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Viscous HJ equation
Consider the following Cauchy problem in [0,∞)× Rd

∂tu
ε − ε tr

(
A
(x
ε

)
D2
xu

ε
)

+H
(x
ε
,Dxu

ε
)

= 0, (HJε)

uε
∣∣
t=0

= g(x). (For ε = 1 we write u in place of u1.)

Here A(x) = (σσT )(x) is a positive semi-definite matrix:
(A1) ‖σ(x)‖ ≤ Λ0; (A2) ‖σ(x)− σ(y)‖ ≤ Λ0|x− y|;
and the Hamiltonian H(x, p) satisfies
(H1) H ∈ UC(Rd ×BR) for all R > 0;
(H2) α(|p|) ≤ H(x, p) ≤ α(|p|) for all (x, p) ∈ Rd × Rd,
where α(R)→∞ as R→∞.
We say that (HJε) homogenizes if there is a continuous
H : Rd → R such that for every g ∈ UC(Rd)

uε(t, x) ⇒loc u(t, x) as ε→ 0,

where u solves ∂tu+H(Dxu) = 0, u
∣∣
t=0

= g.



Periodic setting

When H(x, p) is periodic in each of the spatial variables, i.e.
H : Td × Rd → R, homogenization is known to take place under
very general conditions.
• (Inviscid case: A ≡ 0.) P.-L. Lions, G. Papanicolaou, S.R.S.

Varadhan (around 1987, unpublished) suggested two
methods:

(i) based on construction of correctors;
(ii) based on variational representation of solutions (only for H

convex in p).

• (Fully non-linear 1-st and 2-nd order equations.) L.C.
Evans (1992) used correctors and his perturbed test
function method to show homogenization.



Stationary ergodic setting

• Environment: probability space (Ω,F ,P), Rd acts on Ω by
shifts τx : Ω→ Ω, x ∈ Rd, which preserve P. We assume
that the action by τx, x ∈ Rd, is ergodic.

• Coefficients:

A(x, ω) := Ã(τxω), H(x, p, ω) := H̃(p, τxω).

We shall always assume that A and H satisfy (A1)–(A2)
and (H1)–(H2) respectively with bounds independent of ω.

• Example: let A ≡ I (viscous) or A ≡ 0 (inviscid), and

H(x, p, ω) =
1

2
|p|2 − b(x, ω)|p|+ V (x, ω),

where b, V ∈ Lip(Rd), 0 ≤ b(x, ω), V (x, ω) ≤ C.



Two words about correctors
A function vθ(x, ω) is said to be a (sublinear) corrector
corresponding to θ ∈ Rd if a.s. |x|−1vθ(x, ω) ⇒loc 0 as |x| → ∞
and there is a constant H(θ) ∈ R such that
− tr

(
A (x, ω)D2

xvθ
)

+H (x, θ +Dxvθ, ω) = H(θ), x ∈ Rd.
If vθ is a corrector then vεθ(t, x, ω) := θ · x− tH(θ) + εvθ(x/ε, ω)

• solves (HJε);
• satisfies vεθ(0, x) = θ · x+ εv(x/ε, ω);
• vεθ ⇒loc θ · x− tH(θ), a solution of ∂tu+H(Dxu) = 0;

If correctors exist for all θ ∈ Rd then the perturbed test function
method gives homogenization for general initial data. However,
• Correctors need not exist in general (stat. erg. setting).1

• Yet if (HJε) homogenizes in probability, correctors exist for
all θ which are extreme points of sub-level sets of H(θ).2

1P.-L. Lions, P. E. Souganidis (2003)
2P. Cardaliaguet, P. Souganidis (2017+)



Linear initial data characterize H

∂tu
ε − ε tr

(
A
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ε
, ω
)
D2
xu
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)

+H
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ε
,Dxu

ε, ω
)

= 0. (HJε)

If g(x) = θ · x then we denote the solution of (HJε) by uεθ(t, x, ω).
• uεθ(t, x, ω) = εuθ

(
t
ε ,

x
ε , ω

)
, where uθ solves (HJ1) with

uθ
∣∣
t=0

= θ · x.
• uθ(t, x) := θ · x− tH(θ) solves ∂tuθ +H(Dxuθ) = 0 with
uθ
∣∣
t=0

= θ · x.
If (HJε) homogenizes a.s. then, in particular,

∀θ ∈ Rd, uεθ(1, 0, ω)→ −H(θ) a.s. as ε→ 0.

Thus, H(θ) is completely characterized by limε→0 u
ε
θ(1, 0, ω).

• Question: Does the above convergence alone imply the full
homogenization result?

