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The Hall effect (1879)
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Bulk and edge transport
Cyclotron orbit

For E # 0, two views on transport:
» Occurs throughout the sample (bulk): Cyclotron orbit drifting
under a electric field E

ST

J
® B —_

» Occurs along the edges: Skipping orbits
e /\\*

Two views: Complementary, but coexisting.



The experiment (von Klitzing, 1980)
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The experiment (von Klitzing, 1980)

Hall-Ohm law
7= O‘E o= < ob o >

—O0OH 0D

on: Hall conductance
op: dissipative conductance, ideally = 0

oH -7 experimental curve
[€2/h] = 1/243 s
L "~ quantized plateaus
14 ".classical curve
/ \—/ \—/ \ n
oD

Width of plateaus increases with disorder
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The spectrum of a single-particle Hamiltonian
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The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
' localized states (pure point spectrum)
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» (integrated) density of states n(u) is constant for n in a Spectral
Gap, and strictly increasing otherwise
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Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
' localized states (pure point spectrum)

5

o
B KX XX X KK

Spectral Gap
Mobility Gap

,uf Fermi energy

» (integrated) density of states n(u) is constant for n in a Spectral
Gap, and strictly increasing otherwise
» Hall conductance oy() is constant for p in a Mobility Gap

e
.

O'H(n)

n

Plateaus arise because of a Mobility Gap only!



The role of disorder
The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
localized states (pure point spectrum)

~
XXX XX X KK

Spectral Gap
Mobility Gap

;L: Fermi energy

» For a periodic (crystalline) medium:
» Method of choice: Bloch theory and vector bundles (Thouless et
al.)
» Gap is spectral
» For a disordered medium:
» Method of choice: Non-commutative geometry (Bellissard; Avron
etal.)
» Fermi energy may lie in a spectral gap or (better, and more
generally) in a mobility gap.



Mobility gap, technically speaking

Hamiltonian H on ¢2(Z9)

P, = l—o,)(H): Fermi projection

1%



Mobility gap, technically speaking
Hamiltonian H on ¢2(Z9)
P. = l—oo,,)(H): Fermi projection

PRPOEK —_

1%

Assumption (Localization holds at Fermi energy). Fermi projection
has strong off-diagonal decay:

P.(x,x') e X1 (x,x" € 29)

(some v > 0)



Mobility gap, technically speaking

Hamiltonian H on ¢2(Z9)
P, = l—oo,,)(H): Fermi projection

PPORK —

0

Assumption (Localization holds at Fermi energy). Fermi projection
has strong off-diagonal decay:

sup e <1y " e X P (x, x')| < o0
x'ezd xezd

(some v > 0,alle > 0)



Mobility gap, technically speaking

Hamiltonian H on ¢2(Z9)
P, = l—oo,,)(H): Fermi projection

PPORK —

!

Assumption (Localization holds at Fermi energy). Fermi projection
has strong off-diagonal decay:

sup e X1y " X P (x, X' < o0
x'ezd xezd
(some v >0, alle > 0)
» Proven in (virtually) all cases where localization is known.
» Trivially false for extended states at E = u.



Mobility gap, technically speaking

Hamiltonian H on ¢2(Z9)
P, = l—oo,,)(H): Fermi projection

PPORK —

0

Assumption (Localization holds at Fermi energy). Fermi projection
has strong off-diagonal decay:

sup e <1y " e X P (x, x')| < o0

’ d
X' eV xezd

(some v > 0,alle > 0)
Assumption P, := Ir,,(H) =0
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For independent electrons: spectral gap at Fermi energy u
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Topological insulators: definition stated

» Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy u

" - E
» Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open
Ordinary insulator: Can be deformed to the limit of
well-separated atoms (or void)

» Analogy: torus # sphere (differ by genus)

» Refinement: The Hamiltonians enjoy a symmetry which is preserved
under deformations.
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Bulk-edge correspondence

Recall: In the space of Hamiltonians, a topological insulator can not
be deformed in an ordinary one, while keeping the gap open and
respecting symmetries
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» Gap must close somewhere in between
at Fermi energy.
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Bulk-edge correspondence

Deformation as interpolation in physical space:

topological insulator interpolating material void

» Gap must close somewhere in between. Hence: Interface states
at Fermi energy.

