}_{1}, \ldots \mathrm{~A}_{\mathrm{n}}$ - independent $\mathrm{W} \times \mathrm{W}$ GUE-matrices with entry's variance $(1-2 \alpha) / \mathrm{W}, \quad \alpha<\frac{1}{4}$
$\mathrm{B}_{1}, \ldots \mathrm{~B}_{\mathrm{n}-1}$-independent $\mathrm{W} \times \mathrm{W}$ Ginibre matrices with entry's variance α / W

Global regime: results

Let $\left\{\lambda_{i}\right\}_{i=1}^{N}$ be eigenvalues of H. Define linear eigenvalue statistics of the test function h as

$$
\mathcal{N}_{\mathrm{N}}[\mathrm{~h}]=\sum \mathrm{h}\left(\lambda_{\mathrm{i}}\right)
$$

Limit of NCM ([Molchanov,Khorunzhy,Pastur:92])

$$
\begin{aligned}
& \lim _{\mathrm{N}, \mathrm{~W} \rightarrow \infty} \mathrm{~N}^{-1} \mathcal{N}_{\mathrm{N}}(\mathrm{~h})=\int \mathrm{h}(\lambda) \rho(\lambda) \mathrm{d} \lambda, \\
& \text { where } \quad \rho(\lambda)=1_{[-2,2]}(2 \pi)^{-1} \sqrt{4-\lambda^{2}}
\end{aligned}
$$

Theorem [MS:15]

If $\mathrm{h} \in \mathcal{H}_{\mathrm{s}}$ with $\mathrm{s}>2$, then

$$
\sqrt{\mathrm{W} / \mathrm{N}}\left(\mathcal{N}_{\mathrm{N}}[\mathrm{~h}]-\mathrm{E}\left\{\mathcal{N}_{\mathrm{N}}[\mathrm{~h}]\right\}\right) \rightarrow \mathrm{V}(\mathrm{u}) \mathcal{N}(0,1)
$$

Previous results:
L.Li, A. Soshnikov (2013), and I. Jana, K. Saha, and A.Soshnikov (2014): CLT for band matrices with $\mathrm{W}^{2} \gg \mathrm{~N}$;

"Anderson transition" for random band matrices

 (conjectures)Let ℓ be a typical localization length of eigenvectors of H .

Localization and delocalization regimes

Localization regime means that $\ell \ll \mathrm{N}$ and delocalization regime means that $\ell \sim \mathrm{N}$. Varying W , we can see the crossover between localization and delocalization regimes.
$\mathrm{W}=\mathrm{O}(1)[\sim$ random Schrödinger] $\longleftrightarrow \mathrm{W}=\mathrm{N}$ [Wigner matrices]
Conjecture (in the bulk of the spectrum):
$\mathrm{d}=1: \quad \ell \sim \mathrm{W}^{2} \quad \mathrm{~W}^{2} \gg \mathrm{~N} \quad$ Delocalization, local GUE statistics $\mathrm{W}^{2} \ll \mathrm{~N} \quad$ Localization, Poisson statistics
$\mathrm{d}=2: \quad \ell \sim \mathrm{e}^{\mathrm{W}^{2}} \quad \mathrm{~W}^{2} \gg \log \mathrm{~N} \quad$ Delocalization, local GUE statistics $\mathrm{W}^{2} \ll \log \mathrm{~N} \quad$ Localization, local Poisson statistics
$\mathrm{d} \geq 3: \quad \ell \sim \mathrm{N} \quad \mathrm{W} \geq \mathrm{W}_{0} \quad$ Delocalization, local GUE statistics

Second order correlation function

$$
\mathrm{R}_{2}\left(\lambda_{1}, \lambda_{2}\right)=\int \mathrm{p}_{\mathrm{N}}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{N}}\right) \mathrm{d} \lambda_{3} \ldots \mathrm{~d} \lambda_{\mathrm{N}}
$$

where $\mathrm{p}_{\mathrm{N}}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{N}}\right)$ is a joint eigenvalue distribution.

$$
\mathrm{R}_{2}\left(\lambda_{1}, \lambda_{2}\right)=\lim _{\varepsilon \rightarrow 0}(\pi \mathrm{~N})^{-2} \mathrm{E}\left\{\Im \operatorname{Tr}\left(\mathrm{H}-\lambda_{1}-\mathrm{i} \varepsilon\right) \Im \operatorname{Tr}\left(\mathrm{H}-\lambda_{2}-\mathrm{i} \varepsilon\right)\right\}
$$

In the case of bulk local regime we take $\lambda_{1,2}=\mathrm{E}+\xi_{1,2} / \rho(\mathrm{E}) \mathrm{N}, \mathrm{E} \in(-2,2)$.

Crossover for the second order correlation function In the delocalization region (for $d=1$, when $W \gg \sqrt{N}$)

$$
(\mathrm{N} \rho(\mathrm{E}))^{-2} \mathrm{R}_{2}\left(\mathrm{E}+\frac{\xi_{1}}{\rho(\mathrm{E}) \mathrm{N}}, \mathrm{E}+\frac{\xi_{2}}{\rho(\mathrm{E}) \mathrm{N}}\right) \longrightarrow 1-\frac{\sin ^{2}\left(\pi\left(\xi_{1}-\xi_{2}\right)\right)}{\pi^{2}\left(\xi_{1}-\xi_{2}\right)^{2}},
$$

In the localization region (for $\mathrm{d}=1$ when $\mathrm{W} \ll \sqrt{\mathrm{N}}$)

$$
(\mathrm{N} \rho(\mathrm{E}))^{-2} \mathrm{R}_{2}\left(\mathrm{E}+\frac{\xi_{1}}{\rho(\mathrm{E}) \mathrm{N}}, \mathrm{E}+\frac{\xi_{2}}{\rho(\mathrm{E}) \mathrm{N}}\right) \longrightarrow 1
$$

