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Motivation

For almost 10 years now I’m studying various limit theorems for
nonconventional sums

SN =
N∑

n=1

F (X (n),X (2n), ...,X (`n))

and more general ones, usually, under weak dependence conditions on a
stochastic sequence X (n), n = 1, 2, ... which, in particular, can be generated by
a dynamical system X (n) = T nf = f ◦ T n on a probability space (X ,F ,P)
with P-preserving T . Important: Summands in SN are strongly dependent, for
instance, F (X (n),X (2n)) and F (X (2n),X (4n)).
Part of the motivation came from nonconventional ergodic theorems and their
connection with the Szemerédi theorem on arithmetic progressions in sets of
integers of positive density where the sums

SN =
N∑

n=1

∏̀
j=1

T jnfj

were considered.
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Examples of applications

a) Number theory (combinatorial) applications
For each ω ∈ [0, 1) consider its base m or continued fraction expansions with
digits ξk(ω), k = 1, 2, .... Count the number of those n ≤ N for which, say,
ξjn(ω) = aj , j = 1, ..., ` for some fixed integers a1, ..., a`. Then

SN(ω) =
N∑

n=1

∏̀
j=1

δajξjn(ω)

where δkm = 1 if k = m and = 0, otherwise.
b) Arithmetic progressions in a random set
Define a random set Γ in positive integers via a sequence of random variables
ξ1, ξ2, ... taking on values 0 or 1 by saying that n ∈ Γ iff ξn = 1. Then

SN =
N∑

n=1

∏̀
j=1

ξjn

counts the number of arithmetic progressions of length ` in Γ starting at n and
having step n ≤ N.
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Nonconventional arrays

More recently I thought that it makes sense to consider more general sums

SN =
N∑

n=1

F (X (n),X (2n), ...,X (`n),X (N − n),X (2(N − n)), ...,X (`(N − n)))

which look natural and symmetric. In fact, it turned out natural and
convenient to consider more general situation

SN =
N∑

n=1

F (X (p1n + q1N), ...,X (p`n + q`N))

where all pj ’s are different and ordered so that p1 < p2 < ... < p`. In particular,
if ` = 2k, pj = −(k − j + 1), qj = (k − j + 1) for j = 1, ..., k and
pj = j − k, qj = 0 for j = k + 1, ..., 2k we arrive at the previous case.
Summands depend on N: Nonconventional (triangular) arrays.
In particular, considering random set Γ application this allows to count pairs of
arithmetic progressions in Γ with steps n and N − n.
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Strong law of large numbers for nonconventional arrays: setup

Next, we will discuss almost sure (pointwise) convergence of averages of
nonconventional arrays

N−1SN = N−1
N∑

n=1

F (X (p1n + q1N),X (p2n + q2N), ...,X (p`n + q`N))

for a function F = F (x1, ..., x`) satisfying certain conditions and for a sequence
of weakly dependent random variables X (1), X (2), ... which could be generated
also by a dynamical system X (n) = T nf .
The setup below will work for several applications though it is not strongest
possible to avoid too many technicalities. We assume that random variables
X (1), X (2), ... are defined on a probability space (Ω,F ,P) where we have also
a family of σ-algebras Fkl ⊂ F , 0 ≤ k ≤ l ≤ ∞ such that Fkl ⊂ Fk′ l′ if k ′ ≤ k
and l ′ ≥ l . We introduce also the φ-dependence coefficient by

φ(n) = sup
k,A,B
{|P(A ∩ B)

P(A)
− P(B)| : A ∈ F−∞,k , B ∈ Fk+n,∞, P(A) > 0}.

If φ(n)→ 0 when n→∞ then the above family of σ-fields are called φ-mixing.
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Strong LLN: the result

We will need also the approximation coefficient

β(n) = sup
k≥1
‖X (k)− E(X (k)|Fk−n,k+n)‖L∞

and assume that F = F (x1, ..., x`) is a bounded Hölder continuous function i.e.,

|F (x)| ≤ M and |F (x)−F (y)| ≤ M
∑̀
i=1

|xi−yi |κ, ∀ x = (x1, ..., x`), y = (y1, ..., y`).