» Ordinary insulator ~ void: Edge states

» Bulk-edge correspondence: Termination of bulk of a topological
insulator implies edge states. (But not conversely!)
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Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies
edge states
» Goal: State the (intrinsic) topological property distinguishing
different classes of insulators.
More precisely:
» Express that property as an Index relating to the Bulk, resp. to
the Edge.
» Bulk-edge duality: Can it be shown that the two indices agree?
Can it be shown even in presence of just a mobility gap?
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The periodic table of topological matter

Symmetry d
Class | © ¥ M| 1 2 3 4 5 6 7 8
A o o oj0O zZ O Z 0 Z 0 =z
Alll o o 1|z 0 zZ 0 Z 0 Z O
Al 1 0 0,0 O O Z O Zo Zo Z
BDI 1 1 11Z 0 0 0 Z 0 Zo Zo
D 0O 1 0|Z, z 0O O O Z 0 Zs
pm {1 1 1|2, Z» Z 0 0 O Z O
All -1 0 0|0 Zo Zo Z 0 O O Z
Cll -1 1 11 Z 0 Zo Zo Z 0 0 O
C 0O -1t 0|0 Z 0 Zo Zo Z 0 O
Cl 1 1 1,0 0 Z 0 Zo Zo Z O
Notation:
© time-reversal ¥ charge conjugation M combined




The periodic table of topological matter

Symmetry d

Class|lo » n|1 2 3 4 5 6 7 8
A o 0 00 Z O Z 0 Z 0 Z
Al 10O 0 12z 0 Z 0 zZ 0 Z O
Al i 0 0|0 O O Z 0 Zo Zp Z
BDI /1 1 1]Z 0 0 0 Z 0 Z Zo
D 0 1 0({Z, z 0O O O Z 0 Z
pum (-1 1 1\%Z, Z Z 0 0O O Z O
Al |1 0 0|0 Zy Z, Z 0 0 0 Z
ch |1 1 1,%Z 0 Z, Z, Z 0 0 O
C 0O -1t 0|0 Z 0 Zy Zp Z 0 O
Cl i 1 1,0 0 Z 0 Zx Zo 7Z O

First version: Schnyder et al.; then Kitaev based on
Altland-Zirnbauer; based on Bloch theory




The periodic table of topological matter

Symmetry d

Class|© ¥ nj1 2 3 4 5 6 7 8
A o 0o 0|0 Z 0 Z 0 zZ 0 Z
Al {10 0 1,2z 0 zZ 0 Z 0 7Z O
Al 1 0 0|0 O O Z 0 Zp Zp Z
BDI |1 1 1|2Z 0 0 0 Z 0 Zo Zo
D 0O 1 0|Z, z 0 O O Z 0 Z
pm |-+ 1 1%, Zo Z 0 0 0 Z O
Al |-1 0 0|0 Z Zo Z 0 0 0 Z
ch |1 1 1,72 0 Z Zo Z 0 0 O
C 0O 1 0|0 Z 0 Zo Zp Z 0 O
Cl i 1 1,0 0 Z 0 Zo Zo 7Z O

By now: Non-commutative (bulk) index formulae have been found in
many cases (Prodan, Schulz-Baldes)



Special case to be considered
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Special case to be considered

Symmetry d

Class|©o ¥ n|{1 2 3 4 5 6 7 8
A O 0 0j]0 Z 0O Z 0 Z 0 Z
Al 10O 0 1|2z 0 Z 0 zZ 0 Z 0
Al |1 0 0[0 0 O Z 0 Z Zy Z
BDI |1 1 1]Z 0 0 0 Z 0 Z» Zs
D 0 1 0|Z, z 0 0 O Z 0 Z
pum (-1 1 1\%2, Zo Z 0 0 0 Z O
Al |1 0 0|0 Zo Z, Z 0O 0 0 Z
ch |1 1 1, 7Z 0 Zp Zo Z 0 0 O
C 0O -1t 0|0 Z 0 Zy Zp Z 0 O
Cl i1 1 110 0 Z 0 Zo Zo 7Z O

Does the table survive disorder?




Special case to be considered
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Class|© ¥ nj{1 2 3 4 5 6 7 8
A 0O 0o 0|0 Z O Z 0 zZ 0 Z
Al fO 0 12z 0 zZ 0 Z 0 7Z O
Al 1 0 0|0 O O Z 0 Zo Zo 7
BDI |1 1 1|2Z 0 0 0 Z 0 Zo Zo
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chm |1 1 1,72 0 Z, Zo Z 0 0 O
C 0O 1 0|0 Z 0 Zo Zp Z 0 O
Cl i 1 1,0 0 Z 0 Zo Zo 7Z O

Class A: Anderson localization (no topology)




