# Homogenization of viscous Hamilton-Jacobi equations with non-convex Hamiltonians: examples and open questions 

Elena Kosygina ${ }^{1}$<br>based on joint work with Andrea Davini ${ }^{2}$ (2017)<br>Atilla Yilmaz ${ }^{3,5}$ and Ofer Zeitouni ${ }^{4,5}$ (2017+)<br>${ }^{1}$ Baruch College and the CUNY Graduate Center;<br>${ }^{2}$ Sapienza Università di Roma; ${ }^{3}$ Koç University;<br>${ }^{4}$ Weizmann Institute; ${ }^{5}$ Courant Institute

Random Event in Honor of Ilya Goldsheid, 12/22/2017

## Viscous HJ equation

Consider the following Cauchy problem in $[0, \infty) \times \mathbb{R}^{d}$

$$
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}\right)=0,
$$

$\left.u^{\varepsilon}\right|_{t=0}=g(x) . \quad$ (For $\varepsilon=1$ we write $u$ in place of $u^{1}$.)
Here $A(x)=\left(\sigma \sigma^{T}\right)(x)$ is a positive semi-definite matrix:
(A1) $\|\sigma(x)\| \leq \Lambda_{0} ; \quad$ (A2) $\|\sigma(x)-\sigma(y)\| \leq \Lambda_{0}|x-y|$;
and the Hamiltonian $H(x, p)$ satisfies
(H1) $H \in \mathrm{UC}\left(\mathbb{R}^{d} \times B_{R}\right)$ for all $R>0$;
(H2) $\underline{\alpha}(|p|) \leq H(x, p) \leq \bar{\alpha}(|p|)$ for all $(x, p) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$,
where $\underline{\alpha}(R) \rightarrow \infty$ as $R \rightarrow \infty$.
We say that $\left(\mathrm{HJ}_{\varepsilon}\right)$ homogenizes if there is a continuous $\bar{H}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that for every $g \in \mathrm{UC}\left(\mathbb{R}^{d}\right)$

$$
u^{\varepsilon}(t, x) \rightrightarrows_{\text {loc }} \bar{u}(t, x) \quad \text { as } \varepsilon \rightarrow 0,
$$

where $\bar{u}$ solves

$$
\partial_{t} \bar{u}+\bar{H}\left(D_{x} \bar{u}\right)=0,\left.\quad \bar{u}\right|_{t=0}=g .
$$

## Periodic setting

When $H(x, p)$ is periodic in each of the spatial variables, i.e. $H: \mathbb{T}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, homogenization is known to take place under very general conditions.

- (Inviscid case: $A \equiv 0$.) P.-L. Lions, G. Papanicolaou, S.R.S. Varadhan (around 1987, unpublished) suggested two methods:
(i) based on construction of correctors;
(ii) based on variational representation of solutions (only for $H$ convex in $p$ ).
- (Fully non-linear 1-st and 2-nd order equations.) L.C. Evans (1992) used correctors and his perturbed test function method to show homogenization.


## Stationary ergodic setting

- Environment: probability space $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{R}^{d}$ acts on $\Omega$ by shifts $\tau_{x}: \Omega \rightarrow \Omega, x \in \mathbb{R}^{d}$, which preserve $\mathbb{P}$. We assume that the action by $\tau_{x}, x \in \mathbb{R}^{d}$, is ergodic.
- Coefficients:

$$
A(x, \omega):=\tilde{A}\left(\tau_{x} \omega\right), \quad H(x, p, \omega):=\tilde{H}\left(p, \tau_{x} \omega\right)
$$

We shall always assume that $A$ and $H$ satisfy (A1)-(A2) and $(\mathrm{H} 1)-(\mathrm{H} 2)$ respectively with bounds independent of $\omega$.

- Example: let $A \equiv I$ (viscous) or $A \equiv 0$ (inviscid), and

$$
H(x, p, \omega)=\frac{1}{2}|p|^{2}-b(x, \omega)|p|+V(x, \omega)
$$

where $b, V \in \operatorname{Lip}\left(\mathbb{R}^{d}\right), 0 \leq b(x, \omega), V(x, \omega) \leq C$.

