# The bulk-edge correspondence for disordered chiral chains

Gian Michele Graf ETH Zurich

Classical and quantum motion in disordered environment *A random event in honour of Ilya Goldsheid's 70-th birthday* Queen Mary, University of London, December 18-22, 2017

A D F A 同 F A E F A E F A Q A

# The bulk-edge correspondence for disordered chiral chains

Gian Michele Graf ETH Zurich

Classical and quantum motion in disordered environment *A random event in honour of Ilya Goldsheid's 70-th birthday* Queen Mary, University of London, December 18-22, 2017

based on joint work with J. Shapiro

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

#### Outline

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

An experiment A chiral Hamiltonian and its indices Special cases

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

An experiment A chiral Hamiltonian and its indices Special cases

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### Some physics background first How it all began: Quantum Hall systems

Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

An experiment A chiral Hamiltonian and its indices Special cases

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### The Hall effect (1879)



B: magnetic field  $\vec{E}$ : electric field  $\vec{j}$ : current density

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= 900

Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
,  $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$ 

 $\sigma_{\rm H}$ : Hall conductance

 $\sigma_{\rm D}$ : dissipative conductance, ideally = 0

$$\vec{E} = 0$$
  
 $\otimes B$ 



For  $\vec{E} \neq 0$ , two views on transport:

 Occurs throughout the sample (bulk): Cyclotron orbit drifting under a electric field *E*



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



For  $\vec{E} \neq 0$ , two views on transport:

 Occurs throughout the sample (bulk): Cyclotron orbit drifting under a electric field *E*



Occurs along the edges: Skipping orbits



・ コット (雪) ( 小田) ( コット 日)



For  $\vec{E} \neq 0$ , two views on transport:

 Occurs throughout the sample (bulk): Cyclotron orbit drifting under a electric field *E*



・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Occurs along the edges: Skipping orbits

Two views: Complementary, but coexisting.

## The experiment (von Klitzing, 1980)



Hall-Ohm law

$$\vec{j} = \underline{\sigma} \vec{E}$$
,  $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\sigma_{\rm H}$ : Hall conductance

 $\sigma_{\rm D}$ : dissipative conductance, ideally = 0

## The experiment (von Klitzing, 1980)

Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
,  $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$ 

 $\sigma_{\rm H}$ : Hall conductance

 $\sigma_{\rm D}$ : dissipative conductance, ideally = 0



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

# The experiment (von Klitzing, 1980)

Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
,  $\underline{\sigma} = \begin{pmatrix} \sigma_{\rm D} & \sigma_{\rm H} \\ -\sigma_{\rm H} & \sigma_{\rm D} \end{pmatrix}$ 

 $\sigma_{\rm H}$ : Hall conductance

 $\sigma_{\rm D}$ : dissipative conductance, ideally = 0



・ コ ト ・ 雪 ト ・ 目 ト ・

ъ

Width of plateaus increases with disorder

#### The spectrum of a single-particle Hamiltonian





The spectrum of a single-particle Hamiltonian



(integrated) density of states n(μ) is constant for μ in a Spectral Gap, and strictly increasing otherwise

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The spectrum of a single-particle Hamiltonian



(integrated) density of states n(μ) is constant for μ in a Spectral Gap, and strictly increasing otherwise

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

► Hall conductance  $\sigma_{\rm H}(\mu)$  is constant for  $\mu$  in a Mobility Gap

The spectrum of a single-particle Hamiltonian



- (integrated) density of states n(μ) is constant for μ in a Spectral Gap, and strictly increasing otherwise
- ► Hall conductance  $\sigma_{\rm H}(\mu)$  is constant for  $\mu$  in a Mobility Gap



Plateaus arise because of a Mobility Gap only!