Previous results: $\mathrm{d}=1$

- Fyodorov, Mirlin (1991) - existence of the crossover for $\mathrm{W}^{2} \sim \mathrm{~N}$ (on the level of rigour of theoretical physics)
- Schenker (2009) $\ell \leq \mathrm{W}^{8}$ - localization techniques;
- Erdôs, Yau, Yin (2011) $\ell \geq \mathrm{W}-\mathrm{RM}$ methods;
- Erdős, Knowles (2011): $\ell \gg \mathrm{W}^{7 / 6}$;
- Erdôs, Knowles, Yau, Yin (2012): $\ell \gg W^{5 / 4}$;
- T.Shcherbina (2013): GUE statistics for Wegner band matrix (fixed n);
- Bourgade, Erdős, Yau, Yin (2016) GUE statistics for W ~ n.
- S.Sodin (2010): Edge universality iff $\mathrm{W} \gg \mathrm{N}^{5 / 6}$

Main objects

"Generalised" correlation functions

$$
\begin{aligned}
& \mathcal{R}_{1}\left(\mathrm{z}_{1}, \mathrm{z}_{1}^{\prime}\right):=\mathbb{E}\left\{\frac{\operatorname{det}\left(\mathrm{H}-\mathrm{z}_{1}^{\prime}\right)}{\operatorname{det}\left(\mathrm{H}-\mathrm{z}_{1}\right)}\right\} \\
& \mathcal{R}_{2}\left(\mathrm{z}_{1}, \mathrm{z}_{1}^{\prime} ; \mathrm{z}_{2}, \mathrm{z}_{2}^{\prime}\right):=\mathbb{E}\left\{\frac{\left.\operatorname{det}\left(\mathrm{H}-\mathrm{z}_{1}^{\prime}\right) \operatorname{det}\left(\mathrm{H}-\mathrm{z}_{2}^{\prime}\right)\right)}{\left.\operatorname{det}\left(\mathrm{H}-\mathrm{z}_{1}\right) \operatorname{det}\left(\mathrm{H}-\mathrm{z}_{2}\right)\right)}\right\}
\end{aligned}
$$

We study these functions for $\mathrm{z}_{1,2}=\mathrm{E}+\xi_{1,2} / \rho(\mathrm{E}) \mathrm{N}, \mathrm{z}_{1,2}^{\prime}=\mathrm{E}+\xi_{1,2}^{\prime} / \rho(\mathrm{E}) \mathrm{N}$
Link with the spectral correlation functions:

$$
\mathrm{E}\left\{\operatorname{Tr}\left(\mathrm{H}-\mathrm{z}_{1}\right)^{-1} \operatorname{Tr}\left(\mathrm{H}-\mathrm{z}_{2}\right)^{-1}\right\}=\left.\frac{\mathrm{d}^{2}}{\mathrm{dz}_{1}^{\prime} \mathrm{dz}_{2}^{\prime}} \mathcal{R}\left(\mathrm{z}_{1}, \mathrm{z}_{1}^{\prime} ; \mathrm{z}_{2}, \mathrm{z}_{2}^{\prime}\right)\right|_{\mathrm{z}_{1}^{\prime}=\mathrm{z}_{1}, \mathrm{z}_{2}^{\prime}=\mathrm{z}_{2}}
$$

Correlation function of the characteristic polynomials:

$$
\mathcal{R}_{0}\left(\lambda_{1}, \lambda_{2}\right)=\mathbb{E}\left\{\operatorname{det}\left(\mathrm{H}-\lambda_{1}\right) \operatorname{det}\left(\mathrm{H}-\lambda_{2}\right)\right\}, \quad \lambda_{1,2}=\lambda_{0} \pm \xi / \mathrm{n} .
$$

Integral representations for $\mathcal{R}_{0,1,2}$

There are a scalar kernel $\mathcal{K}_{0}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right), 2 \times 2$ matrix kernel $\mathcal{K}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$, and 70×70 matrix kernel $\mathcal{K}_{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ (containing $\mathrm{z}_{1,2}, \mathrm{z}_{1,2}^{\prime}$ as parameters) such that

$$
\begin{gathered}
\mathcal{R}_{0}\left(\lambda_{1}, \lambda_{2}\right)=\mathrm{C}_{\mathrm{N}} \int \mathrm{~g}_{0}\left(\mathrm{X}_{1}\right) \mathcal{K}_{0}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \ldots \mathcal{K}_{0}\left(\mathrm{X}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}}\right) \mathrm{f}_{0}\left(\mathrm{X}_{\mathrm{n}}\right) \prod \mathrm{d} \mathrm{X}_{\mathrm{i}}, \\
\mathrm{X}_{\mathrm{j}}=\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}, \mathrm{U}_{\mathrm{j}}\right), \mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}} \in \mathbb{R}, \mathrm{U}_{\mathrm{j}} \in \mathrm{O}(2) \\
\mathcal{R}_{1}\left(\mathrm{z}_{1}, \mathrm{z}_{1}^{\prime}\right)=\mathrm{W}^{2} \int \mathrm{~g}_{1}\left(\mathrm{X}_{1}\right) \mathcal{K}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \ldots \mathcal{K}_{1}\left(\mathrm{X}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}}\right) \mathrm{f}_{1}\left(\mathrm{X}_{\mathrm{n}}\right) \prod \mathrm{d} \mathrm{X}_{\mathrm{i}}, \\
\mathrm{X}_{\mathrm{j}}=\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right), \quad \mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{i}} \in \mathbb{R}, \\
\mathcal{R}_{2}\left(\mathrm{z}_{1}, \mathrm{z}_{1}^{\prime} ; \mathrm{z}_{2}, \mathrm{z}_{2}^{\prime}\right)=\mathrm{W}^{4} \int \mathrm{~g}_{2}\left(\mathrm{X}_{1}\right) \mathcal{K}_{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \ldots \mathcal{K}_{2}\left(\mathrm{X}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}}\right) \mathrm{f}_{2}\left(\mathrm{X}_{\mathrm{n}}\right) \prod \mathrm{dX} \mathrm{X}_{\mathrm{i}} \\
\quad \mathrm{X}_{\mathrm{j}}=\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}, \mathrm{U}_{\mathrm{j}}, \mathrm{~S}_{\mathrm{j}},\right), \mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}} \in \mathbb{R}^{2}, \mathrm{U}_{\mathrm{j}} \in \dot{\mathrm{U}}(2), \mathrm{S}_{\mathrm{j}} \in \dot{\mathrm{U}}(1,1)
\end{gathered}
$$