Special case to be considered

Symmetry d

Class|© ¥ nj{1 2 3 4 5 6 7 8
A 0O 0o 0|0 Z O Z 0 zZ 0 Z
Al fO 0 12z 0 zZ 0 Z 0 7Z O
Al 1 0 0|0 O O Z 0 Zo Zo 7
BDI |1 1 1|2Z 0 0 0 Z 0 Zo Zo
D 0O 1 0|Z, z 0 0O 0 zZ 0 Z
pm |-t 1 1%, Zo Z 0 0 0 Z O
Al |-1 0 0|0 Z Zo Z 0O 0 0 Z
chm |1 1 1,72 0 Z, Zo Z 0 0 O
C 0O 1 0|0 Z 0 Zo Zp Z 0 O
Cl i 1 1,0 0 Z 0 Zo Zo 7Z O

Class A: Anderson localization (no topology)
Class Alll: Anderson localization, except possibly at one energy
(topology rescued; by llya’s methods)
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An experiment: Amo et al.

2 T |sband

Momentum k (r/a)

S-band

Figure: Zigzag chain of coupled micropillars and lasing modes

N



An experiment: Amo et al.
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Figure: Lasing modes:

(a)
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Some physics background first

Chiral systems

A chiral Hamiltonian and its indices



The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

¢n1
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The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

wn 1
n+1
Hilbert space: sites arranged in dimers

H=—P2,CN) 225 — ( Un )
nez

Un
0o S
(s %)
with S, S* acting on ¢?(Z,CN) as
(Sy™)n = AnT/’,J»,rq + By, (SY7)n = An1¥pg + Boton
(An, By € GL(N) almost surely)

Hamiltonian



Chiral symmetry

10
(o )
(HN}=HN+NH=0

hence

Hp =Xy = H[p) = -A(MNy)
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Chiral symmetry

1 0
(o0 &)
{H,N}=HN+NH=0
hence
HYy =X = H([Y) = —A(My)
Energy A = 0 is special:
» Eigenprojection Py := ;o1 (H) has [Py, M] = 0
Eigenspace ran Py invariant under 1

Yo vy Yo
\/%ﬁ\w/n\/
» Eigenvalue equation Hy = i is Syt = \p—, S*~ = Ay, i.e.
A+ Bt = Xy, Al + By = M

is one 2nd order difference equation, but two 1st order for A =0



Bulk index

Let
Y =sgnH

Definition. The Bulk index is

’
N = 5 tr(NE[A, X))

with A = A(n) a switch function (cf. Prodan et al.)
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Bulk index
Let
Y =sgnH
Definition. The Bulk index is

N = %tr(nz[/\,Z]) A(X)t

X
with A = A(n) a switch function (cf. Prodan et al.)

Equivalently
=N =tr(NPLA, P_]) + tr(NP_[A, P4])

using Py := o 4o0)s P- := [—oc0)@nd & = P, — P_



Edge Hamiltonian and index

JF
a—1 1/};_

wa_ /(/7;+1 =0

Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.
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Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.

Eigenspace ran Py 4 invariant under I1.



Edge Hamiltonian and index

+ +
R a—1 a
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Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.

Eigenspace ran Py 4 invariant under I1.

N5 =dim{y | Hap = 0,y = b}



Edge Hamiltonian and index

+ +
R a—1 a
\\\\ /\17D_/ /O\//,
a Var1 =

Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.

Eigenspace ran Py 4 invariant under I1.
N5 =dim{y | Hap = 0,y = b}
Definition. The Edge index is
Na =N — Nz =1tr(NPy4)

and can be shown to be independent of a. Call it V%,
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Bulk-edge duality
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then
N =N*

Remark. Consider the dynamical system Apy}  + Bt = 0 with
Lyaponov exponents

M= 2N
The assumption is satisfied if 7; # 0; then N* = #{i | 7; > 0}. Phase
boundaries correspond to v; = 0 (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is

even (N =4)
» at energy A # 0 (simple spectrum)
——0—0 00— —0 00—
0

» Spectrum is simple because measure on transfer matrices is
irreducible (cf. Goldsheid-Margulis)
» s0 v = 0is not in the spectrum; localization follows



Bulk-edge duality
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then
N =N*

Remark. Consider the dynamical system Apy}  + Bt = 0 with
Lyaponov exponents

M= 2N
The assumption is satisfied if 7; # 0; then N* = #{i | 7; > 0}. Phase
boundaries correspond to v; = 0 (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is

even (N =4)
» at energy A # 0 (simple spectrum)
——0—0 00— —0 00—
0

» At \ = 0 chains decouple: CN @ 0 and 0 @ CV are invariant
subspaces



Bulk-edge duality
Theorem (G., Shapiro). Assume X\ = 0 lies in a mobility gap. Then
N =N*

