The bulk-edge correspondence for disordered chiral chains

Gian Michele Graf
ETH Zurich

Classical and quantum motion in disordered environment A random event in honour of Ilya Goldsheid's 70-th birthday Queen Mary, University of London, December 18-22, 2017

The bulk-edge correspondence for disordered chiral chains

Gian Michele Graf
ETH Zurich

Classical and quantum motion in disordered environment A random event in honour of Ilya Goldsheid's 70-th birthday Queen Mary, University of London, December 18-22, 2017

Outline

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

Some physics background first How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

The Hall effect (1879)

Hall-Ohm law

$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance
$\sigma_{\mathrm{D}}:$ dissipative conductance, ideally $=0$

Bulk and edge transport

Cyclotron orbit

$$
\begin{aligned}
& \vec{E}=0 \\
& \otimes B
\end{aligned}
$$

Bulk and edge transport

Cyclotron orbit

$$
\begin{aligned}
& \vec{E}=0 \\
& \otimes B
\end{aligned}
$$

For $\vec{E} \neq 0$, two views on transport:

- Occurs throughout the sample (bulk): Cyclotron orbit drifting under a electric field \vec{E}

Bulk and edge transport

Cyclotron orbit

$$
\begin{aligned}
& \vec{E}=0 \\
& \otimes B
\end{aligned}
$$

For $\vec{E} \neq 0$, two views on transport:

- Occurs throughout the sample (bulk): Cyclotron orbit drifting under a electric field \vec{E}

- Occurs along the edges: Skipping orbits

Bulk and edge transport

Cyclotron orbit

$$
\begin{aligned}
& \vec{E}=0 \\
& \otimes B
\end{aligned}
$$

For $\vec{E} \neq 0$, two views on transport:

- Occurs throughout the sample (bulk): Cyclotron orbit drifting under a electric field \vec{E}

$\otimes B$

- Occurs along the edges: Skipping orbits

Two views: Complementary, but coexisting.

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance
$\sigma_{\mathrm{D}}:$ dissipative conductance, ideally $=0$

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance $\sigma_{\mathrm{D}}:$ dissipative conductance, ideally $=0$

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$
\vec{\jmath}=\underline{\sigma} \vec{E}, \quad \underline{\sigma}=\left(\begin{array}{cc}
\sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\
-\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}}
\end{array}\right)
$$

σ_{H} : Hall conductance σ_{D} : dissipative conductance, ideally $=0$

Width of plateaus increases with disorder

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- Hall conductance $\sigma_{\mathrm{H}}(\mu)$ is constant for μ in a Mobility Gap

Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

μ : Fermi energy

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- Hall conductance $\sigma_{\mathrm{H}}(\mu)$ is constant for μ in a Mobility Gap

Plateaus arise because of a Mobility Gap only!

The role of disorder

The spectrum of a single-particle Hamiltonian

μ : Fermi energy

- For a periodic (crystalline) medium:
- Method of choice: Bloch theory and vector bundles (Thouless et al.)
- Gap is spectral
- For a disordered medium:
- Method of choice: Non-commutative geometry (Bellissard; Avron et al.)
- Fermi energy may lie in a spectral gap or (better, and more generally) in a mobility gap.

Mobility gap, technically speaking

Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$

$P_{\mu}=I_{(-\infty, \mu)}(H)$: Fermi projection

$$
\mu
$$

Mobility gap, technically speaking

Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
$P_{\mu}=I_{(-\infty, \mu)}(H)$: Fermi projection

Assumption (Localization holds at Fermi energy). Fermi projection has strong off-diagonal decay:

$$
P_{\mu}\left(x, x^{\prime}\right) \lesssim \mathrm{e}^{-\nu\left|x-x^{\prime}\right|} \quad\left(x, x^{\prime} \in \mathbb{Z}^{d}\right)
$$

(some $\nu>0$)

Mobility gap, technically speaking

Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
$P_{\mu}=I_{(-\infty, \mu)}(H)$: Fermi projection

Assumption (Localization holds at Fermi energy). Fermi projection has strong off-diagonal decay:

$$
\sup _{x^{\prime} \in \mathbb{Z}^{d}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x \in \mathbb{Z}^{d}} \mathrm{e}^{\nu\left|x-x^{\prime}\right|}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$)