# The role of disorder

The spectrum of a single-particle Hamiltonian



- ► For a periodic (crystalline) medium:
  - Method of choice: Bloch theory and vector bundles (Thouless et al.)
  - Gap is spectral
- For a disordered medium:
  - Method of choice: Non-commutative geometry (Bellissard; Avron et al.)
  - Fermi energy may lie in a spectral gap or (better, and more generally) in a mobility gap.

# Mobility gap, technically speaking

Hamiltonian H on  $\ell^2(\mathbb{Z}^d)$  $P_{\mu} = I_{(-\infty,\mu)}(H)$ : Fermi projection



Mobility gap, technically speaking Hamiltonian *H* on  $\ell^2(\mathbb{Z}^d)$  $P_{\mu} = I_{(-\infty,\mu)}(H)$ : Fermi projection  $\mu$ 

Assumption (Localization holds at Fermi energy). Fermi projection has strong off-diagonal decay:

$$P_{\mu}(x,x') \lesssim \mathrm{e}^{-
u|x-x'|} \qquad (x,x' \in \mathbb{Z}^d)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(some  $\nu > 0$ )

## Mobility gap, technically speaking

Hamiltonian *H* on  $\ell^2(\mathbb{Z}^d)$  $P_{\mu} = I_{(-\infty,\mu)}(H)$ : Fermi projection



Assumption (Localization holds at Fermi energy). Fermi projection has strong off-diagonal decay:

$$\sup_{x'\in\mathbb{Z}^d} \mathrm{e}^{-\varepsilon|x'|} \sum_{x\in\mathbb{Z}^d} \mathrm{e}^{\nu|x-x'|} |\mathcal{P}_\mu(x,x')| < \infty$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(some  $\nu > 0$ , all  $\varepsilon > 0$ )

Mobility gap, technically speaking Hamiltonian *H* on  $\ell^2(\mathbb{Z}^d)$  $P_{\mu} = I_{(-\infty,\mu)}(H)$ : Fermi projection

Assumption (Localization holds at Fermi energy). Fermi projection has strong off-diagonal decay:

$$\sup_{x'\in\mathbb{Z}^d} \mathrm{e}^{-\varepsilon|x'|} \sum_{x\in\mathbb{Z}^d} \mathrm{e}^{\nu|x-x'|} |\mathcal{P}_\mu(x,x')| < \infty$$

μ

(日) (日) (日) (日) (日) (日) (日)

(some  $\nu > 0$ , all  $\varepsilon > 0$ )

- Proven in (virtually) all cases where localization is known.
- Trivially false for extended states at  $E = \mu$ .

## Mobility gap, technically speaking

Hamiltonian *H* on  $\ell^2(\mathbb{Z}^d)$  $P_{\mu} = I_{(-\infty,\mu)}(H)$ : Fermi projection



Assumption (Localization holds at Fermi energy). Fermi projection has strong off-diagonal decay:

$$\sup_{x'\in\mathbb{Z}^d} \mathrm{e}^{-\varepsilon|x'|} \sum_{x\in\mathbb{Z}^d} \mathrm{e}^{\nu|x-x'|} |\mathcal{P}_\mu(x,x')| < \infty$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(some  $\nu > 0$ , all  $\varepsilon > 0$ ) Assumption  $\mathcal{P}_{\mu} := I_{\{\mu\}}(H) = 0$ 

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators

Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

An experiment A chiral Hamiltonian and its indices Special cases

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

$$\mu$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

 Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open

u

F

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

u

F

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

u

F

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

► Analogy: torus ≠ sphere (differ by genus)

Insulator in the Bulk: Excitation gap
 For independent electrons: spectral gap at Fermi energy μ

Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

u

F

(日) (日) (日) (日) (日) (日) (日)

- ► Analogy: torus ≠ sphere (differ by genus)
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations.