## Two words about correctors

A function $v_{\theta}(x, \omega)$ is said to be a (sublinear) corrector corresponding to $\theta \in \mathbb{R}^{d}$ if a.s. $|x|^{-1} v_{\theta}(x, \omega) \rightrightarrows_{\mathrm{loc}} 0$ as $|x| \rightarrow \infty$ and there is a constant $\bar{H}(\theta) \in \mathbb{R}$ such that

$$
-\operatorname{tr}\left(A(x, \omega) D_{x}^{2} v_{\theta}\right)+H\left(x, \theta+D_{x} v_{\theta}, \omega\right)=\bar{H}(\theta), \quad x \in \mathbb{R}^{d} .
$$

If $v_{\theta}$ is a corrector then $v_{\theta}^{\varepsilon}(t, x, \omega):=\theta \cdot x-t \bar{H}(\theta)+\varepsilon v_{\theta}(x / \varepsilon, \omega)$

- solves $\left(\mathrm{HJ}_{\varepsilon}\right)$;
- satisfies $v_{\theta}^{\varepsilon}(0, x)=\theta \cdot x+\varepsilon v(x / \varepsilon, \omega)$;
- $v_{\theta}^{\varepsilon} \rightrightarrows_{\text {loc }} \theta \cdot x-t \bar{H}(\theta)$, a solution of $\partial_{t} \bar{u}+\bar{H}\left(D_{x} \bar{u}\right)=0$; If correctors exist for all $\theta \in \mathbb{R}^{d}$ then the perturbed test function method gives homogenization for general initial data. However,
- Correctors need not exist in general (stat. erg. setting). ${ }^{1}$
- Yet if $\left(\mathrm{HJ}_{\varepsilon}\right)$ homogenizes in probability, correctors exist for all $\theta$ which are extreme points of sub-level sets of $\bar{H}(\theta) .{ }^{2}$

[^0]
## Linear initial data characterize $\bar{H}$

$$
\partial_{t} u^{\varepsilon}-\varepsilon \operatorname{tr}\left(A\left(\frac{x}{\varepsilon}, \omega\right) D_{x}^{2} u^{\varepsilon}\right)+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}, \omega\right)=0 .
$$

If $g(x)=\theta \cdot x$ then we denote the solution of $\left(\mathrm{HJ}_{\varepsilon}\right)$ by $u_{\theta}^{\varepsilon}(t, x, \omega)$.

- $u_{\theta}^{\varepsilon}(t, x, \omega)=\varepsilon u_{\theta}\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, \omega\right)$, where $u_{\theta}$ solves $\left(\mathrm{HJ}_{1}\right)$ with $\left.u_{\theta}\right|_{t=0}=\theta \cdot x$.
- $\bar{u}_{\theta}(t, x):=\theta \cdot x-t \bar{H}(\theta)$ solves $\partial_{t} \bar{u}_{\theta}+\bar{H}\left(D_{x} \bar{u}_{\theta}\right)=0$ with $\left.\bar{u}_{\theta}\right|_{t=0}=\theta \cdot x$.
If $\left(\mathrm{HJ}_{\varepsilon}\right)$ homogenizes a.s. then, in particular,

$$
\forall \theta \in \mathbb{R}^{d}, \quad u_{\theta}^{\varepsilon}(1,0, \omega) \rightarrow-\bar{H}(\theta) \text { a.s. as } \varepsilon \rightarrow 0
$$

Thus, $\bar{H}(\theta)$ is completely characterized by $\lim _{\varepsilon \rightarrow 0} u_{\theta}^{\varepsilon}(1,0, \omega)$.

- Question: Does the above convergence alone imply the full homogenization result?
- Short answer: In the stationary ergodic setting and under further conditions on $u_{\theta}$, yes.

Theorem (A. Davini, EK (2017), stationary ergodic setting) Assume that

- $\forall \omega \in \Omega$ the Cauchy problem for $\left(H J_{1}\right)$ is well-posed;
- there is a locally bounded function $\kappa: \mathbb{R}^{d} \rightarrow[0, \infty)$ such that $\forall x, y \in \mathbb{R}^{d}, \forall t \geq 0, \forall \omega \in \Omega$

$$
\left|u_{\theta}(t, x, \omega)-u_{\theta}(t, y, \omega)\right| \leq \kappa(\theta)|x-y| ;
$$

- $\forall \theta \in \mathbb{R}^{d}, u^{\varepsilon}(1,0, \omega) \rightarrow-\bar{H}(\theta)$ a.s. as $\varepsilon \rightarrow 0$.