Mobility gap, technically speaking

Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$

$$
P_{\mu}=I_{(-\infty, \mu)}(H) \text { : Fermi projection }
$$

Assumption (Localization holds at Fermi energy). Fermi projection has strong off-diagonal decay:

$$
\sup _{x^{\prime} \in \mathbb{Z}^{d}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x \in \mathbb{Z}^{d}} \mathrm{e}^{\nu\left|x-x^{\prime}\right|}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$)

- Proven in (virtually) all cases where localization is known.
- Trivially false for extended states at $E=\mu$.

Mobility gap, technically speaking

Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}\right)$
$P_{\mu}=I_{(-\infty, \mu)}(H)$: Fermi projection

Assumption (Localization holds at Fermi energy). Fermi projection has strong off-diagonal decay:

$$
\sup _{x^{\prime} \in \mathbb{Z}^{d}} \mathrm{e}^{-\varepsilon\left|x^{\prime}\right|} \sum_{x \in \mathbb{Z}^{d}} \mathrm{e}^{\nu\left|x-x^{\prime}\right|}\left|P_{\mu}\left(x, x^{\prime}\right)\right|<\infty
$$

(some $\nu>0$, all $\varepsilon>0$)
Assumption $\mathcal{P}_{\mu}:=I_{\{\mu\}}(H)=0$

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open
Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open
Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
- Analogy: torus \neq sphere (differ by genus)

Topological insulators: definition stated

- Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy μ

- Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open
Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
- Analogy: torus \neq sphere (differ by genus)
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations.

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

Bulk-edge correspondence

Recall: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and respecting symmetries

Bulk-edge correspondence

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.

Bulk-edge correspondence

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator \rightsquigarrow void: Edge states

Bulk-edge correspondence

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator \rightsquigarrow void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states.

Bulk-edge correspondence

Deformation as interpolation in physical space:

- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator \rightsquigarrow void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states. (But not conversely!)

Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Goal: State the (intrinsic) topological property distinguishing different classes of insulators.
More precisely:

Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Goal: State the (intrinsic) topological property distinguishing different classes of insulators.
More precisely:
- Express that property as an Index relating to the Bulk, resp. to the Edge.

Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Goal: State the (intrinsic) topological property distinguishing different classes of insulators.
More precisely:
- Express that property as an Index relating to the Bulk, resp. to the Edge.
- Bulk-edge duality: Can it be shown that the two indices agree? Can it be shown even in presence of just a mobility gap?

Some physics background first
How it all began: Quantum Hall systems Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

The periodic table of topological matter

Symmetry				d							
Class	Θ	Σ	\square	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
Alll	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
ClI	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Notation:
Θ time-reversal Σ charge conjugation
Π combined

The periodic table of topological matter

Symmetry				d							
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	Z	0	\mathbb{Z}
Alll	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

First version: Schnyder et al.; then Kitaev based on Altland-Zirnbauer; based on Bloch theory

The periodic table of topological matter

Symmetry				d										
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8			
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}			
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0			
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}			
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}			
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0			
AII	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}			
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0			
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0			
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0			

By now: Non-commutative (bulk) index formulae have been found in many cases (Prodan, Schulz-Baldes)

Special case to be considered

Symmetry				d							
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	Z	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Special case to be considered

Symmetry				d							
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	Z	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Does the table survive disorder?

Special case to be considered

Symmetry				d							
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
Alll	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Class A: Anderson localization (no topology)

Special case to be considered

Symmetry				d							
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	Z	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	1	0	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII	-1	1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
Cl	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0

Class A: Anderson localization (no topology)
Class AIII: Anderson localization, except possibly at one energy (topology rescued; by llya's methods)

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

Some physics background first
How it all began: Quantum Hall systems Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

An experiment: Amo et al.

Figure: Zigzag chain of coupled micropillars and lasing modes

An experiment: Amo et al.