Theorem

Suppose that all X (n)’s have the same distribution µ,

∞∑
n=1

(φ(n) + βκ(n)) <∞

and all pj ’s are distinct. Then almost surely

limN→∞
1
N
SN = limN→∞

1
N

∑N
n=1 F (X (p1n + q1N),X (p2n + q2N), ...,

X (p`n + q`N)) = F̄ =
∫
F (x1, x2, ..., x`)dµ(x1)dµ(x2)...dµ(x`).
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Applications

Our mixing conditions introduced via dependence coefficients of a two
parameter family of σ-algebras Fkl are suited both for applications to discrete
time stochastic processes and to dynamical systems, the latter having
appropriate symbolic representations. If, say ξk , k ≥ 0 is a Markov chain we
can take σ-algebras Fkl , k ≤ l generated by ξk , ξk+1, ..., ξl and
X (n) = f (ξn, ξn+1, ...) with bounded functions f on the sequence space
sufficiently weakly dependent on tails so that the assumption on the
approximation coefficient β(n) will be satisfied. Then, for instance, under the
Doeblin condition our mixing assumptions will be met.
On the dynamical systems side we can take a subshift of finite type T acting
on a space of sequences with a finite alphabet where the (finite) σ-algebra Fkl

will be generated by cylinder sets with fixed coordinates on places from k to l .
Under the topologically mixing assumption Gibbs shift invariant measures
constructed by Hölder continuous functions will meet our mixing assumptions
and we can set X (n) = f ◦ T n for some Hölder continuous function on the
sequence space. The results remain true for such dynamical systems as Axiom
A diffeomorphisms and expanding transformations which have symbolic
representations as subshifts of finite type via their Markov partitions. The
results are also applicable to some dynamical systems which have symbolic
representations with infinite alphabets such as the Gauss map Tx = 1

x
(mod 1)

which is exponentially fast φ-mixing (even ψ-mixing) with respect to its Gauss
invariant measure G(Γ) = 1

ln 2

∫
Γ

dx
1+x

.
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Ideas of the proof

Without loss of generality assume
F̄ =

∫
F (x1, x2, ..., x`)dµ(x1)dµ(x2)...dµ(x`) = 0. Our goal is to show that

ES4
N ≤ CN2 and then use Borel-Cantelli lemma to have that 1

N
SN → 0 with

probability one. Even estimating ES2
N where we have to study covariances

E
(
F (X (p1n + q1N),X (p2n + q2N), ...,X (p`n + q`N))

×F (X (p1m + q1N),X (p2m + q2N), ...,X (p`m + q`N))
)

the situation is not simple even when X (n)’s are i.i.d. because indexes can
coincide (or be close).
To make things computable we split {1, 2, ...,N} into no more than `!
subintervals Nε,N = {n : aεN < n < bεN} and a set ÑN of cardinality not
exceeding `2 so that if n ∈ Nε,N , ε = (ε1, ..., ε`)) then

pεi (n,N)n + qεi (n,N)N < pεi+1(n,N)n + qεi+1(n,N)N for all i = 1, 2, ..., `− 1.

The following lemma allows an effective use of this splitting with the goal to
make estimates of moments of sums along each interval Nε,N separately.

Lemma

If aεN < n < bεN then

(pεi+1 − pεi )n + (qεi+1 − qεi )N ≥ min(n − aεN − 1, bεN − n − 1).
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Splitting of functions

For each ε = (ε1, ..., ε`)E` we define

F`,ε(xε1 , ..., xε`) = F (x1, ..., x`)−
∫

F (x1, ..., x`)dµ(xε`) and

Fj,ε(xε1 , ..., xεj ) =
∫
F (x1, ..., x`)dµ(xε`)dµ(xε`−1 ) · · · dµ(xεj+1 )

−
∫
F (x1, ..., x`)dµ(xε`) · · · dµ(xεj ).

Observe that EFj,ε(xε1 , ..., xεj−1 , ξ(n)) = 0. For j = 1, ..., ` set

Sj,ε(N) =
∑

n∈Nε,N

Fj,ε

(
ξ(pε1n + qε1N), ξ(pε2n + qε2N), ..., ξ(pεj n + qεjN)

)
.