Then $\bar{H}$ is continuous, coercive, and on a set of full $\mathbb{P}$-measure $\left(H J_{\varepsilon}\right)$ homogenizes to $\partial_{t} \bar{u}+\bar{H}(D \bar{u})=0$.

## Well-posedness

- If $A \equiv 0$ then the Cauchy problem for $\left(\mathrm{HJ}_{1}\right)$ is well-posed (in a certain class) for all $H$ which satisfy (H1)-(H2).
- If $A \not \equiv 0$ then the well-posedness can be shown ${ }^{3}$ for $A$ satisfying (A1)-(A2) and $H \in \mathcal{H}\left(\underline{\alpha}_{0}, \bar{\alpha}_{0}, \gamma\right)$ for some $\underline{\alpha}_{0}, \bar{\alpha}_{0}>0, \gamma>1$. The latter consists of $H \in C\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that:
(i) $\underline{\alpha}_{0}|p|^{\gamma}-1 / \underline{\alpha}_{0} \leq H(x, p) \leq \bar{\alpha}_{0}\left(|p|^{\gamma}+1\right) \quad \forall x, p \in \mathbb{R}^{d}$;
(ii) $|H(x, p)-H(y, p)| \leq \bar{\alpha}_{0}\left(|p|^{\gamma}+1\right)|x-y| \quad \forall x, y, p \in \mathbb{R}^{d}$;
(iii) $|H(x, p)-H(x, q)| \leq \bar{\alpha}_{0}(|p|+|q|+1)^{\gamma-1}|p-q| \quad \forall x, p, q \in \mathbb{R}^{d}$.
${ }^{3}$ S. Armstrong, H. Tran (2015), A. Davini (2016+).


## Inviscid case: $A \equiv 0$

- Convex H: P.E. Souganidis (1999); F. Rezakhanlou, J. E. Tarver (2000);
- Level set convex $H$ : A. Davini, A. Siconolfi (2009), $d=1$; S. Armstrong, P. E. Souganidis (2013), $d \geq 1$.
- S. Armstrong, H. V. Tran, Y. Yu (2015): homogenization for $\tilde{H}(p, \omega)=\left(|p|^{2}-1\right)^{2}-\tilde{V}(\omega), d \geq 1$.
- S. Armstrong, H.V. Tran, Y. Yu (2016), H. Gao (2016): $d=1$, quite general $H$.
- B. Ziliotto (2017): counterexample for $d=2, H(p)-V(\omega)$ where $H(p)$ has a strict saddle point and the environment has very slow mixing;
- W. M. Feldman, P. E. Souganidis (2017). Extentions of Ziliotto's example. Homogenization for $H$ with strictly star-shaped sub-level sets.


## Viscous case: $A \not \equiv 0$

- Convex H: P.-L. Lions, P. E. Souganidis (2005, 2010); EK, F. Rezakhanlou, S. R. S. Varadhan (2006); S. Armstrong, H. V. Tran (2015).
- $d \geq 1, A \equiv I$ : S. Armstrong, P. Cardaliaguet (2015+). $H$ is such that
$\exists \alpha>0: \tilde{H}(t e, \omega)=t^{\alpha} \tilde{H}(e, \omega) \forall t \geq 0,\|e\|=1, x \in \mathbb{R}^{d}$. Environments with finite range of dependence.
- $d=1, A$ is general: A. Davini, EK (2017). "Pinned Hamiltonians": $H\left(\cdot, p_{0}\right) \equiv$ const for some $p_{0}$. Examples include: $\tilde{H}(p, \omega)=\tilde{a}(\omega)|p|^{\alpha}-\tilde{b}(\omega)|p|, \alpha>1$, $0<c \leq \tilde{a}(\omega), \tilde{b}(\omega) \leq c^{-1}$.
- $d=1, A \equiv 1$ : A. Yilmaz, O. Zeitouni (2017+); EK, A. Yilmaz, O. Zeitouni (2017+). $\tilde{H}(p, \omega)=\frac{1}{2} p^{2}-c|p|+\beta V(\omega)$, $\beta, c>0$, under additional conditions on the environment.