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

An experiment A chiral Hamiltonian and its indices Special cases

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Recall: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and respecting symmetries

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Deformation as interpolation in physical space:



 Gap must close somewhere in between. Hence: Interface states at Fermi energy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Deformation as interpolation in physical space:



 Gap must close somewhere in between. Hence: Interface states at Fermi energy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Ordinary insulator ~ void: Edge states

Deformation as interpolation in physical space:



- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator ~ void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Deformation as interpolation in physical space:



- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- Ordinary insulator ~ void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states. (But not conversely!)

In a nutshell: Termination of bulk of a topological insulator implies edge states

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ
# Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

(ロ) (同) (三) (三) (三) (○) (○)

More precisely:

# Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

More precisely:

Express that property as an Index relating to the Bulk, resp. to the Edge.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

# Bulk-edge correspondence

In a nutshell: Termination of bulk of a topological insulator implies edge states

 Goal: State the (intrinsic) topological property distinguishing different classes of insulators.

More precisely:

- Express that property as an Index relating to the Bulk, resp. to the Edge.
- Bulk-edge duality: Can it be shown that the two indices agree? Can it be shown even in presence of just a mobility gap?

(ロ) (同) (三) (三) (三) (○) (○)

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

An experiment A chiral Hamiltonian and its indices Special cases

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# The periodic table of topological matter

| Sy    | Symmetry |    |   |                | d              |                |                |                |                |                |                |  |
|-------|----------|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Class | Θ        | Σ  | П | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |  |
| A     | 0        | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |  |
| AIII  | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |  |
| AI    | 1        | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |
| BDI   | 1        | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |
| D     | 0        | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |  |
| DIII  | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |  |
| All   | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |  |
| CII   | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |
| С     | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |
| CI    | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |

Notation:

⊖ time-reversal

 $\Sigma$  charge conjugation

#### $\Pi$ combined

### The periodic table of topological matter

| Sy    | Symmetry |    |   |                | d              |                |                |                |                |                |                |  |  |
|-------|----------|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|
| Class | Θ        | Σ  | П | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |  |  |
| A     | 0        | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |  |  |
| AIII  | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |  |  |
| AI    | 1        | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |  |
| BDI   | 1        | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |  |
| D     | 0        | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |  |  |
| DIII  | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |  |  |
| All   | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |  |  |
| CII   | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |  |
| С     | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |  |
| CI    | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |  |

First version: Schnyder et al.; then Kitaev based on Altland-Zirnbauer; based on Bloch theory

### The periodic table of topological matter

| Sy    | Symmetry |    |   |                | d              |                |                |                |                |                |                |  |
|-------|----------|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Class | Θ        | Σ  | П | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |  |
| A     | 0        | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |  |
| AIII  | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |  |
| AI    | 1        | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |
| BDI   | 1        | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |
| D     | 0        | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |  |
| DIII  | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |  |
| All   | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |  |
| CII   | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |
| С     | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |
| CI    | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |

By now: Non-commutative (bulk) index formulae have been found in many cases (Prodan, Schulz-Baldes)

| Sy    | Symmetry |    |   |                | d              |                |                |                |                |                |                |  |
|-------|----------|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Class | Θ        | Σ  | Π | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |  |
| A     | 0        | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |  |
| AIII  | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |  |
| AI    | 1        | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |
| BDI   | 1        | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |
| D     | 0        | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |  |
| DIII  | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |  |
| All   | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |  |
| CII   | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |
| С     | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |
| CI    | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |

| Sy    | Symmetry |    |   |                | d              |                |                |                |                |                |                |  |
|-------|----------|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| Class | Θ        | Σ  | П | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |  |
| Α     | 0        | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |  |
| AIII  | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |  |
| AI    | 1        | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |
| BDI   | 1        | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |
| D     | 0        | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |  |
| DIII  | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |  |
| All   | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |  |
| CII   | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |
| С     | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |
| CI    | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Does the table survive disorder?