Figure: Lasing modes: bulk and edge

Some physics background first
How it all began: Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

The Su-Schrieffer-Heeger model (1 dimensional)

Alternating chain with nearest neighbor hopping

The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

Hilbert space: sites arranged in dimers

$$
\mathcal{H}=\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{N}\right) \otimes \mathbb{C}^{2} \ni \psi=\binom{\psi_{n}^{+}}{\psi_{n}^{-}}_{n \in \mathbb{Z}}
$$

Hamiltonian

$$
H=\left(\begin{array}{ll}
0 & S^{*} \\
S & 0
\end{array}\right)
$$

with S, S^{*} acting on $\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{N}\right)$ as

$$
\left(S \psi^{+}\right)_{n}=A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}, \quad\left(S^{*} \psi^{-}\right)_{n}=A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}
$$

$\left(A_{n}, B_{n} \in \mathrm{GL}(N)\right.$ almost surely)

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
\boldsymbol{H} \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
H \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Energy $\lambda=0$ is special:

- Eigenprojection $\mathcal{P}_{0}:=I_{\{0\}}(H)$ has $\left[\mathcal{P}_{0}, \Pi\right]=0$

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
H \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Energy $\lambda=0$ is special:

- Eigenprojection $\mathcal{P}_{0}:=I_{\{0\}}(H)$ has $\left[\mathcal{P}_{0}, \Pi\right]=0$ Eigenspace ran \mathcal{P}_{0} invariant under Π

Chiral symmetry

$$
\begin{gathered}
\Pi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\{H, \Pi\} \equiv H \Pi+\Pi H=0
\end{gathered}
$$

hence

$$
H \psi=\lambda \psi \quad \Longrightarrow \quad H(\Pi \psi)=-\lambda(\Pi \psi)
$$

Energy $\lambda=0$ is special:

- Eigenprojection $\mathcal{P}_{0}:=I_{\{0\}}(H)$ has $\left[\mathcal{P}_{0}, \Pi\right]=0$ Eigenspace ran \mathcal{P}_{0} invariant under Π

- Eigenvalue equation $\boldsymbol{H} \psi=\lambda \psi$ is $\boldsymbol{S} \psi^{+}=\lambda \psi^{-}, \boldsymbol{S}^{*} \psi^{-}=\lambda \psi^{+}$, i.e.

$$
A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=\lambda \psi_{n}^{-}, \quad A_{n+1}^{*} \psi_{n+1}^{-}+B_{n}^{*} \psi_{n}^{-}=\lambda \psi_{n}^{+}
$$

is one 2nd order difference equation, but two 1 st order for $\lambda \equiv 0$

Bulk index

Let

$$
\Sigma=\operatorname{sgn} H
$$

Definition. The Bulk index is

$$
\mathcal{N}=\frac{1}{2} \operatorname{tr}(\Pi \Sigma[\Lambda, \Sigma])
$$

with $\Lambda=\Lambda(n)$ a switch function (cf. Prodan et al.)

Bulk index

Let

$$
\Sigma=\operatorname{sgn} H
$$

Definition. The Bulk index is

$$
\mathcal{N}=\frac{1}{2} \operatorname{tr}(\Pi \Sigma[\Lambda, \Sigma])
$$

with $\Lambda=\Lambda(n)$ a switch function (cf. Prodan et al.)

Equivalently

$$
-\mathcal{N}=\operatorname{tr}\left(\Pi P_{+}\left[\Lambda, P_{-}\right]\right)+\operatorname{tr}\left(\Pi P_{-}\left[\Lambda, P_{+}\right]\right)
$$

using $P_{+}:=I_{(0,+\infty)}, P_{-}:=I_{(-\infty, 0)}$ and $\Sigma=P_{+}-P_{-}$

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.
Eigenspace ran $\mathcal{P}_{0, a}$ invariant under Π.

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.
Eigenspace ran $\mathcal{P}_{0, a}$ invariant under Π.

$$
\mathcal{N}_{a}^{ \pm}:=\operatorname{dim}\left\{\psi \mid H_{a} \psi=0, \Pi \psi= \pm \psi\right\}
$$

Edge Hamiltonian and index

Edge Hamiltonian H_{a} defined by restriction to $n \leq a$ (Dirichlet boundary condition $\psi_{a+1}^{-}=0$). Chiral symmetry preserved.
Eigenspace ran $\mathcal{P}_{0, a}$ invariant under Π.

$$
\mathcal{N}_{a}^{ \pm}:=\operatorname{dim}\left\{\psi \mid H_{a} \psi=0, \Pi \psi= \pm \psi\right\}
$$

Definition. The Edge index is

$$
\mathcal{N}_{a}=\mathcal{N}_{a}^{+}-\mathcal{N}_{a}^{-}=\operatorname{tr}\left(\Pi \mathcal{P}_{0, a}\right)
$$

and can be shown to be independent of a. Call it \mathcal{N}^{\sharp}.