## "Pinned Hamiltonians"

Let $d=1$, $A$ satisfy (A1)-(A2), and $H_{ \pm} \in \mathcal{H}\left(\underline{\alpha}_{0}, \bar{\alpha}_{0}, \gamma\right)$, where bounds and parameters are independent of $\omega$. Assume, in addition, that $\left(\mathrm{HJ}_{\varepsilon}\right)$ with Hamiltonians $\tilde{H}_{ \pm}$homogenizes, $\tilde{H}_{ \pm}(0, \omega) \equiv 0$, and

$$
\tilde{H}_{+}(p, \omega) p \leq \tilde{H}_{-}(p, \omega) p \quad \forall p \in \mathbb{R}, \omega \in \Omega
$$

Define

$$
\tilde{H}(p, \omega):=\min \left\{\tilde{H}_{+}(p, \omega), \tilde{H}_{-}(p, \omega)\right\}= \begin{cases}\tilde{H}_{+}(p, \omega), & \text { if } p \geq 0 \\ \tilde{H}_{-}(p, \omega), & \text { if } p \leq 0\end{cases}
$$

## Example

The homogenization requirement for $\tilde{H}_{ \pm}$is met if, for example,

- $\tilde{H}_{ \pm}$are convex in $p$;
- $A \equiv 0$ and $\tilde{H}_{ \pm}$are level set convex;
- $\tilde{H}_{ \pm}$(up to a shift by a fixed $p_{0}$ and adding a constant) are of the form for which we already obtained homogenization.

Recall $H(x, p, \omega)=\tilde{H}\left(p, \tau_{x} \omega\right)$, where

$$
\tilde{H}(p, \omega)=\left\{\begin{array}{ll}
\tilde{H}_{+}(p, \omega), & \text { if } p \geq 0 ; \\
\tilde{H}_{-}(p, \omega), & \text { if } p \leq 0
\end{array} \quad \text { and } \tilde{H}_{ \pm}(0, \omega) \equiv 0\right.
$$

Theorem (A. Davini, EK (2017))
Let $d=1, A$ and $H$ be as above. Then there exist a continuous and coercive Hamiltonian $\bar{H}: \mathbb{R} \rightarrow \mathbb{R}$ and a set $\hat{\Omega} \subseteq \Omega$ of full measure such that the equation

$$
\partial_{t} u^{\varepsilon}-\varepsilon A\left(\frac{x}{\varepsilon}, \omega\right) D_{x}^{2} u^{\varepsilon}+H\left(\frac{x}{\varepsilon}, D_{x} u^{\varepsilon}, \omega\right)=0
$$

homogenizes. Moreover,

$$
\bar{H}(\theta)=\min \left\{\bar{H}_{-}(\theta), \bar{H}_{+}(\theta)\right\} \quad \forall \theta \in \mathbb{R},
$$

where $\bar{H}_{+}$and $\bar{H}_{-}$are the effective Hamiltonians obtained by homogenizing $\left(H J_{\varepsilon}\right)$ with $H_{+}$and $H_{-}$in place of $H$.

$$
H(p, x, \omega)=\frac{1}{2} p^{2}-c|p|+\beta V(x, \omega), \beta, c>0
$$

Let ess $\sup V(x, \omega)=1$ and essinf $V(x, \omega)=0$.

- Valleys and hills: for $\omega \in \Omega$ and $h \in(0,1)$, an interval $I$ is an $h$-valley ( $h$-hill) if $\forall x \in I, V(x, \omega) \leq h(V(x, \omega) \geq h)$.
- Assumption: $\forall h \in(0,1)$ and $y>0$, $\mathbb{P}([0, y]$ is an $h$-valley $)>0$ and $\mathbb{P}([0, y]$ is an $h$-hill $)>0$.
Consider the equation

$$
\partial_{t} u_{\theta}-\frac{1}{2} D_{x}^{2} u_{\theta}+\frac{1}{2}\left(D_{x} u_{\theta}\right)^{2}-c\left|D_{x} u_{\theta}\right|+\beta V(x, \omega)=0
$$

with the initial condition $u_{\theta}(0, x, \omega)=\theta x$. We are interested in the limit of $u_{\theta}^{\varepsilon}(1,0, \omega):=\varepsilon u_{\theta}\left(\frac{1}{\varepsilon}, 0, \omega\right)$ as $\varepsilon \rightarrow 0$.

