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I. Random media: microscopic ← macroscopic

Macroscopic: Brownian motion

Figure: Brownian motion (from
scratch.mit.edu/projects/143250914 )

Microscopic: Random walks

diffusion in solid
Figure: Interstitial diffusion in a solid
(from www.doitpoms.ac.uk )
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I. Q1 Brownian motion ← RWRE

Macroscopic:

Brownian motion in Rd with
deterministic “diffusivity matrix”

ā = (āij)1≤i ,j≤d > 0.

Microscopic:

Markov chain in Zd with
random transition probabilities
(called environment/media)
which are possibly degenerate.

Q1: Bt ⇐ Xnt/
√
n ?
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I. Q2 PDE ← Random difference equation

PDE in Rd :

B1 F (x), x ∈ ∂B1

For a deterministic matrix
ā = (āij), consider solution v of
the Dirichlet problem{

Lāv(x) = 0 for x ∈ B1

v(x) = F (x) on ∂B1,

Difference equation in Zd :

OR

F ( x
R ), x ∈ ∂OR

For random matrices a(x) = (aij(x)),{
Lau(x) = 0 in OR

u(x) = F ( x
R ) on ∂OR

Q2: v ⇐ ua,R ?
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Assumptions
1 a(x) ≥ 0, x ∈ Zd are i.i.d. with probability distribution P s.t.

P(tr(a) > 0) = 1.

And, WLOG,
2 E [ai (x)] > 0 for all i . (“genuinely d-dimensional”)
3
∑d

i=1 ai (x) = 1
2 for all x almost surely.

Remarks Usually Assumption 2 is replaced by P(ai (x) > λ,∀i) = 1

If λ > 0, this is called uniformly-elliptic. If λ = 0, elliptic.

Homogenization questions:

There exists ā such that for P-almost all a = {a(x) : x ∈ Zd},

lim
R→∞

max
x∈OR

|ua,R(x)− v( x
R )| = 0?

What is the rate of convergence

P

(
max
x∈OR

|ua,R(x)− v( x
R )| > ε

)
?
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II. Probablistic intepretation: RWRE

Let
a(x , x ± ei ) := ai (x).

This defines a random walk (Xn) with transition law denoted by Pa.

Pa(Xn+1 = x ± ei |Xn = x) = a(x , x ± ei ) = ai (x).

Remark:

Lau(x) =
∑
y :y∼x

a(x , y)[u(y)− u(x)].

When a(x , y) = a(y , x), this is a divergence form model.

We call u a-harmonic if Lau = 0.

Dynkin’s formula.
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II. Rigorous definition of RWRE Q1

Question about the random walk:

Quenched Central Limit Theorem (QCLT)
For P-almost every a,

Xnt√
n
⇒ Brownian motion with deterministic covariance matrix ā?
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Our results

Theorem (homogenization)

For any ε > 0, there exist C = C (ε,P) and δ = δ(P) such that

P

(
max
x∈OR

|ua,R(x)− v( x
R )| > ε

)
≤ Ce−R

δ
.

Main result:

Theorem (Harnack ineq.)

There exist constants C = C (P), δ = δ(P) such that with probability at

least 1− Ce−R
δ
, for any non-negative a-harmonic function f : O2R → R,

max
x∈OR

f ≤ C min
x∈OR

f .
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III. Difficulties

1 local degeneracy

2 lack of connectivity (the most difficult part in our proof)

3 Covering argument will not work
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Figure: (Left) Our environment. (Right) The classical bond percolation.
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Figure: The ”sink” in Z2.
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Ingredients of our proof of the Harnack inequality

Theorem (Percolation)

P(radius of ’holes’ ≥ k) < Ce−ck
α
.

Lemma (Oscillation estimate)

There exist constants 0 < α < 1,C such that with probability at least
1− Ce−R

δ
, for any non-negative a-harmonic function f : O2R → R,

osc
OR

f ≤ α osc
O2R

f .
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