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$.

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)
Lyapunov spectrum of the full chain has $2 N$ exponents, spectrum is even ($N=4$)

- at energy $\lambda \neq 0$ (simple spectrum)

- Spectrum is simple because measure on transfer matrices is irreducible (cf. Goldsheid-Margulis)
- so $\gamma=0$ is not in the spectrum; localization follows

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)
Lyapunov spectrum of the full chain has $2 N$ exponents, spectrum is even ($N=4$)

- at energy $\lambda \neq 0$ (simple spectrum)

- At $\lambda=0$ chains decouple: $\mathbb{C}^{N} \oplus 0$ and $0 \oplus \mathbb{C}^{N}$ are invariant subspaces

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$
\mathcal{N}=\mathcal{N}^{\sharp}
$$

Remark. Consider the dynamical system $A_{n} \psi_{n-1}^{+}+B_{n} \psi_{n}^{+}=0$ with Lyaponov exponents

$$
\gamma_{1} \geq \ldots \geq \gamma_{N}
$$

The assumption is satisfied if $\gamma_{i} \neq 0$; then $\mathcal{N}^{\sharp}=\sharp\left\{i \mid \gamma_{i}>0\right\}$. Phase boundaries correspond to $\gamma_{i}=0$ (cf. Prodan et al.)
Lyapunov spectrum of the full chain has $2 N$ exponents, spectrum is even ($N=4$)

- at energy $\lambda \neq 0$ (simple spectrum)

- of the upper $(+)$ and lower (-) chains, at energy $\lambda=0$

- at energy $\lambda=0$ (phase boundary)

Proof of duality

Recall $\mathcal{N}_{a}=\operatorname{tr}\left(\Pi \mathcal{P}_{0, a}\right)$

Proof of duality

Recall $\mathcal{N}_{a}=\operatorname{tr}\left(\Pi \mathcal{P}_{0, a}\right)$
Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge \mathcal{P}_{0, a}\right)
$$

Proof of duality

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge \mathcal{P}_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\operatorname{tr}(\Pi \Lambda)=N \cdot\left(\sum_{n \leq a} \Lambda(n)\right) \operatorname{tr}_{\mathbb{C}^{2}} \Pi=0
$$

though $\|\Pi \Lambda\|_{1}=\|\Lambda\|_{1} \rightarrow \infty,(a \rightarrow+\infty)$

Proof of duality

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\sqcap \wedge \mathcal{P}_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\begin{gathered}
\operatorname{tr}(\Pi \wedge)=0 \\
\operatorname{tr}(\Pi \Lambda)=\operatorname{tr}\left(\Pi \wedge \mathcal{P}_{0, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right)
\end{gathered}
$$

Proof of duality

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge \mathcal{P}_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\begin{gathered}
\operatorname{tr}(\Pi \wedge)=0 \\
\operatorname{tr}(\Pi \Lambda)=\operatorname{tr}\left(\Pi \wedge \mathcal{P}_{0, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right) \\
\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)=\operatorname{tr}\left(P_{+, a} \Pi \Lambda P_{+, a}\right)=\operatorname{tr}\left(\Pi P_{-, a} \Lambda P_{+, a}\right) \\
=\operatorname{tr}\left(\Pi P_{-, a}\left[\Lambda, P_{+, a}\right]\right)
\end{gathered}
$$