dX means an integration over the Haar measure of X,
Recall that the hyperbolic matrix S satisfies the relation

$$
\mathrm{S} \in \mathrm{U}(1,1) \quad \Leftrightarrow \quad \mathrm{S}^{*} \mathrm{LS}=\mathrm{L}, \quad \mathrm{~L}=\operatorname{diag}\{1,-1\}
$$

Idea of the transfer operator approach

Observation

Let $\mathcal{K}(\mathrm{X}, \mathrm{Y})$ be the p -dimensional matrix kernel of the compact integral operator in $\oplus_{\mathrm{i}=1}^{\mathrm{p}} \mathrm{L}_{2}[\mathrm{X}, \mathrm{d} \mu(\mathrm{X})]$. Then

$$
\begin{align*}
& \int \mathrm{g}\left(\mathrm{X}_{1}\right) \mathcal{K}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \ldots \mathcal{K}\left(\mathrm{X}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}}\right) \mathrm{f}\left(\mathrm{X}_{\mathrm{n}}\right) \prod \mathrm{d} \mu\left(\mathrm{X}_{\mathrm{i}}\right)=\left(\mathcal{K}^{\mathrm{n}-1} \mathrm{f}, \overline{\mathrm{~g}}\right) \\
& =\sum_{\mathrm{j}=0}^{\infty} \lambda_{\mathrm{j}}^{\mathrm{n}-1}(\mathcal{K}) c_{\mathrm{j}}, \quad \text { with } \quad c_{\mathrm{j}}=\left(\mathrm{f}, \psi_{\mathrm{j}}\right)\left(\mathrm{g}, \tilde{\psi}_{\mathrm{j}}\right) \tag{1}
\end{align*}
$$

Here $\left\{\lambda_{\mathrm{j}}(\mathcal{K})\right\}_{\mathrm{j}=0}^{\infty}$ are the eigenvalues of $\mathcal{K}\left(\left|\lambda_{0}\right| \geq\left|\lambda_{1}\right| \geq \ldots\right), \psi_{\mathrm{j}}$ are corresponding eigenvectors and $\tilde{\psi}_{\mathrm{j}}$ are the eigenvectors of \mathcal{K}^{*}

Main technical problems

- $\mathcal{K}_{0,1,2}$ are not self adjoint operators, hence we can not use a standard perturbation theory;
- \mathcal{R}_{0} contains the integration over unitary group $\mathrm{U}(2) / \mathrm{U}(1) \times \mathrm{U}(1)$, and \mathcal{R}_{2}, contains the integration over unitary and hyperbolic $(\mathrm{U}(1,1) / \mathrm{U}(1) \times \mathrm{U}(1))$ groups, hence we need to work with corresponding special functions;
- \mathcal{K}_{1} is a 2×2 matrix kernel, containing the Jordan cell, and \mathcal{K}_{2} is a $2^{8} \times 2^{8}$ matrix kernel, containing 4×4 Jordan cell in the main block. Using the symmetry of the problem, \mathcal{K}_{2} could be replaced by 70×70 matrix kernel.

Resolvent version of the transfer operator approach

Observation 2

$$
\left(\mathcal{K}^{\mathrm{n}} \mathrm{f}, \overline{\mathrm{~g}}\right)=-\frac{1}{2 \pi \mathrm{i}} \oint_{\mathrm{L}} \mathrm{z}^{\mathrm{n}}(\mathcal{G}(\mathrm{z}) \mathrm{f}, \overline{\mathrm{~g}}) \mathrm{dz}, \quad \mathcal{G}(\mathrm{z})=(\mathcal{K}-\mathrm{z})^{-1}
$$

where L is any closed contour which contains all eigenvalues of \mathcal{K}. It is sufficient to take $\mathrm{L}=\mathrm{L}_{0}=\left\{|\mathrm{z}|=1+\mathrm{Cn}^{-1}\right\}$,

We choose $\mathrm{L}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ where $\mathrm{L}_{2}=\left\{\mathrm{z}:|\mathrm{z}|=1-\log ^{2} \mathrm{n} / \mathrm{n}\right\}$, and L_{1} is some special contour, containing all eigenvalues between L_{0} and L_{2}. Then

$$
\left(\mathcal{K}_{\alpha}^{\mathrm{n}} \mathrm{f}, \overline{\mathrm{~g}}\right)=-\frac{1}{2 \pi \mathrm{i}} \oint_{\mathrm{L}_{1}} \mathrm{z}^{\mathrm{n}}\left(\mathcal{G}_{\alpha}(\mathrm{z}) \mathrm{f}, \overline{\mathrm{~g}}\right) \mathrm{dz}-\frac{1}{2 \pi \mathrm{i}} \oint_{|\mathrm{z}|=1-\log ^{2} \mathrm{n} / \mathrm{n}} \mathrm{z}^{\mathrm{n}}\left(\mathcal{G}_{\alpha}(\mathrm{z}) \mathrm{f}, \overline{\mathrm{~g}}\right) \mathrm{dz}
$$