## Solution by Hopf-Cole + control representation

Note that $v_{\theta}:=e^{-u_{\theta}}$ solves

$$
\partial_{t} v_{\theta}-\frac{1}{2} D_{x}^{2} v_{\theta} \underbrace{+c\left|D_{x} v_{\theta}\right|}_{-\inf _{\mid \leq c}^{|b| \leq c}\left(b D_{x} v_{\theta}\right)}-\beta V(x, \omega) v_{\theta}=0,\left.\quad v_{\theta}\right|_{t=0}=e^{-\theta x} .
$$

The control representation gives
$u_{\theta}(t, x, \omega)=-\ln v_{\theta}(t, x, \omega)=-\ln \inf _{b \in \mathcal{P}_{c}} E_{x} e^{-\theta x(t)+\beta \int_{0}^{t} V(x(s), \omega) d s}$,
where $d x(s)=b(s) d s+d B(s), 0 \leq s \leq t, x(0)=x$, and
$\mathcal{P}_{c}=\left\{b=(b(s))_{s \geq 0}: b\right.$ is a $[-c, c]$-valued and progress. meas. $\}$.
Thus we are interested in the limit as $T=\varepsilon^{-1} \rightarrow \infty$ of

$$
\inf _{b \in \mathcal{P}_{c}} \frac{1}{T} \ln E_{0} e^{-\theta x(T)+\beta \int_{0}^{T} V(x(s), \omega) d s}
$$

Recall that $\bar{H}(\theta)=-\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(1,0, \omega)$ (if it exists) is equal to

$$
\lim _{T \rightarrow \infty} \inf _{b \in \mathcal{P}_{c}} \frac{1}{T} \ln E_{0} e^{-\theta x(T)+\beta \int_{0}^{T} V(x(s), \omega) d s}
$$

When $c=0$, the limit exists and is sometimes referred to as the tilted free energy of a BM in the potential $V$,

$$
\Lambda_{\beta}(\theta):=\lim _{T \rightarrow \infty} \frac{1}{T} \ln E_{0} e^{\theta B(T)+\beta \int_{0}^{T} V(B(s), \omega) d s}
$$

Using a variety of techniques, including construction of correctors, asymptotically optimal policies, large deviations, we prove homogenization and give an explicit formula for $\bar{H}(\theta)$ in terms of $\Lambda_{\beta}(\theta)$.

Weak control $[\beta=1, c=1]$
Strong control $[\beta=1, c=2]$


Weak control: $\beta \geq \frac{c^{2}}{2}$
$\bar{H}(\theta)=\left\{\begin{array}{ll}\beta-\frac{c^{2}}{2}, & \text { if }|\theta| \leq c ; \\ \Lambda_{\beta}(|\theta|-c)-\frac{c^{2}}{2}, & \text { if }|\theta|>c .\end{array} \quad \bar{H}(\theta)= \begin{cases}0, & \text { if }|\theta| \leq|\bar{c}| ; \\ \Lambda(|\theta|-c)-c^{2} / 2, & \text { if }|\theta|>|\bar{c}|,\end{cases}\right.$
Pictures by A. Yilmaz
where $\bar{c} \in(0, c)$ is a unique solution
Strong control: $\beta<\frac{c^{2}}{2}$ of the equation $\Lambda_{\beta}(\bar{c}-c)=\frac{c^{2}}{2}$.

## Some open problems

- Prove homogenization under some natural assumptions for $A=I$ and $H(x, p, \omega)=\frac{1}{2}|p|^{2}-b(x, \omega)|p|+V(x, \omega), d \geq 1$.
- Suppose that $H(x, p, \omega)=H_{0}(p)-\varepsilon|p|+V(x, \omega)$ where $H_{0}(p)$ is a convex super-linear Hamiltonian, $\varepsilon>0$, and $V$ is bounded and sufficiently regular. Is it true that $\left(\mathrm{HJ}_{\varepsilon}\right)$ homogenizes for all sufficiently small $\varepsilon>0$ ?
- Study the "level-set-convexification of the effective Hamiltonian". For partial results and a conjecture in the inviscid case see J. Qian, H. V. Tran, Y.Yu (2017+).
- Prove homogenization for level-set convex Hamiltonians in the viscous case.

$$
\int\left(\begin{array}{llll}
\Lambda & M & প ্ & 0 \\
\Lambda & \ddot{E} & P & H \\
E & \Lambda & M & H \\
& \nVdash & \Lambda & b
\end{array}\right)!
$$


[^0]:    ${ }^{1}$ P.-L. Lions, P. E. Souganidis (2003)
    ${ }^{2}$ P. Cardaliaguet, P. Souganidis (2017+)