Remark. Consider the dynamical system Apy}  + Bt = 0 with
Lyaponov exponents
M= 2N
The assumption is satisfied if 7; # 0; then N* = #{i | 7; > 0}. Phase
boundaries correspond to v; = 0 (cf. Prodan et al.)
Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (N =4)
» at energy A # 0 (simple spectrum)
——0—0 00— —0 00—
0
» of the upper (+) and lower (—) chains, at energy A =0
——0—0—0 10— —0 00—

» at energy A = 0 (phase boundary)
— oo o * *—— o o=




Proof of duality

Recall NV = tr(MPy 4)



Proof of duality

Recall NV = tr(MPy 4)

Lemma. The common value of N3 is

NF = lim tr(NAP, )

a—-+oo

e

0 a



Proof of duality

Lemma. The common value of NV is

NF = lim tr(NAP, 5)

a—-+oo
—
0 a

Proof of Theorem. On the Hilbert space #, correspondingto n < a

tr(MA) =N- (O _A(M) tree N =0

n<a

though [[MA[l1 = [|Ally — oo, (@ = +00)



Proof of duality

Lemma. The common value of NV is

N = lim tr(MAP, )
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Proof of Theorem. On the Hilbert space #, correspondingto n < a

tr(MA) =0

tr(MA) = tr(NMAPg 2) + tr(MAP, z) + tr(MAP_ )



Proof of duality

Lemma. The common value of NV is

N = lim tr(MAP, )

a——+oo
——
0 a

Proof of Theorem. On the Hilbert space #, correspondingto n < a

tr(MA) =0

tr(MA) = tr(MAPy.2) + tr(MAPy. 2) + tr(NMAP_ 2)

tr(rl/\P_i_’a) == tr(P_harI/\P_ha) - tr(rlP_7a/\P+7a)
== tr(rIP_’a[/\, P_A'_,a])



Proof of duality

Lemma. The common value of NV is

N = lim tr(MAP, )

a——+oo
——
0 a

Proof of Theorem. On the Hilbert space #, correspondingto n < a

tr(MA) =0

tr(MA) = tr(MAPy.2) + tr(MAPy. 2) + tr(NMAP_ 2)

tr(rl/\P+7a) - tr(P_harI/\P_l,_,a) - tr(I_IP_7a/\P+7a)
=tr(NMP_a[A, Py o)) = tr(NP_[A,PL]) (@ — +o0)



Proof of duality

Lemma. The common value of NV is

N = lim tr(NAP )

a—-+oo
Proof of Theorem. On the Hilbert space #, correspondingto n < a
tr(MA) =0

So,
tr(NA) = tr(MAPg 2) +  tr(MAP, o) + tr(NMAP_ )

J/

SN Str(MP_[A,P])+tr(NMP4 [A,P_])=—N

g.e.d.
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Special case I: Spectral gap

S and S; are Fredholm

» Bulk
N =trU*[A U]
with polar decomposition S = U|S]|.
» Edge

Nz =dimker S; — dimker S; =ind S,
» Equality. Let 1 : £2({n € Z | n < a}) — 3(Z) (isometric
embedding). Then 1 — 5. = Ais switch function.
N =ind ;U Nz =ind(;St,

Interpolation between 1 and |S| gives N' = N,
(General case is index theorem for non-Fredholm operator Sj)
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j *
N = %fdktr U(K)* 0 U(K)



Special case II: Translation invariant case
» Bulk: S= §% dk S(k)

i *
N = %fdktr U(K)* 3 U(K)

» Edge: Eigenstates of translation operator are of the form
Yn—1 = Ztp; decaying at n — —oo for |z| < 1.

(SY)p=S(2)yn  S(z):CcN =V



Special case II: Translation invariant case
» Bulk: S= §% dk S(k)

i *
N = %fdktr U(K)* 3 U(K)

» Edge: Eigenstates of translation operator are of the form
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Special case II: Translation invariant case
» Bulk: S= §% dk S(k)

i *
N = %fdktr U(K)* 3 U(K)

» Edge: Eigenstates of translation operator are of the form
Yn—1 = Ztp; decaying at n — —oo for |z| < 1.

(SY)p=S(2)yn  S(z):CcN =V

Solutions to Sz = 0 «» zeroes of (z — det S(2))
» Equality: (z = e )

i [ddetUk) 1 [ddetS(z)

~ 2n ) detU(k) 2ri ) detS(z) =Na

by argument principle.
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Elementary methods used to establish bulk-edge correspondence in
simple models of topological insulators in presence of a mobility gap



Summary
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Thank you for your attention!

Best wishes, llyal!
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