• Short answer: In the stationary ergodic setting and under
further conditions on uθ, yes.



Theorem (A. Davini, EK (2017), stationary ergodic setting)
Assume that
• ∀ω∈ Ω the Cauchy problem for (HJ1) is well-posed;
• there is a locally bounded function κ : Rd → [0,∞) such

that ∀ x, y ∈ Rd, ∀t ≥ 0, ∀ω ∈ Ω

|uθ(t, x, ω)− uθ(t, y, ω)| ≤ κ(θ)|x− y| ;

• ∀θ ∈ Rd, uε(1, 0, ω)→ −H(θ) a.s. as ε→ 0.
Then H is continuous, coercive, and on a set of full P-measure
(HJε) homogenizes to ∂tu+H(Du) = 0.



Well-posedness

• If A ≡ 0 then the Cauchy problem for (HJ1) is well-posed
(in a certain class) for all H which satisfy (H1)–(H2).

• If A 6≡ 0 then the well-posedness can be shown3 for A
satisfying (A1)–(A2) and H ∈ H(α0, α0, γ) for some
α0, α0 > 0, γ > 1. The latter consists of H ∈ C(Rd × Rd)
such that:

(i) α0|p|γ − 1/α0 ≤ H(x, p) ≤ α0(|p|γ + 1) ∀x, p ∈ Rd;

(ii) |H(x, p)−H(y, p)| ≤ α0(|p|γ + 1)|x− y| ∀x, y, p ∈ Rd;

(iii) |H(x, p)−H(x, q)| ≤ α0(|p|+ |q|+1)γ−1|p−q| ∀x, p, q ∈ Rd.

3S. Armstrong, H. Tran (2015), A. Davini (2016+).



Inviscid case: A ≡ 0

• Convex H: P. E. Souganidis (1999); F. Rezakhanlou,
J. E. Tarver (2000);

• Level set convex H: A. Davini, A. Siconolfi (2009), d = 1;
S. Armstrong, P. E. Souganidis (2013), d ≥ 1.

• S. Armstrong, H. V. Tran, Y. Yu (2015): homogenization for
H̃(p, ω) = (|p|2 − 1)2 − Ṽ (ω), d ≥ 1.

• S. Armstrong, H.V. Tran, Y. Yu (2016), H. Gao (2016): d = 1,
quite general H.

• B. Ziliotto (2017): counterexample for d = 2, H(p)− V (ω)
where H(p) has a strict saddle point and the environment
has very slow mixing;

• W. M. Feldman, P. E. Souganidis (2017). Extentions of
Ziliotto’s example. Homogenization for H with strictly
star-shaped sub-level sets.



Viscous case: A 6≡ 0

• Convex H: P.-L. Lions, P. E. Souganidis (2005, 2010); EK,
F. Rezakhanlou, S. R. S. Varadhan (2006); S. Armstrong,
H. V. Tran (2015).

• d ≥ 1, A ≡ I: S. Armstrong, P. Cardaliaguet (2015+). H is
such that
∃α > 0 : H̃(te, ω) = tαH̃(e, ω) ∀t ≥ 0, ‖e‖ = 1, x ∈ Rd.
Environments with finite range of dependence.

• d = 1, A is general: A. Davini, EK (2017). “Pinned
Hamiltonians”: H(·, p0) ≡ const for some p0. Examples
include: H̃(p, ω) = ã(ω)|p|α − b̃(ω)|p|, α > 1,
0 < c ≤ ã(ω), b̃(ω) ≤ c−1.

• d = 1, A ≡ 1: A. Yilmaz, O. Zeitouni (2017+); EK, A.
Yilmaz, O. Zeitouni (2017+). H̃(p, ω) = 1

2 p
2 − c|p|+ βV (ω),

β, c > 0, under additional conditions on the environment.



“Pinned Hamiltonians”
Let d = 1, A satisfy (A1)–(A2), and H± ∈ H(α0, α0, γ), where
bounds and parameters are independent of ω. Assume, in
addition, that (HJε) with Hamiltonians H̃± homogenizes,
H̃±(0, ω) ≡ 0, and

H̃+(p, ω)p ≤ H̃−(p, ω)p ∀p ∈ R, ω ∈ Ω.
Define

H̃(p, ω) := min{H̃+(p, ω), H̃−(p, ω)} =

{
H̃+(p, ω), if p ≥ 0;

H̃−(p, ω), if p ≤ 0.

Example
The homogenization requirement for H̃± is met if, for example,
• H̃± are convex in p;
• A ≡ 0 and H̃± are level set convex;
• H̃± (up to a shift by a fixed p0 and adding a constant) are

of the form for which we already obtained homogenization.