The second integral is small since $|z|^{n} \leq e^{-\log ^{2} n}$
Definition of asymptotically equivalent operators ($\mathrm{n}, \mathrm{W} \rightarrow \infty$)

$$
\mathcal{A}_{\mathrm{Wn}} \sim \mathcal{B}_{\mathrm{Wn}} \Leftrightarrow \oint_{\mathrm{L}_{1}} \mathrm{z}^{\mathrm{n}}\left(\left(\mathcal{A}_{\mathrm{Wn}}-\mathrm{z}\right)^{-1} \mathrm{f}, \overline{\mathrm{~g}}\right) \mathrm{dz}=\oint_{\mathrm{L}_{1}} \mathrm{z}^{\mathrm{n}}\left(\left(\mathcal{B}_{\mathrm{Wn}}-\mathrm{z}\right)^{-1} \mathrm{f}, \overline{\mathrm{~g}}\right) \mathrm{dz}+\mathrm{o}(1)
$$

Mechanism of the crossover for \mathcal{R}_{0}

Key technical step

$$
\begin{aligned}
& \mathcal{K}_{0 \xi} \sim \mathcal{K}_{* \xi} \otimes \mathcal{A}, \\
& \mathcal{K}_{* \xi}\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right)=\mathrm{e}^{-\mathrm{i} \xi \nu\left(\mathrm{U}_{1}\right) / \mathrm{N}} \mathrm{~K}_{*}\left(\mathrm{U}_{1} \mathrm{U}_{2}^{*}\right) \mathrm{e}^{-\mathrm{i} \xi \nu\left(\mathrm{U}_{2}\right) / \mathrm{N}}, \quad \mathcal{K}_{0 \xi}: \mathrm{L}_{2}(\mathrm{O}(2)) \rightarrow \mathrm{L}_{2}\left(\mathrm{O}^{\circ}(2)\right), \\
& \mathcal{A}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}\right)=\mathrm{A}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{A}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \quad \mathrm{L}_{2}\left(\mathbb{R}^{2}\right) \rightarrow \mathrm{L}_{2}\left(\mathbb{R}^{2}\right) \\
& \text { Here } \xi_{1}=-\xi_{2}=\xi, \text { and } \nu(\mathrm{U})=\pi\left(1-2\left|\mathrm{U}_{12}\right|^{2}\right)
\end{aligned}
$$

Then

$$
\mathcal{R}_{0}=\left(\mathcal{K}_{* \xi}^{\mathrm{N}} \otimes \mathcal{A}^{\mathrm{N}} \mathrm{f}, \bar{g}\right)(1+\mathrm{o}(1))=\left(\mathcal{K}_{* \xi}^{\mathrm{N}} \mathrm{f}_{0}, \mathrm{f}_{0}\right)\left(\mathcal{A}^{\mathrm{N}} \mathrm{f}_{1}, \bar{g}_{1}\right)(1+\mathrm{o}(1)) .
$$

Here we used that both f, g asymptotically can be replaced by $f_{0}(U) \otimes f_{1}(x, y)$ $\left(\mathrm{f}_{0}=1\right)$. If we introduce the normalization constant

$$
\mathrm{D}_{2}=\mathcal{R}_{0}(\mathrm{E}, \mathrm{E}) .
$$

then

$$
\mathrm{D}_{2}^{-1} \mathcal{R}_{0}\left(\mathrm{E}+\frac{\xi}{\mathrm{N} \rho(\mathrm{E})}, \mathrm{E}-\frac{\xi}{\mathrm{N} \rho(\mathrm{E})}\right)=\frac{\left(\mathcal{K}_{* \xi}^{\mathrm{N}} \mathrm{f}_{0}, \mathrm{f}_{0}\right)}{\left(\mathcal{K}_{* 0}^{N} \mathrm{f}_{0}, \mathrm{f}_{0}\right)}(1+\mathrm{o}(1))
$$

Spectral analysis of $\mathcal{K}_{* \xi}$

A good news is that $\mathcal{K}_{* 0}$ with a kernel

$$
\mathcal{K}_{* 0}=\mathrm{t}_{*} \mathrm{~W}^{2} \mathrm{e}^{-\mathrm{t}_{*} \mathrm{~W}^{2}\left|\left(\mathrm{U}_{1} \mathrm{U}_{2}^{*}\right)_{12}\right|^{2}}
$$

is a self-adjoint "difference" operator. It is known that his eigenfunctions are Legendre polynomials P_{j}. Moreover, it is easy to check that corresponding eigenvalues have the form:

$$
\lambda_{\mathrm{j}}=1-\mathrm{t}_{*} \mathrm{j}(\mathrm{j}+1) / \mathrm{W}^{2}+\mathrm{O}\left(\left(\mathrm{j}(\mathrm{j}+1) / \mathrm{W}^{2}\right)^{2}\right), \quad \mathrm{j}=0,1 \ldots
$$

Besides,

$$
\mathcal{K}_{* \xi}=\mathcal{K}_{* 0}-2 \mathrm{i} \xi \hat{\nu} / \mathrm{N}+\mathrm{O}\left(\mathrm{~N}^{-2}\right)
$$

where $\hat{\nu}$ is the operator of multiplication by ν. Thus the eigenvalues of $\mathcal{K}_{* \xi}$ are in the N^{-1}-neighbourhood of λ_{j}.