| Symmetry |    |    |   | d              |                |                |                |                |                |                |                |
|----------|----|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Class    | Θ  | Σ  | Π | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |
| Α        | 0  | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AIII     | 0  | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |
| AI       | 1  | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| BDI      | 1  | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| D        | 0  | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
| DIII     | -1 | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |
| All      | -1 | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |
| CII      | -1 | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |
| С        | 0  | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |
| CI       | 1  | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |

Class A: Anderson localization (no topology)

| Sy    | Symmetry |    |   |                |                | d              |                |                |                |                |                |  |  |
|-------|----------|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|
| Class | Θ        | Σ  | Π | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              |  |  |
| A     | 0        | 0  | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |  |  |
| AIII  | 0        | 0  | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |  |  |
| AI    | 1        | 0  | 0 | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |  |  |
| BDI   | 1        | 1  | 1 | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |  |  |
| D     | 0        | 1  | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |  |  |
| DIII  | -1       | 1  | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   | 0              |  |  |
| All   | -1       | 0  | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              | $\mathbb{Z}$   |  |  |
| CII   | -1       | -1 | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |  |  |
| С     | 0        | -1 | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |  |  |
| CI    | 1        | -1 | 1 | 0              | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |  |  |

Class A: Anderson localization (no topology) Class AIII: Anderson localization, except possibly at one energy (topology rescued; by Ilya's methods)

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

An experiment A chiral Hamiltonian and its indices Special cases

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

#### An experiment

A chiral Hamiltonian and its indices Special cases

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

# An experiment: Amo et al.



Figure: Zigzag chain of coupled micropillars and lasing modes

ロ > < 個 > < 目 > < 目 > < 目 > < 回 > < < の へ ()</li>

#### An experiment: Amo et al.



Figure: Lasing modes: bulk and edge

・ロット (雪) (日) (日)

ъ

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

An experiment A chiral Hamiltonian and its indices Special cases

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# The Su-Schrieffer-Heeger model (1 dimensional)

Alternating chain with nearest neighbor hopping



・ロット (雪) (日) (日)

э

#### The Su-Schrieffer-Heeger model (1 dimensional) Alternating chain with nearest neighbor hopping



Hilbert space: sites arranged in dimers

$$\mathcal{H} = \ell^{2}(\mathbb{Z}, \mathbb{C}^{N}) \otimes \mathbb{C}^{2} \ni \psi = \left(\begin{array}{c} \psi_{n}^{+} \\ \psi_{n}^{-} \end{array}\right)_{n \in \mathbb{Z}}$$

Hamiltonian

$$H = \left( egin{array}{cc} 0 & \mathcal{S}^* \ \mathcal{S} & 0 \end{array} 
ight)$$

with S,  $S^*$  acting on  $\ell^2(\mathbb{Z}, \mathbb{C}^N)$  as

$$(S\psi^+)_n = A_n\psi^+_{n-1} + B_n\psi^+_n, \qquad (S^*\psi^-)$$

 $(A_n, B_n \in \operatorname{GL}(N)$  almost surely)

$$(S^*\psi^-)_n = A^*_{n+1}\psi^-_{n+1} + B^*_n\psi^-_n$$

< □ > < □ > < □ > < □ > < □ > < □ >

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi \} \equiv H\Pi + \Pi H = 0$$

{

hence

$$H\psi = \lambda\psi \implies H(\Pi\psi) = -\lambda(\Pi\psi)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi \} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda\psi \quad \Longrightarrow \quad H(\Pi\psi) = -\lambda(\Pi\psi)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Energy  $\lambda = 0$  is special:

• Eigenprojection  $\mathcal{P}_0 := I_{\{0\}}(H)$  has  $[\mathcal{P}_0, \Pi] = 0$ 

ł

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda\psi \quad \Longrightarrow \quad H(\Pi\psi) = -\lambda(\Pi\psi)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Energy  $\lambda = 0$  is special:

Eigenprojection P<sub>0</sub> := I<sub>{0}</sub>(H) has [P<sub>0</sub>, Π] = 0
 Eigenspace ran P<sub>0</sub> invariant under Π