Proof of duality

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge \mathcal{P}_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\begin{gathered}
\operatorname{tr}(\Pi \wedge)=0 \\
\operatorname{tr}(\Pi \Lambda)=\operatorname{tr}\left(\Pi \wedge \mathcal{P}_{0, a}\right)+\operatorname{tr}\left(\Pi \Lambda P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right) \\
\operatorname{tr}\left(\Pi \wedge P_{+, a}\right)=\operatorname{tr}\left(P_{+, a} \Pi \Lambda P_{+, a}\right)=\operatorname{tr}\left(\Pi P_{-, a} \Lambda P_{+, a}\right) \\
=\operatorname{tr}\left(\Pi P_{-, a}\left[\Lambda, P_{+, a}\right]\right) \rightarrow \operatorname{tr}\left(\Pi P_{-}\left[\Lambda, P_{+}\right]\right) \quad(a \rightarrow+\infty)
\end{gathered}
$$

Proof of duality

Lemma. The common value of \mathcal{N}_{a} is

$$
\mathcal{N}^{\sharp}=\lim _{a \rightarrow+\infty} \operatorname{tr}\left(\Pi \wedge \mathcal{P}_{0, a}\right)
$$

Proof of Theorem. On the Hilbert space \mathcal{H}_{a} corresponding to $n \leq a$

$$
\operatorname{tr}(\Pi \wedge)=0
$$

So,

$$
\operatorname{tr}(\Pi \Lambda)=\underbrace{\operatorname{tr}\left(\Pi \wedge \mathcal{P}_{0, a}\right)}_{\rightarrow \mathcal{N}^{\sharp}}+\underbrace{\operatorname{tr}\left(\Pi \Lambda P_{+, a}\right)+\operatorname{tr}\left(\Pi \wedge P_{-, a}\right)}_{\rightarrow \operatorname{tr}\left(\Pi P_{-}\left[\Lambda, P_{+}\right]\right)+\operatorname{tr}\left(\Pi P_{+}\left[\Lambda, P_{-}\right]\right)=-\mathcal{N}}
$$

q.e.d.

Some physics background first
How it all began: Quantum Hall systems Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Chiral systems
An experiment
A chiral Hamiltonian and its indices
Special cases

Special case I: Spectral gap

S and S_{a} are Fredholm

- Bulk

$$
\mathcal{N}=\operatorname{tr} U^{*}[\Lambda, U]
$$

with polar decomposition $S=U|S|$.

Special case I: Spectral gap

S and S_{a} are Fredholm

- Bulk

$$
\mathcal{N}=\operatorname{tr} U^{*}[\Lambda, U]
$$

with polar decomposition $S=U|S|$.

- Edge

$$
\mathcal{N}_{a}=\operatorname{dim} \operatorname{ker} S_{a}-\operatorname{dim} \operatorname{ker} S_{a}^{*}=\operatorname{ind} S_{a}
$$

Special case I: Spectral gap

S and S_{a} are Fredholm

- Bulk

$$
\mathcal{N}=\operatorname{tr} U^{*}[\Lambda, U]
$$

with polar decomposition $S=U|S|$.

- Edge

$$
\mathcal{N}_{a}=\operatorname{dim} \operatorname{ker} S_{a}-\operatorname{dim} \operatorname{ker} S_{a}^{*}=\operatorname{ind} S_{a}
$$

- Equality. Let $\iota_{a}: \ell^{2}(\{n \in \mathbb{Z} \mid n \leq a\}) \hookrightarrow \ell^{2}(\mathbb{Z})$ (isometric embedding). Then $1-\iota_{a} \iota_{a}^{*}=\Lambda$ is switch function.

Special case I: Spectral gap

S and S_{a} are Fredholm

- Bulk

$$
\mathcal{N}=\operatorname{tr} U^{*}[\Lambda, U]
$$

with polar decomposition $S=U|S|$.

- Edge

$$
\mathcal{N}_{a}=\operatorname{dim} \operatorname{ker} S_{a}-\operatorname{dim} \operatorname{ker} S_{a}^{*}=\operatorname{ind} S_{a}
$$

- Equality. Let $\iota_{a}: \ell^{2}(\{n \in \mathbb{Z} \mid n \leq a\}) \hookrightarrow \ell^{2}(\mathbb{Z})$ (isometric embedding). Then $1-\iota \iota_{a}^{*}=\Lambda$ is switch function.

$$
\mathcal{N}=\operatorname{ind} \iota_{a}^{*} U_{\iota_{a}} \quad \mathcal{N}_{a}=\operatorname{ind} \iota_{a}^{*} S \iota_{a}
$$

Interpolation between 1 and $|S|$ gives $\mathcal{N}=\mathcal{N} a$

Special case I: Spectral gap

S and S_{a} are Fredholm

- Bulk

$$
\mathcal{N}=\operatorname{tr} U^{*}[\Lambda, U]
$$

with polar decomposition $S=U|S|$.