Then

SN =
∑
ε∈E`

∑̀
j=1

Sj,ε(N) +
∑
n∈N̂N

F (ξ(p1n + q1N), ..., ξ(p`n + q`N)).

It ”remains” to estimate ”easier” covariances of the form

E
(
Fi,ε

(
ξ(pε1m + qε1N), ξ(pε2m + qε2N), ..., ξ(pεim + qεiN))

×Fj,ε

(
ξ(pε1n + qε1N), ξ(pε2n + qε2N), ..., ξ(pεj n + qεjN))

)
.
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Central limit theorem for nonconventional arrays

The next natural question to study is whether N−1/2(SN − F̄ ) =
N−1/2∑N

n=1(F (X (p1n + q1N),X (p2n + q2N), ...,X (p`n + q`N))− F̄ )
converges weakly as N →∞ to a normal distribution. For qi = 0,∀i this is true
(K-Varadhan). It is necessary for such convergence that the variance
N−1Var(SN) = N−1E(SN − F̄ )2 converges as N →∞. It turns out that, in
general, this is not true for the above expressions.
Example Let X (n), n ≥ 0 be i.i.d. with a distribution µ and
SN =

∑N
n=1 F (X (2n + N),X (2N − 2n)) with F (x , y) = F (y , x),∫

F (x , y)dµ(x)dµ(y) = 0 then

lim
N→∞,N odd

1
N
ES2

N =
∫
F 2(x , y)dµ(x)dµ(y) 6= limN→∞,N even

1
N
ES2

N

= 2
∫
F 2(x , y)dµ(x)dµ(y).

Still, we have the following result (which includes
SN =

∑N
n=1(F (X (k(N−n)), ...,X (2(N−n)),X (N−n),X (n),X (2n), ...,X (kn))).

Theorem

Let all X (n) have the same distribution and (X (m),X (n)) ∼ (X (0),X (n−m)).
Assume that each difference qi − qj is divisible by the greatest common divisor
of pi and pj , i , j = 1, 2, ..., ` and, as before, that

∑∞
n=1(φ(n) + βκ(n)) <∞.

Then limN→∞ N−1Var(SN) = σ2 exists and N−1/2(SN − F̄ ) converges in
distribution as N →∞ to the normal random variable with mean 0 and
variance σ2.
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1
N
ES2

N =
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F 2(x , y)dµ(x)dµ(y) 6= limN→∞,N even

1
N
ES2

N

= 2
∫
F 2(x , y)dµ(x)dµ(y).

Still, we have the following result (which includes
SN =

∑N
n=1(F (X (k(N−n)), ...,X (2(N−n)),X (N−n),X (n),X (2n), ...,X (kn))).

Theorem

Let all X (n) have the same distribution and (X (m),X (n)) ∼ (X (0),X (n−m)).
Assume that each difference qi − qj is divisible by the greatest common divisor
of pi and pj , i , j = 1, 2, ..., ` and, as before, that

∑∞
n=1(φ(n) + βκ(n)) <∞.

Then limN→∞ N−1Var(SN) = σ2 exists and N−1/2(SN − F̄ ) converges in
distribution as N →∞ to the normal random variable with mean 0 and
variance σ2.
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Idea of the proof

In the proof we use the splitting/decomposition described earlier, construct
martingale approximations of the sums SN and prove convergence of
covariances. Namely, we study the asymptotical behavior as N →∞ of
covariances

Di,j,ε,ε̃(N) =
1

N
ESi,ε(N)Sj,ε̃(N) =

1

N

∑
m∈Nε,N ,n∈Nε̃,N

bi,j,ε,ε̃(N,m, n)

bi,j,ε,ε̃(N,m, n) = E
(
Yi,ε,ρεi (m,n)Yj,ε̃,ρε̃j

(m,n)

)
, ρεj (n,N) = pεj n + qεjN,

Yj,ε,ρεj (n,N) = Fj,ε(ξ(ρε1 (n,N), ..., ξ(ρεj (n,N)) and Yj,ε,m = 0 if m 6= ρεj (n,N).

We compute limit

lim
N→∞

1

N

∑
aεN<m<bεN,aε̃N<n<bε̃N

bi,j,ε,ε̃(N,m, n).