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$H, \Pi \} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda\psi \quad \Longrightarrow \quad H(\Pi\psi) = -\lambda(\Pi\psi)$$

Energy  $\lambda = 0$  is special:

Eigenprojection P<sub>0</sub> := I<sub>{0}</sub>(H) has [P<sub>0</sub>, Π] = 0
 Eigenspace ran P<sub>0</sub> invariant under Π



• Eigenvalue equation  $H\psi = \lambda \psi$  is  $S\psi^+ = \lambda \psi^-$ ,  $S^*\psi^- = \lambda \psi^+$ , i.e.

$$\boldsymbol{A}_{n}\boldsymbol{\psi}_{n-1}^{+} + \boldsymbol{B}_{n}\boldsymbol{\psi}_{n}^{+} = \lambda\boldsymbol{\psi}_{n}^{-}, \qquad \boldsymbol{A}_{n+1}^{*}\boldsymbol{\psi}_{n+1}^{-} + \boldsymbol{B}_{n}^{*}\boldsymbol{\psi}_{n}^{-} = \lambda\boldsymbol{\psi}_{n}^{+}$$

is one 2nd order difference equation, but two 1st order for  $\lambda = 0$ 

#### Bulk index

Let

$$\Sigma = \operatorname{sgn} H$$

#### Definition. The Bulk index is

$$\mathcal{N} = \frac{1}{2} \, \text{tr} (\Pi \Sigma [\Lambda, \Sigma])$$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

with  $\Lambda = \Lambda(n)$  a switch function (cf. Prodan et al.)

#### Bulk index

Let

$$\Sigma = \operatorname{sgn} H$$

Definition. The Bulk index is

$$\mathcal{N} = \frac{1}{2} \, \text{tr} \big( \Pi \Sigma [\Lambda, \Sigma] \big)$$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

)

with  $\Lambda = \Lambda(n)$  a switch function (cf. Prodan et al.) Equivalently

$$-\mathcal{N} = \text{tr}(\Pi P_+[\Lambda, P_-]) + \text{tr}(\Pi P_-[\Lambda, P_+]$$
  
using  $P_+ := I_{(0,+\infty)}, P_- := I_{(-\infty,0)}$  and  $\Sigma = P_+ - P_-$ 



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Edge Hamiltonian  $H_a$  defined by restriction to  $n \le a$  (Dirichlet boundary condition  $\psi_{a+1}^- = 0$ ). Chiral symmetry preserved.



・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Edge Hamiltonian  $H_a$  defined by restriction to  $n \le a$  (Dirichlet boundary condition  $\psi_{a+1}^- = 0$ ). Chiral symmetry preserved.

Eigenspace ran  $\mathcal{P}_{0,a}$  invariant under  $\Pi$ .



Edge Hamiltonian  $H_a$  defined by restriction to  $n \le a$  (Dirichlet boundary condition  $\psi_{a+1}^- = 0$ ). Chiral symmetry preserved.

Eigenspace ran  $\mathcal{P}_{0,a}$  invariant under  $\Pi$ .

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid H_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-



Edge Hamiltonian  $H_a$  defined by restriction to  $n \le a$  (Dirichlet boundary condition  $\psi_{a+1}^- = 0$ ). Chiral symmetry preserved.

Eigenspace  $\operatorname{ran} \mathcal{P}_{0,a}$  invariant under  $\Pi$ .

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid H_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

Definition. The Edge index is

$$\mathcal{N}_a = \mathcal{N}_a^+ - \mathcal{N}_a^- = \operatorname{tr}(\Pi \mathcal{P}_{0,a})$$

and can be shown to be independent of *a*. Call it  $\mathcal{N}^{\sharp}$ .

#### Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ .

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ . Phase boundaries correspond to  $\gamma_i = 0$  (cf. Prodan et al.)