Mechanism of the Poisson behavior for $\mathrm{W}^{2} \ll \mathrm{~N}$

For $\mathrm{W}^{-2} \gg \mathrm{~N}^{-1}$ (the spectral gap is much less then the perturbation norm)

$$
\begin{aligned}
& \lambda_{0}\left(\mathcal{K}_{* \xi}\right)=1-2 \mathrm{~N}^{-1} \mathrm{i} \xi\left(\nu \mathrm{f}_{0}, \mathrm{f}_{0}\right)+\mathrm{o}\left(\mathrm{~N}^{-1}\right), \\
& \left|\lambda_{1}\left(\mathcal{K}_{* \xi}\right)\right| \leq 1-\mathrm{O}\left(\mathrm{~W}^{-2}\right) \quad \Rightarrow \quad\left|\lambda_{\mathrm{j}}\left(\mathcal{K}_{* \xi}\right)\right|^{\mathrm{N}} \rightarrow 0,(\mathrm{j}=1,2, \ldots) .
\end{aligned}
$$

Since

$$
\left(\nu \mathrm{f}_{0}, \mathrm{f}_{0}\right)=0,
$$

we obtain that

$$
\lambda_{0}\left(\mathcal{K}_{* \xi}\right)=1+\mathrm{o}\left(\mathrm{~N}^{-1}\right),
$$

and

$$
\mathrm{D}_{2}^{-1} \mathcal{R}_{0}\left(\mathrm{E}+\frac{\xi}{\mathrm{N} \rho(\mathrm{E})}, \mathrm{E}-\frac{\xi}{\mathrm{N} \rho(\mathrm{E})}\right)=\frac{\lambda_{0}^{\mathrm{N}}\left(\mathcal{K}_{* \xi}\right)}{\lambda_{0}^{\mathrm{N}}\left(\mathcal{K}_{* 0}\right)}(1+\mathrm{o}(1)) \rightarrow 1
$$

The relation corresponds to the Poisson local statistics.

Mechanism of the GUE behavior for $\mathrm{W}^{2} \gg \mathrm{~N}$

In the regime $\mathrm{W}^{-2} \ll \mathrm{~N}^{-1}$ we have $\mathcal{K}_{* 0}^{\mathrm{N}} \rightarrow \mathrm{I}$ in the strong vector topology, hence one can prove that

$$
\mathcal{K}_{* \xi} \sim 1+\mathrm{O}\left(\mathrm{~W}^{-2}\right)-\mathrm{N}^{-1} 2 \mathrm{i} \xi \nu \Rightarrow\left(\mathcal{K}_{* \xi}^{\mathrm{N}} \mathrm{f}_{0}, \mathrm{f}_{0}\right) \rightarrow\left(\mathrm{e}^{-2 \mathrm{i} \xi \hat{\nu}} \mathrm{f}_{0}, \mathrm{f}_{0}\right)
$$

and

$$
\mathrm{D}_{2}^{-1} \mathcal{R}_{0}\left(\mathrm{E}+\frac{\xi}{\mathrm{N} \rho(\mathrm{E})}, \mathrm{E}-\frac{\xi}{\mathrm{N} \rho(\mathrm{E})}\right)=\frac{\left(\mathrm{e}^{-2 i \xi \mathrm{t}^{*} \hat{\nu}} \mathrm{f}_{0}, \mathrm{f}_{0}\right)}{\left(\mathrm{f}_{0}, \mathrm{f}_{0}\right)}(1+\mathrm{o}(1)) \rightarrow \frac{\sin (2 \pi \xi)}{2 \pi \xi} .
$$

The expression for $\mathrm{D}_{2}^{-1} \mathcal{R}_{0}$ coincides with that for GUE.

In the regime $\mathrm{W}^{-2}=\mathrm{C}_{*} \mathrm{~N}^{-1}$ observe that $\mathcal{K}_{* \xi}$ is reduced by the subspace \mathcal{E}_{0} of the functions depending only on $\left|\mathrm{U}_{12}\right|^{2}$. Recall also that the Laplace operator on $\dot{\mathrm{U}}(2)$ is reduced by \mathcal{E}_{0} and have the form

$$
\Delta_{\mathrm{U}}=-\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}(1-\mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}, \quad \mathrm{x}=\left|\mathrm{U}_{12}\right|^{2}
$$

Besides, the eigenvectors of Δ_{U} and $\mathcal{K}_{* 0}$ coincide (they are Legendre's polynomials P_{j}) and corresponding eigenvalues of Δ_{U} are

$$
\lambda_{\mathrm{j}}^{*}=\mathrm{j}(\mathrm{j}+1)
$$

Hence we can write $\mathcal{K}_{* \xi}$ as

$$
\mathcal{K}_{* \xi} \sim 1-\mathrm{N}^{-1}\left(\mathrm{C}_{*} \mathrm{t}_{*} \Delta_{\mathrm{U}}+2 \mathrm{i} \xi \nu\right)+\mathrm{o}\left(\mathrm{~N}^{-1}\right) \Rightarrow\left(\mathcal{K}_{* \xi}^{\mathrm{N}} \mathrm{f}_{0}, \mathrm{f}_{0}\right) \rightarrow\left(\mathrm{e}^{-\mathrm{C} \Delta_{\mathrm{U}}-2 \mathrm{i} \xi \hat{\nu}} \mathrm{f}_{0}, \mathrm{f}_{0}\right)
$$

Results for \mathcal{R}_{0}

Theorem 1 [TS:14]