Actually, we show first that if N →∞,
m − aεN →∞, bεN −m→∞, n − aε̃N →∞, bε̃N − n→∞ and
ρεi (m,N)− ρε̃j (n,N) = pεim − pε̃j n + N(qεi − qε̃j ) = u then bi,j,ε,ε̃(N,m, n)
converges to a limit. After that we will estimate the number of solutions of the
equation

pεim − pε̃j n + N(qεi − qε̃j ) = u

in m ∈ Nε,N and n ∈ Nε̃,N , divide this number by N and show that this ratio
converges to a limit which will give the limit we want. Finally, we just sum in u.
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Poisson limit theorems for nonconventional arrays: i.i.d. case

Classical Poisson theorem can be formulated in the following way: If ξ1, ξ2, ...
are i.i.d. random variables, An is a sequence of sets such that P{ξ1 ∈ An} ↓ 0
and N ∼ λ(P{ξ1 ∈ AN})−1, λ > 0 then SN =

∑N
k=1 IAN (ξk) (IA-indicator of A)

converges in distribution to a Poisson random variable with the parameter λ. It
turns out that for nonconventional arrays (where pj ’s are distinct) we obtain
that when N ∼ λ(P{ξ1 ∈ AN})−` then

SN =
N∑

k=1

∏̀
j=1

IAN (ξpj k+qjN)

may not converge in distribution as n→∞ to a Poisson random variable with
the parameter λ though it was true when all qj ’s vanish. Consider the example

SN =
∑N

n=1 IΓN (ξ(n))IΓN (ξ(N − n))

= 2
∑[N/2]

n=1 IΓN (ξ(n))IΓN (ξ(N − n)) + IΓN (ξ(0))IΓN (ξ(N))− aN

where aN = IΓN (ξ([N/2])) if N is even and aN = 0 if N is odd. If ξ(n)’s have
the same distribution µ and µ(ΓN)→ 0 as N →∞ then both
IΓN (ξ(0))IΓN (ξ(N)) and aN tend to 0 in probability as N →∞. Thus, any limit
in distribution of SN as N →∞ could only be a random variable taking on
even values, and so it cannot have a Poisson distribution.
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Conditions

Assumption

For any nontrivial permutation ζ of ` numbers (1, 2, ..., `) the matrix
(

p1 p2 ... p`
pζ(1) pζ(2) ... pζ(`) ) has rank 2.

Observe that this assumption is satisfied, for instance, when pi > 0 for all
i = 1, ..., `. Indeed, assume as before without loss of generality that
0 < p1 < p2 < ... < p`. If the above matrix has rank 1 for some permutation ζ
then pζ(i) = api , i = 1, ..., ` for some a > 0. But then pζ(1) < pζ(2) < ... < pζ(`),
and so pζ(i) = pi , i = 1, ..., `, i.e. ζ is a trivial permutation.
Next, we consider the case where ξ(n), n ≥ 0 is a stationary sequence of
random variables. Define σ-algebras
Fmn = σ{ξ(m), ξ(m + 1), ..., ξ(n)}, m ≤ n, which is the minimal σ-algebra
such that ξ(m), ξ(m + 1), ..., ξ(n) are all measurable with respect to it. Then
the ψ-dependence (or mixing) coefficient is defined by

ψ(n) = sup
m≥0
{| P(A ∩ B)

P(A)P(B)
− 1| : A ∈ F0,m, B ∈ Fm+n,∞, P(A)P(B) 6= 0}

where Fk,∞ is the minimal σ-algebra containing all Fk,n, n ≥ k. The sequence
ξ(n), n ≥ 0 is called ψ-mixing if

ψ(1) <∞ and lim
n→∞

ψ(n) = 0.
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The result

Theorem

Let ξ(n), n ≥ 0 be a ψ-mixing stationary sequence of random variables such
that each ξ(n) has a distribution µ. Suppose that N ∼ λ(P{ξ1 ∈ ΓN})−` and
Assumption hold true. Then SN converges in distribution as N →∞ to a
Poisson random variable with the parameter λ.