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ . Phase boundaries correspond to  $\gamma_i = 0$  (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (N = 4)

• at energy  $\lambda \neq 0$  (simple spectrum)



- Spectrum is simple because measure on transfer matrices is irreducible (cf. Goldsheid-Margulis)
- so  $\gamma = 0$  is not in the spectrum; localization follows

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ . Phase boundaries correspond to  $\gamma_i = 0$  (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (N = 4)

• at energy  $\lambda \neq 0$  (simple spectrum)



(日) (日) (日) (日) (日) (日) (日)

At λ = 0 chains decouple: C<sup>N</sup> ⊕ 0 and 0 ⊕ C<sup>N</sup> are invariant subspaces

Theorem (G., Shapiro). Assume  $\lambda = 0$  lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

**Remark.** Consider the dynamical system  $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$  with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if  $\gamma_i \neq 0$ ; then  $\mathcal{N}^{\sharp} = \sharp\{i \mid \gamma_i > 0\}$ . Phase boundaries correspond to  $\gamma_i = 0$  (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (N = 4)



• of the upper (+) and lower (-) chains, at energy  $\lambda = 0$ 

• at energy  $\lambda = 0$  (phase boundary)

### Proof of duality

Recall  $\mathcal{N}_a = tr(\Pi \mathcal{P}_{0,a})$ 



### Proof of duality

Recall  $\mathcal{N}_a = tr(\Pi \mathcal{P}_{0,a})$ 

Lemma. The common value of  $\mathcal{N}_a$  is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda \mathcal{P}_{0,a})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ
Lemma. The common value of  $\mathcal{N}_a$  is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda \mathcal{P}_{0,a})$$

**Proof of Theorem.** On the Hilbert space  $\mathcal{H}_a$  corresponding to  $n \leq a$ 

$$\operatorname{tr}(\Pi \wedge) = N \cdot \left(\sum_{n \leq a} \Lambda(n)\right) \operatorname{tr}_{\mathbb{C}^2} \Pi = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

though  $\|\Pi \Lambda\|_1 = \|\Lambda\|_1 \to \infty$ ,  $(a \to +\infty)$ 

Lemma. The common value of  $\mathcal{N}_a$  is



**Proof of Theorem.** On the Hilbert space  $\mathcal{H}_a$  corresponding to  $n \leq a$ 

 $tr(\Pi \Lambda) = 0$ 

 $tr(\Pi\Lambda) = tr(\Pi\Lambda\mathcal{P}_{0,a}) + tr(\Pi\Lambda P_{+,a}) + tr(\Pi\Lambda P_{-,a})$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lemma. The common value of  $\mathcal{N}_a$  is

-

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda \mathcal{P}_{0,a})$$

**Proof of Theorem.** On the Hilbert space  $\mathcal{H}_a$  corresponding to  $n \leq a$ 

 $\text{tr}(\Pi\Lambda)=0$ 

$$tr(\Pi\Lambda) = tr(\Pi\Lambda\mathcal{P}_{0,a}) + tr(\Pi\Lambda P_{+,a}) + tr(\Pi\Lambda P_{-,a})$$

$$tr(\Pi \wedge P_{+,a}) = tr(P_{+,a}\Pi \wedge P_{+,a}) = tr(\Pi P_{-,a} \wedge P_{+,a})$$
$$= tr(\Pi P_{-,a}[\Lambda, P_{+,a}])$$

Lemma. The common value of  $\mathcal{N}_a$  is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda \mathcal{P}_{0,a})$$