$\mathrm{N}<\mathrm{W}^{2-\theta}$, where $0<\theta<1$, and $\mathrm{E} \in(-2,2)$ we have

$$
\lim _{\mathrm{N}, \mathrm{~W} \rightarrow \infty} \mathrm{D}_{2}^{-1} \mathcal{R}_{0}\left(\lambda_{0}+\frac{\xi}{\mathrm{N} \rho\left(\lambda_{0}\right)}, \lambda_{0}-\frac{\xi}{\mathrm{N} \rho\left(\lambda_{0}\right)}\right)=\frac{\sin (2 \pi \xi)}{2 \pi \xi},
$$

i.e. the limit coincides with that for GUE. The limit is uniform in ξ varying in any compact set $\mathrm{C} \subset \mathbb{R}$. Here

$$
\mathrm{D}_{2}=\mathcal{R}_{0}\left(\lambda_{0}, \lambda_{0}\right)
$$

Theorem 2 [TS,MS:16]
 $\mathrm{N}>\mathrm{CW}^{2} \log \mathrm{~W}$

$$
\lim _{\mathrm{N}, \mathrm{~W} \rightarrow \infty} \mathrm{D}_{2}^{-1} \mathcal{R}_{0}\left(\lambda_{0}+\frac{\xi}{\mathrm{N} \rho\left(\lambda_{0}\right)}, \lambda_{0}-\frac{\xi}{\mathrm{N} \rho\left(\lambda_{0}\right)}\right)=1
$$

The limit is uniform in ξ varying in any compact set $\mathrm{C} \subset \mathbb{R}$.

Theorem 3 [TS: in preparation]

For 1d RBM with $\mathrm{N}=\mathrm{C}_{*} \mathrm{~W}^{2}, \mathrm{E} \in(-2,2)$, we have

$$
\lim _{\mathrm{N} \rightarrow \infty} \mathrm{D}_{2}^{-1} \mathcal{R}_{0}\left(\mathrm{E}+\frac{\xi}{\mathrm{N} \rho(\mathrm{E})}, \mathrm{E}-\frac{\xi}{\mathrm{N} \rho(\mathrm{E})}\right)=\left(\mathrm{e}^{-\mathrm{C}_{*} \mathrm{t}_{*} \Delta_{\mathrm{U}}-2 \mathrm{i} \hat{\xi} \hat{\nu}} \mathrm{f}_{0}, \mathrm{f}_{0}\right),
$$

where $\mathrm{t}^{*}=(2 \pi \rho(\mathrm{E}))^{2}$, and the limit is uniform in ξ varying in any compact subset of \mathbb{R}.

Result for \mathcal{R}_{1}

$$
\mathcal{K}_{1} \sim \mathrm{~F}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{A}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{A}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \mathrm{F}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\left(\begin{array}{cc}
1+\mathrm{L}(\overline{\mathrm{x}}, \overline{\mathrm{y}}) / \mathrm{W}^{2} & -1 \\
-\mathrm{L}(\overline{\mathrm{x}}, \overline{\mathrm{y}}) & 1
\end{array}\right)
$$

Operators A_{1} and A_{2} contain a large parameter W in the exponent, hence only $\mathrm{W}^{-1 / 2}$ neighbourhood of the stationary point ($\mathrm{x}^{*}, \mathrm{y}^{*}$) gives essential contribution. The function $\mathrm{L}(\overline{\mathrm{x}}, \overline{\mathrm{y}})$ here satisfies the relation

$$
\mathrm{L}(\overline{\mathrm{x}}, \overline{\mathrm{y}})=\left.0\right|_{\overline{\mathrm{x}}=\overline{\mathrm{x}}^{*}, \bar{y}=\overline{\mathrm{y}}^{*}}
$$

Hence the main order of our operator contains the Jordan cell. The spectral gap of $\mathrm{A}_{1,2}$ is $\mathrm{O}\left(\mathrm{W}^{-1}\right) \gg \mathrm{N}^{-1}$, hence $\mathrm{A}_{1,2}^{\mathrm{N}} \sim \lambda_{0}^{\mathrm{N}}\left(\mathrm{A}_{1,2}\right) \mathrm{P}_{1,2}$ $\left(\operatorname{rank} \mathrm{P}_{1,2}=1\right)$

Theorem 3 [MS,TS:16]

Let $\mathrm{N} \geq \mathrm{C}_{0} \mathrm{~W} \log \mathrm{~W}$, and $\left|\lambda_{0}\right| \leq 4 \sqrt{2} / 3 \approx 1.88$. Then we have for the first correlation function R_{1} (the first marginal density)

$$
\left|\mathrm{R}_{1}(\mathrm{E})-\rho(\mathrm{E})\right| \leq \mathrm{C} / \mathrm{W}
$$

Sigma-model $\mathcal{R}_{2}^{(\sigma)}$

The model can be obtained by some scaling limit ($\alpha=\beta / \mathrm{W}, \mathrm{W} \rightarrow \infty$, β, n -fixed) from the expression for \mathcal{R}_{2}.
The crossover is expected for $\beta \sim \mathrm{n}$.

$$
\begin{aligned}
\mathcal{R}_{2}^{(\sigma)}= & \int \exp \left\{\frac{\beta}{4} \sum \operatorname{Str} \mathrm{Q}_{\mathrm{j}} \mathrm{Q}_{\mathrm{j}+1}+\frac{\varepsilon+\mathrm{i} \xi}{4 \mathrm{n}} \sum \operatorname{Str} \mathrm{Q}_{\mathrm{j}} \wedge\right\} \\
& \times \prod\left(1-2 \rho_{1 \mathrm{j}} \tau_{1 \mathrm{j}} \rho_{2 \mathrm{j}} \tau_{2 \mathrm{j}}\right) \prod \mathrm{d} \mathrm{Q}_{\mathrm{j}}
\end{aligned}
$$