Recall H(x, p, ω) = H̃(p, τxω), where

H̃(p, ω) =

{
H̃+(p, ω), if p ≥ 0;

H̃−(p, ω), if p ≤ 0.
and H̃±(0, ω) ≡ 0.

Theorem (A. Davini, EK (2017))
Let d = 1, A and H be as above. Then there exist a continuous
and coercive Hamiltonian H : R→ R and a set Ω̂ ⊆ Ω of full
measure such that the equation

∂tu
ε − εA

(x
ε
, ω
)
D2
xu

ε +H
(x
ε
,Dxu

ε, ω
)

= 0

homogenizes. Moreover,

H(θ) = min{H−(θ), H+(θ)} ∀θ ∈ R,

where H+ and H− are the effective Hamiltonians obtained by
homogenizing (HJε) with H+ and H− in place of H.



H(p, x, ω) = 1
2p

2 − c|p|+ βV (x, ω), β, c > 0

Let ess supV (x, ω) = 1 and ess infV (x, ω) = 0.
• Valleys and hills: for ω ∈ Ω and h ∈ (0, 1), an interval I is

an h-valley (h-hill) if ∀x ∈ I, V (x, ω) ≤ h (V (x, ω) ≥ h).
• Assumption: ∀h ∈ (0, 1) and y > 0,
P([0, y] is an h-valley) > 0 and P([0, y] is an h-hill) > 0.

Consider the equation

∂tuθ −
1

2
D2
xuθ +

1

2
(Dxuθ)

2 − c|Dxuθ|+ βV (x, ω) = 0

with the initial condition uθ(0, x, ω) = θx. We are interested in
the limit of uεθ(1, 0, ω) := εuθ(

1
ε , 0, ω) as ε→ 0.



Solution by Hopf-Cole + control representation
Note that vθ := e−uθ solves

∂tvθ −
1

2
D2
xvθ +c |Dxvθ|︸ ︷︷ ︸

− inf
|b|≤c

(bDxvθ)

−βV (x, ω)vθ = 0, vθ
∣∣
t=0

= e−θx.

The control representation gives

uθ(t, x, ω) = − ln vθ(t, x, ω) = − ln inf
b∈Pc

Exe
−θx(t)+β

∫ t
0 V (x(s),ω) ds,

where dx(s) = b(s) ds+ dB(s), 0 ≤ s ≤ t, x(0) = x, and

Pc = {b = (b(s))s≥0 : b is a [−c, c]-valued and progress. meas.}.

Thus we are interested in the limit as T = ε−1 →∞ of

inf
b∈Pc

1

T
lnE0e

−θx(T )+β
∫ T
0 V (x(s),ω) ds.



Recall that H(θ) = − limε→0 u
ε(1, 0, ω) (if it exists) is equal to

lim
T→∞

inf
b∈Pc

1

T
lnE0e

−θx(T )+β
∫ T
0 V (x(s),ω) ds.

When c = 0, the limit exists and is sometimes referred to as the
tilted free energy of a BM in the potential V ,

Λβ(θ) := lim
T→∞

1

T
lnE0e

θB(T )+β
∫ T
0 V (B(s),ω) ds.

Using a variety of techniques, including construction of
correctors, asymptotically optimal policies, large deviations, we
prove homogenization and give an explicit formula for H(θ) in
terms of Λβ(θ).
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Weak control: β ≥ c2

2 Strong control: β < c2

2

H(θ) =

{
β − c2

2 , if |θ| ≤ c;
Λβ(|θ| − c)− c2

2 , if |θ| > c.
H(θ) =

{
0, if |θ| ≤ |c|;
Λ(|θ| − c)− c2/2, if |θ| > |c|,

where c ∈ (0, c) is a unique solution
Pictures by A. Yilmaz of the equation Λβ(c− c) = c2

2 .



Some open problems

• Prove homogenization under some natural assumptions for
A = I and H(x, p, ω) = 1

2 |p|2 − b(x, ω)|p|+ V (x, ω), d ≥ 1.
• Suppose that H(x, p, ω) = H0(p)− ε|p|+ V (x, ω) where
H0(p) is a convex super-linear Hamiltonian, ε > 0, and V is
bounded and sufficiently regular. Is it true that (HJε)
homogenizes for all sufficiently small ε > 0?

• Study the “level-set-convexification of the effective
Hamiltonian”. For partial results and a conjecture in the
inviscid case see J. Qian, H. V. Tran, Y.Yu (2017+).

• Prove homogenization for level-set convex Hamiltonians in
the viscous case.