**Proof of Theorem.** On the Hilbert space  $\mathcal{H}_a$  corresponding to  $n \leq a$ 

 $\text{tr}(\Pi\Lambda)=0$ 

$$tr(\Pi\Lambda) = tr(\Pi\Lambda\mathcal{P}_{0,a}) + tr(\Pi\Lambda P_{+,a}) + tr(\Pi\Lambda P_{-,a})$$

$$\begin{aligned} \operatorname{tr}(\Pi \wedge P_{+,a}) &= \operatorname{tr}(P_{+,a}\Pi \wedge P_{+,a}) = \operatorname{tr}(\Pi P_{-,a} \wedge P_{+,a}) \\ &= \operatorname{tr}(\Pi P_{-,a}[\Lambda, P_{+,a}]) \to \operatorname{tr}(\Pi P_{-}[\Lambda, P_{+}]) \qquad (a \to +\infty) \end{aligned}$$

Lemma. The common value of  $\mathcal{N}_a$  is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda \mathcal{P}_{0,a})$$

**Proof of Theorem.** On the Hilbert space  $\mathcal{H}_a$  corresponding to  $n \leq a$ 

 $\text{tr}(\Pi\Lambda)=0$ 

So,

$$\operatorname{tr}(\Pi\Lambda) = \underbrace{\operatorname{tr}(\Pi\Lambda\mathcal{P}_{0,a})}_{\to\mathcal{N}^{\sharp}} + \underbrace{\operatorname{tr}(\Pi\Lambda\mathcal{P}_{+,a}) + \operatorname{tr}(\Pi\Lambda\mathcal{P}_{-,a})}_{\to\operatorname{tr}(\Pi\mathcal{P}_{-}[\Lambda,\mathcal{P}_{+}]) + \operatorname{tr}(\Pi\mathcal{P}_{+}[\Lambda,\mathcal{P}_{-}]) = -\mathcal{N}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

q.e.d.

#### Some physics background first

How it all began: Quantum Hall systems Topological insulators Bulk-edge correspondence The periodic table of topological matter

#### Chiral systems

An experiment A chiral Hamiltonian and its indices Special cases

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

S and  $S_a$  are Fredholm

Bulk

$$\mathcal{N} = \operatorname{tr} U^*[\Lambda, U]$$

with polar decomposition S = U|S|.



#### S and $S_a$ are Fredholm

Bulk

$$\mathcal{N} = \text{tr} U^*[\Lambda, U]$$

with polar decomposition S = U|S|.

Edge

$$\mathcal{N}_a = \dim \ker S_a - \dim \ker S_a^* = \operatorname{ind} S_a$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

#### S and $S_a$ are Fredholm

Bulk

$$\mathcal{N} = \mathsf{tr} \, U^*[\Lambda, U]$$

with polar decomposition S = U|S|.

Edge

$$\mathcal{N}_a=\mathsf{dim}\,\mathrm{ker}\,\mathcal{S}_a-\mathsf{dim}\,\mathrm{ker}\,\mathcal{S}_a^*=\mathsf{ind}\,\mathcal{S}_a$$

Equality. Let ι<sub>a</sub> : ℓ<sup>2</sup>({n ∈ Z | n ≤ a}) → ℓ<sup>2</sup>(Z) (isometric embedding). Then 1 − ι<sub>a</sub>ι<sup>\*</sup><sub>a</sub> = Λ is switch function.

#### S and $S_a$ are Fredholm

Bulk

$$\mathcal{N} = \mathsf{tr} \, U^*[\Lambda, U]$$

with polar decomposition S = U|S|.

Edge

$$\mathcal{N}_a=\mathsf{dim}\,\mathrm{ker}\,\mathcal{S}_a-\mathsf{dim}\,\mathrm{ker}\,\mathcal{S}_a^*=\mathsf{ind}\,\mathcal{S}_a$$

Equality. Let ι<sub>a</sub> : ℓ<sup>2</sup>({n ∈ Z | n ≤ a}) → ℓ<sup>2</sup>(Z) (isometric embedding). Then 1 − ι<sub>a</sub>ι<sup>\*</sup><sub>a</sub> = Λ is switch function.

$$\mathcal{N} = \operatorname{ind} \iota_a^* U \iota_a \qquad \mathcal{N}_a = \operatorname{ind} \iota_a^* S \iota_a$$

Interpolation between 1 and |S| gives  $\mathcal{N} = \mathcal{N}_a$ 

・ロト・日本・日本・日本・日本・日本

#### S and $S_a$ are Fredholm

Bulk

$$\mathcal{N} = \mathsf{tr} \, U^*[\Lambda, U]$$

with polar decomposition S = U|S|.