Here Q_{j} is a 4×4 super matrix of the block form:

$$
\mathrm{Q}_{\mathrm{j}}=\left(\begin{array}{cc}
\mathrm{U}_{\mathrm{j}}^{*} & 0 \\
0 & \mathrm{~S}_{\mathrm{j}}^{-1}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{T}_{1 \mathrm{j}} & \mathrm{~T}_{2 \mathrm{j}} \\
\mathrm{~T}_{3 \mathrm{j}} & \mathrm{~T}_{4 \mathrm{j}}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{U}_{\mathrm{j}} & 0 \\
0 & \mathrm{~S}_{\mathrm{j}}
\end{array}\right), \quad \Lambda=\left(\begin{array}{cc}
\mathrm{L} & 0 \\
0 & -\mathrm{L}
\end{array}\right)
$$

$\left.\mathrm{T}_{1 \mathrm{j}}=\operatorname{diag}\left\{1+2 \rho_{1 \mathrm{j}} \tau_{1 \mathrm{j}} ;-\left(1+2 \rho_{2 \mathrm{j}} \tau_{2 \mathrm{j}}\right)\right\} \quad \mathrm{T}_{4 \mathrm{j}}=\operatorname{diag}\left\{-1+2 \rho_{1 \mathrm{j}} \tau_{1 \mathrm{j}} ; 1-2 \rho_{2 \mathrm{j}} \tau_{2 \mathrm{j}}\right)\right\}$
$\mathrm{T}_{2 \mathrm{j}}=\operatorname{diag}\left\{2 \tau_{1 \mathrm{j}} ; 2 \tau_{2 \mathrm{j}}\right\} ; \quad \mathrm{T}_{3 \mathrm{j}}=\operatorname{diag}\left\{2 \rho_{1 \mathrm{j}} ; 2 \rho_{2 \mathrm{j}}\right\}$
Here $\left\{\mathrm{U}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ are unitary matrices, $\left\{\mathrm{S}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}$ are hyperbolic matrices and

$$
\mathrm{d} Q_{\mathrm{j}}=\mathrm{d} \mathrm{U}_{\mathrm{j}} \mathrm{~d} \mathrm{~S}_{\mathrm{j}} \mathrm{~d} \rho_{1 \mathrm{j}} \mathrm{~d} \rho_{2 \mathrm{j}} \mathrm{~d} \tau_{1 \mathrm{j}} \mathrm{~d} \tau_{2 \mathrm{j}}
$$

Transfer operator for $\mathcal{R}_{2}^{(\sigma)}$ The kernel of the transfer operator for $\mathcal{R}_{2}^{(\sigma)}$ has a form

$$
\mathcal{K}_{2}^{(\sigma)}=\hat{\mathrm{F}} \hat{\mathrm{Q}} \hat{\mathrm{~F}}
$$

where \hat{F} and \hat{Q} are 6×6 matrix kernels, s.t. $\hat{\mathrm{F}}_{\mu \nu}$ are multiplication operators and $\hat{\mathrm{Q}}_{\mu \nu}=\hat{\mathrm{Q}}_{\mu \nu}\left(\mathrm{U}_{1} \mathrm{U}_{2}^{*}, \mathrm{~S}_{1} \mathrm{~S}_{2}^{-1}\right)$ are "difference" operators.
The key step is to prove

$$
\hat{\mathrm{F}} \hat{\mathrm{Q}} \hat{\mathrm{~F}} \sim \tilde{\mathrm{~F}} \hat{\mathrm{~K}}_{0} \tilde{\mathrm{~F}},
$$

where $\hat{\mathrm{K}}_{0}$ and $\tilde{\mathrm{F}}$ are 4×4 matrices of the form

$$
\hat{\mathrm{K}}_{0}=\left(\begin{array}{cccc}
\mathrm{K} & \tilde{\mathrm{~K}}_{1} & \tilde{\mathrm{~K}}_{2} & \tilde{\mathrm{~K}}_{3} \\
0 & \mathrm{~K} & 0 & \tilde{\mathrm{~K}}_{2} \\
0 & 0 & \mathrm{~K} & \tilde{\mathrm{~K}}_{1} \\
0 & 0 & 0 & \mathrm{~K}
\end{array}\right), \quad \tilde{\mathrm{F}}=\mathrm{F}\left(\begin{array}{cccc}
1 & \tilde{\mathrm{~F}}_{1} & \tilde{\mathrm{~F}}_{2} & \tilde{\mathrm{~F}}_{1} \tilde{\mathrm{~F}}_{2} \\
0 & 1 & 0 & \tilde{\mathrm{~F}}_{2} \\
0 & 0 & 1 & \tilde{\mathrm{~F}}_{1} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $\mathrm{K}=\mathrm{K}_{\mathrm{U}} \otimes \mathrm{K}_{\mathrm{S}}$

$$
\mathrm{K}_{\mathrm{U}}\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right) \sim \beta \mathrm{e}^{-\beta\left|\left(\mathrm{U}_{1} \mathrm{U}_{2}^{*}\right)_{12}\right|^{2}}, \mathrm{~K}_{\mathrm{S}}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right) \sim \beta \mathrm{e}^{-\beta\left|\left(\mathrm{S}_{1} \mathrm{~S}_{2}^{-1}\right)_{12}\right|^{2}}
$$

$\tilde{\mathrm{K}}_{\mathrm{i}}=\tilde{\mathrm{K}}_{\mathrm{i}}\left(\mathrm{U}_{1} \mathrm{U}_{2}^{*} ; \mathrm{S}_{1} \mathrm{~S}_{2}^{-1}\right) \sim \beta^{-1} \Delta_{\mathrm{U}, \mathrm{V}}, \mathrm{F}$ is an operator of multiplication by $\mathrm{e}^{\varphi(\mathrm{U}, \mathrm{S}) / 2 \mathrm{n}}$, and $\tilde{\mathrm{F}}_{1,2}$ are operators of multiplication by $\mathrm{n}_{-1,2}^{-1} \varphi_{1,2}(\mathrm{U}, \mathrm{S})$