We set

η(N)
n =

∏̀
j=1

IΓN (ξ(pjn + qjN)), n = 1, 2, ...,N

and check conditions of the following old criterion of Sevast’yanov.
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Sevast’yanov’s theorem

Theorem

Let η
(N)
1 , ..., η

(N)
N , N = 1, 2, ... be an array of 0–1 random variables,

Jr (N), r ≤ N be the family of all r -tuples (i1, i2, ..., ir ) of mutually distinct
indices between 1 and N and for any (i1, ..., ir ) ∈ Jr (N) set

b
(N)
i1,...,ir

= P{η(N)
i1

= ... = η
(N)
ir

= 1}. Assume that

lim
N→∞

max
1≤i≤N

b
(N)
i = 0, lim

N→∞

N∑
i=1

b
(N)
i = λ > 0,

for N = 1, 2, ... there exist ”rare” sets Ir (N) ⊂ Jr (N) such that

lim
N→∞

∑
(i1,...,ir )∈Ir (N)

b
(N)
i1...ir

= lim
N→∞

∑
(i1,...,ir )∈Ir (N)

b
(N)
i1
· · · b(N)

ir
= 0

and uniformly in (i1, ..., ir ) ∈ Jr (N) \ Ir (N),

lim
N→∞

b
(N)
i1...ir

(b
(N)
i1
· · · b(N)

ir
)−1 = 1.

Then lim
N→∞

P{
N∑
i=1

η
(N)
i = k} =

λke−λ

k!
, k = 0, 1, 2, ....
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Rare sets and clusters

For any two positive integers l , l̃ set

d(l , l̃) = min
1≤i,j≤`

|pi l − pj l̃ + (qi − qj)N| and a(N) = | lnµ(ΓN)|.

A sequence J = {j1, j2, ..., jl} of distinct positive integers from NN will be called
an N-cluster here if for any j , j̃ ∈ J there exists a chain ji1 , ji2 , ..., jim−1, jim = j̃ of
integers from J such that

d(jik , jik+1 ) ≤ a(N) ∀k = 1, 2, ...,m − 1.

We say that J is a maximal N-cluster in another finite sequence J̃ of distinct
positive integers if J ∪ {j̃} is already not an N-cluster for any j̃ ∈ J̃ \ J. Let
Jr (N) be the set of all r -tuples of mutually distinct indices between 1 and N.
Define rare sets Ir (N) as collections of r -tuples J = (i1, i2, ..., ir ) which either
contains a cluster with more than one element or

imin(J) = min
ε∈E`

min
1≤l≤r, aεN<il<bεN

(il − aεN, bεN − il) ≤ a(N).
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integers from J such that

d(jik , jik+1 ) ≤ a(N) ∀k = 1, 2, ...,m − 1.

We say that J is a maximal N-cluster in another finite sequence J̃ of distinct
positive integers if J ∪ {j̃} is already not an N-cluster for any j̃ ∈ J̃ \ J. Let
Jr (N) be the set of all r -tuples of mutually distinct indices between 1 and N.
Define rare sets Ir (N) as collections of r -tuples J = (i1, i2, ..., ir ) which either
contains a cluster with more than one element or

imin(J) = min
ε∈E`

min
1≤l≤r, aεN<il<bεN

(il − aεN, bεN − il) ≤ a(N).
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Poisson limits for subshifts

Next, we count multiple arrivals to appropriately shrinking cylinders An making
left shifts on a sequence space Ω = {ω = (ωi ), i ≥ 0 : ωi ∈ A} with a finite or
countable alphabet A considering
An(a) = {ω = (ωi ) ∈ Ω : ωj = aj , j = 0, 1, ..., n − 1} where a = (ai ) ∈ Ω is a
fixed sequence and (Tω)i = ωi+1.
Conditioned to the Assumption we prove that

S
An(a)
N (ω) =

N∑
k=1

IAn(a)(T
p1k+q1Nω)IAn(a)(T

p2k+q2Nω) · · · IAn(a)(T
p`k+q`Nω)

will have asymptotically Poisson distribution for
N = Nn ∼ λ(P(An(a)))−` →∞ as n→∞ provided P is ψ-mixing and that the
cylinder An(a) of length n is built by a nonperiodic sequence a. For cylinders
built on periodic points the limit may not exist at all or it could be a compound
Poisson distribution.
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