- Edge

$$
\mathcal{N}_{a}=\operatorname{dim} \operatorname{ker} S_{a}-\operatorname{dim} \operatorname{ker} S_{a}^{*}=\operatorname{ind} S_{a}
$$

- Equality. Let $\iota_{a}: \ell^{2}(\{n \in \mathbb{Z} \mid n \leq a\}) \hookrightarrow \ell^{2}(\mathbb{Z})$ (isometric embedding). Then $1-\iota \iota_{a}^{*}=\Lambda$ is switch function.

$$
\mathcal{N}=\operatorname{ind} \iota_{a}^{*} U_{\iota_{a}} \quad \mathcal{N}_{a}=\operatorname{ind} \iota_{a}^{*} S \iota_{a}
$$

Interpolation between 1 and $|S|$ gives $\mathcal{N}=\mathcal{N} a$
(General case is index theorem for non-Fredholm operator S_{a})

Special case II: Translation invariant case

- Bulk: $S=\oint^{\oplus} d k S(k)$

$$
\mathcal{N}=\frac{i}{2 \pi} \oint d k \operatorname{tr} U(k)^{*} \partial_{k} U(k)
$$

Special case II: Translation invariant case

- Bulk: $S=\oint^{\oplus} d k S(k)$

$$
\mathcal{N}=\frac{i}{2 \pi} \oint d k \operatorname{tr} U(k)^{*} \partial_{k} U(k)
$$

- Edge: Eigenstates of translation operator are of the form $\psi_{n-1}=z \psi_{n}$; decaying at $n \rightarrow-\infty$ for $|z|<1$.

$$
(S \psi)_{n}=S(z) \psi_{n} \quad S(z): \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}
$$

Special case II: Translation invariant case

- Bulk: $S=\oint^{\oplus} d k S(k)$

$$
\mathcal{N}=\frac{i}{2 \pi} \oint d k \operatorname{tr} U(k)^{*} \partial_{k} U(k)
$$

- Edge: Eigenstates of translation operator are of the form $\psi_{n-1}=z \psi_{n}$; decaying at $n \rightarrow-\infty$ for $|z|<1$.

$$
(S \psi)_{n}=S(z) \psi_{n} \quad S(z): \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}
$$

Solutions to $S_{a} \psi=0 \leftrightarrow$ zeroes of $(z \mapsto \operatorname{det} S(z))$

Special case II: Translation invariant case

- Bulk: $S=\oint^{\oplus} d k S(k)$

$$
\mathcal{N}=\frac{i}{2 \pi} \oint d k \operatorname{tr} U(k)^{*} \partial_{k} U(k)
$$

- Edge: Eigenstates of translation operator are of the form $\psi_{n-1}=z \psi_{n}$; decaying at $n \rightarrow-\infty$ for $|z|<1$.

$$
(S \psi)_{n}=S(z) \psi_{n} \quad S(z): \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}
$$

Solutions to $S_{a} \psi=0 \leftrightarrow$ zeroes of $(z \mapsto \operatorname{det} S(z))$

- Equality: $\left(z=\mathrm{e}^{-\mathrm{i} k}\right)$

$$
\mathcal{N}=\frac{\mathrm{i}}{2 \pi} \oint \frac{d \operatorname{det} U(k)}{\operatorname{det} U(k)}=\frac{1}{2 \pi \mathrm{i}} \oint \frac{d \operatorname{det} S(z)}{\operatorname{det} S(z)}=\mathcal{N}_{a}
$$

by argument principle.

Summary

Elementary methods used to establish bulk-edge correspondence in simple models of topological insulators in presence of a mobility gap

Summary

Elementary methods used to establish bulk-edge correspondence in simple models of topological insulators in presence of a mobility gap

Thank you for your attention!

Best wishes, Ilya!