Result for $\mathcal{R}_{2}^{(\sigma)}$

Theorem 4 [MS,TS:17] (submitted to JSP)

For the sigma-model in the regime $\mathrm{C} \beta / \log ^{2} \beta>\mathrm{n}$

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathcal{R}_{2}^{(\sigma)}=\left(\hat{\mathrm{F}}_{0} \tilde{\mathrm{f}}, \tilde{\mathrm{~g}}\right)
$$

where

$$
\begin{aligned}
& \hat{\mathrm{F}}_{0}=\mathrm{F}_{0}\left(\begin{array}{cccc}
1 & \mathrm{~F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{1} \mathrm{~F}_{2} \\
0 & 1 & 0 & \mathrm{~F}_{2} \\
0 & 0 & 1 & \mathrm{~F}_{1} \\
0 & 0 & 0 & 1
\end{array}\right), \\
& \mathrm{F}_{0} \sim \mathrm{e}^{\varphi(\mathrm{U}, \mathrm{~S})}, \quad \mathrm{F}_{1,2} \sim \varphi_{1,2}(\mathrm{U}, \mathrm{~S}) \\
& \tilde{\mathrm{f}}=\left(\mathrm{e}_{4}-\mathrm{e}_{1}\right), \quad \tilde{\mathrm{g}}=\left(\mathrm{e}_{1}-\mathrm{e}_{4}\right)
\end{aligned}
$$

Corollary

For $|\mathrm{E}| \leq \sqrt{2}$ the second order correlation function of RBBM with $\alpha=\beta / \mathrm{W}$ in the limit $\mathrm{W} \rightarrow \infty$ and then $\beta, \mathrm{n} \rightarrow \infty,(\beta \gg \mathrm{n})$ coincides with that for GUE.

Transfer operator for \mathcal{R}_{2}

The kernel of the transfer operator for \mathcal{R}_{2} has a form

$$
\mathcal{K}_{2}=\hat{\mathrm{F}} \hat{Q} \hat{A} \hat{F}
$$

where $\hat{\mathrm{F}}, \hat{\mathrm{Q}}$ and $\hat{\mathrm{A}}$ are 70×70 matrix kernels, s.t. $\hat{\mathrm{F}}_{\mu \nu}$ are the operators of multiplication by some function of U, S,

$$
\begin{aligned}
& \hat{\mathrm{Q}}_{\mu \nu}=\mathrm{K}_{\mathrm{U}} \mathrm{~K}_{\mathrm{S}} \mathrm{Q}_{\mu \nu}\left(\mathrm{U}_{1} \mathrm{U}_{2}^{*} ; \mathrm{S}_{1} \mathrm{~S}_{2}^{-1}\right), \\
& \mathrm{K}_{\mathrm{U}}=\alpha \mathrm{We}^{-\alpha \mathrm{Wt}(\overline{\mathrm{x}}, \bar{y})\left|\left(\mathrm{U}_{1} \mathrm{U}_{2}^{*}\right)_{12}\right|^{2}}, \quad \mathrm{~K}_{\mathrm{S}}=\alpha \mathrm{We}^{-\alpha \mathrm{Wt}(\overline{\mathrm{x}}, \overline{\mathrm{y}})\left|\left(\mathrm{S}_{1} \mathrm{~S}_{2}^{-1}\right)_{12}\right|^{2}},
\end{aligned}
$$

and

$$
\begin{aligned}
& \hat{\mathrm{A}}_{\mu \nu}=\mathrm{A}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{A}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \mathrm{A}_{3}\left(\mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}^{\prime}\right) \mathrm{A}_{4}\left(\mathrm{y}_{1}^{\prime}, \mathrm{y}_{2}^{\prime}\right) \mathcal{A}_{\mu, \nu}(\overline{\mathrm{x}}, \overline{\mathrm{y}}) \\
& \mathrm{A}_{\delta}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{W} / 2 \pi)^{1 / 2} \mathrm{e}^{-\mathrm{W} \alpha(\mathrm{x}-\mathrm{y})^{2} / 2+\mathrm{W}\left(\mathrm{f}_{\delta}(\mathrm{x})+\mathrm{f}_{\delta}(\mathrm{y})\right)}, \quad \delta=1,2,3,4
\end{aligned}
$$

The spectral gap for A_{δ} is $\mathrm{O}(1)$.

Result for \mathcal{R}_{2}

After a rather involved asymptotic analysis we obtain

$$
\mathcal{K}_{2} \sim \tilde{\mathrm{~F}} \hat{\mathrm{~K}}_{0} \tilde{\mathrm{~F}}
$$

where $\hat{\mathrm{K}}_{0}$ and $\tilde{\mathrm{F}}$ are 4×4 matrices similar to that for sigma-model.
Theorem 5 [MS,TS:17] (in preparation)
For $|\mathrm{E}| \leq \sqrt{2}$ and $\mathrm{W}^{2} / \log ^{2} \mathrm{~W}>\mathrm{CN}$,

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathcal{R}_{2}=\left(\hat{\mathrm{F}}_{0} \tilde{\mathrm{f}}, \tilde{\mathrm{~g}}\right)
$$

where $\hat{F}_{0}, \tilde{f}, \tilde{g}$ are the same as in Theorem 4.

Corollary

For $|\mathrm{E}|<\sqrt{2}$ the second order correlation function of 1d RBBM in the limit $\mathrm{N}, \mathrm{W} \rightarrow \infty, \mathrm{W}^{2} / \log ^{2} \mathrm{~W}>\mathrm{CN}$, coincides with that for GUE.