Edge

$$\mathcal{N}_a = \operatorname{\mathsf{dim}} \ker S_a - \operatorname{\mathsf{dim}} \ker S_a^* = \operatorname{\mathsf{ind}} S_a$$

Equality. Let ι<sub>a</sub> : ℓ<sup>2</sup>({n ∈ Z | n ≤ a}) → ℓ<sup>2</sup>(Z) (isometric embedding). Then 1 − ι<sub>a</sub>ι<sup>\*</sup><sub>a</sub> = Λ is switch function.

$$\mathcal{N} = \operatorname{ind} \iota_a^* U \iota_a \qquad \mathcal{N}_a = \operatorname{ind} \iota_a^* S \iota_a$$

Interpolation between 1 and |S| gives  $\mathcal{N} = \mathcal{N}_a$ (General case is index theorem for non-Fredholm operator  $S_a$ )

• Bulk: 
$$S = \oint^{\oplus} dk S(k)$$

$$\mathcal{N}=\frac{i}{2\pi}\oint dk\,\mathrm{tr}\,U(k)^*\partial_k U(k)$$

• Bulk: 
$$S = \oint^{\oplus} dk S(k)$$

$$\mathcal{N} = \frac{i}{2\pi} \oint dk \operatorname{tr} U(k)^* \partial_k U(k)$$

► Edge: Eigenstates of translation operator are of the form  $\psi_{n-1} = z\psi_n$ ; decaying at  $n \to -\infty$  for |z| < 1.

$$(S\psi)_n = S(z)\psi_n \qquad S(z): \mathbb{C}^N \to \mathbb{C}^N$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Bulk: 
$$S = \oint^{\oplus} dk S(k)$$

$$\mathcal{N} = \frac{i}{2\pi} \oint dk \operatorname{tr} U(k)^* \partial_k U(k)$$

• Edge: Eigenstates of translation operator are of the form  $\psi_{n-1} = z\psi_n$ ; decaying at  $n \to -\infty$  for |z| < 1.

$$(S\psi)_n = S(z)\psi_n \qquad S(z): \mathbb{C}^N \to \mathbb{C}^N$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Solutions to  $S_a \psi = 0 \leftrightarrow$  zeroes of  $(z \mapsto \det S(z))$ 

• Bulk: 
$$S = \oint^{\oplus} dk S(k)$$

$$\mathcal{N} = rac{i}{2\pi} \oint dk \operatorname{tr} U(k)^* \partial_k U(k)$$

• Edge: Eigenstates of translation operator are of the form  $\psi_{n-1} = z\psi_n$ ; decaying at  $n \to -\infty$  for |z| < 1.

$$(S\psi)_n = S(z)\psi_n \qquad S(z): \mathbb{C}^N \to \mathbb{C}^N$$

Solutions to  $S_a\psi = 0 \leftrightarrow \text{zeroes of } (z \mapsto \det S(z))$ 

• Equality:  $(z = e^{-ik})$ 

$$\mathcal{N} = \frac{\mathrm{i}}{2\pi} \oint \frac{d \det U(k)}{\det U(k)} = \frac{1}{2\pi \mathrm{i}} \oint \frac{d \det S(z)}{\det S(z)} = \mathcal{N}_{z}$$

by argument principle.



Elementary methods used to establish bulk-edge correspondence in simple models of topological insulators in presence of a mobility gap





Elementary methods used to establish bulk-edge correspondence in simple models of topological insulators in presence of a mobility gap

Thank you for your attention!

Best wishes, Ilya!

