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Dimer Model

We consider the dimer model on a triangular lattice
Γm,n = (Vm,n,Em,n) on the torus Zm × Zn = Z2/(mZ× nZ)
(periodic boundary conditions), where Vm,n and Em,n are the sets
of vertices and edges of Γm,n, respectively. It is convenient to
consider Γm,n as a square lattice with diagonals.
A dimer on Γm,n is a set of two neighboring vertices 〈x , y〉
connected by an edge. A dimer configuration σ on Γm,n is a set of
dimers σ = {〈xi , yi 〉, i = 1, . . . , mn

2 } which cover Vm,n without
overlapping.
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Dimer Configuration

An example of a dimer configuration is shown below. An obvious
necessary condition for a configuration to exist is that at least one
of m, n is even, and so we assume that m is even, m = 2m0.

Figure: Example of a dimer configuration on a triangular 6× 6 lattice on
the torus.
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Weights

To define a weight of a dimer configuration, we split the full set of
dimers in a configuration σ into three classes: horizontal, vertical,
and diagonal with respective weights zh, zv , zd > 0. If we denote
the total number of horizontal, vertical and diagonal dimers in σ
by Nh(σ), Nv (σ), and Nd(σ), respectively, then the dimer
configuration weight is

w(σ) =

mn
2∏

i=1

w(xi , yi ) = z
Nh(σ)
h z

Nv (σ)
v z

Nd (σ)
d ,

where w(xi , yi ) denotes the weight of the dimer 〈xi , yi 〉 ∈ σ.
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Partition Function

We denote by Σm,n the set of all dimer configurations on Γm,n.
The partition function of the dimer model is given by

Z =
∑

σ∈Σm,n

w(σ).

Notice that if all the weights are set equal to one, then Z simply
counts the number of dimer configurations on Γm,n.

Pavel Bleher Dimer model



Kasteleyn’s Formula

As shown by Kasteleyn, the partition function Z of the dimer
model on the torus can be expressed in terms of the four Kasteleyn
Pfaffians as

Z =
1

2
(−Pf A1 + Pf A2 + Pf A3 + Pf A4) ,

with periodic-periodic, periodic-antiperiodic, antiperiodic-periodic,
and antiperiodic-antiperiodic boundary conditions in the x- and
y -axis, respectively. The Kasteleyn’s matrices Ai are adjacency
matrices with signs determined by the Kasteleyn’s orientations.
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Kasteleyn’s Orientations

We consider different orientations on the set of the edges Em,n: O1

(p-p), O2 (p-a), O3 (a-p), and O4 (a-a).

All these orientations are Kasteleyn orientations, so that for any
face the number of arrows on the boundary oriented clockwise is
odd.

Pavel Bleher Dimer model



Kasteleyn’s Sign Functions

With every orientation Oi we associate a sign function εi (x , y),
x , y ∈ Vm,n, defined as follows: if x and y are connected by an
edge then

εi (x , y) =

{
1, if the arrow in Oi points from x to y ,
− 1, if the arrow in Oi points from y to x ,

and

εi (x , y) = 0, if x and y are not connected by an edge.
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Kasteleyn’s Matrices Ai

To define the Kasteleyn matrices, consider any enumeration of the
vertices, Vm,n = {x1, . . . , xmn}. Then the Kasteleyn matrices Ai

are defined as

Ai =
(
ai (xj , xk)

)
1≤j ,k≤mn

, i = 1, 2, 3, 4,

with

ai (x , y) =

{
εi (x , y)w(x , y), if x and y are connected by an edge,
0 otherwise,

where w(x , y) = zh, zv , zd is the weight of the dimer 〈x , y〉 and εi
is the sign function. The Kasteleyn matrices Ai are antisymmetric,
so that ai (xk , xj) = −ai (xj , xk).
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Pfaffians

The Pfaffian, Pf Ai , of the mn ×mn antisymmetric matrix Ai ,
i = 1, 2, 3, 4, is given by the formula,

Pf Ai =
∑
π

(−1)πai (xp1 , xp2)ai (xp3 , xp4) · · · ai (xpmn−1 , xpmn),

where the sum is taken over all permutations,

π =

(
1 2 3 · · · mn − 1 mn
p1 p2 p3 · · · pmn−1 pmn

)
,

which satisfy the following restrictions:

(1) p2`−1 < p2`, 1 ≤ ` ≤ mn
2 ,

(2) p2`−1 < p2`+1, 1 ≤ ` ≤ mn
2 − 1.
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Kasteleyn’s Pfaffians

Such permutations are in a one-to-one correspondence with the
dimer configurations, and

Pf Ai =
∑

σ∈Σm,n

(−1)π(σ)w(σ)
∏

〈x ,y〉∈σ

εi (x , y), i = 1, 2, 3, 4.

An important property of the Kasteleyn Pfaffians Pf Ai is that
they do not depend on the enumeration of the vertices,
Vm,n = {x1, . . . , xmn}.
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Configuration Sign

The sign of a configuration σ, sgn (σ) = sgn (σ;Ai ), is the
following expression:

sgn (σ) = (−1)π(σ)
∏

〈x ,y〉∈σ

εi (x , y),

and the Pfaffian formula for a Kasteleyn matrix Ai can be
rewritten as

Pf Ai =
∑

σ∈Σm,n

sgn (σ)w(σ), sgn (σ) = sgn (σ;Ai ).
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Contours

Given two configurations σ and σ′, we consider the double
configuration σ ∪ σ′, and we call it the superposition of σ and σ′.
In σ ∪ σ′, we define a contour to be a cycle consisting of
alternating edges from σ and σ′. Each contour consists of an even
number of edges. The superposition σ ∪ σ′ is partitioned into
disjoint contours {γk : k = 1, 2, . . . , r}. We call a contour
consisting of only two edges a trivial contour.
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Standard Configuration

A standard configuration σst is defined as follows. Consider the
lexicographic ordering of the vertices (i , j) ∈ Zm × Zn. Namely,

(i , j) = xk , k = jm + i + 1, 1 ≤ k ≤ mn.

Then
σst =

{
〈x2l−1, x2l〉, l = 1, . . . ,

mn

2

}
.

Observe that the standard configurations consists of horizontal
dimers only and

sgn (σst;Ai ) = +1, i = 1, 2, 3, 4,

because π(σst) = Id and εi (x2l−1, x2l) = +1.
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Configuration Sign Formula

Let σ, σ′ be any two configurations and {γk : k = 1, 2, . . . , r} all
contours of σ ∪ σ′. Then

sgn (σ;Ai ) · sgn (σ′;Ai ) =
r∏

k=1

sgn (γk ;Oi ), i = 1, 2, 3, 4,

with
sgn (γk ;Oi ) = (−1)νk (Oi )+1,

where νk(Oi ) is the number of edges in γk oriented clockwise with
respect to the orientation Oi .
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Kasteleyn’s Identities

As shown by Kasteleyn, the partition function Z can be
decomposed as

Z = Z 00 + Z 10 + Z 01 + Z 11,

the four partition functions Z rs corresponding to dimer
configurations of the homology classes (r , s) ∈ Z2 ⊕ Z2, and the
Pfaffians Pf Ai are expressed as

Pf A1 = Z 00 − Z 10 − Z 01 − Z 11, Pf A2 = Z 00 − Z 10 + Z 01 + Z 11,

Pf A3 = Z 00 + Z 10 − Z 01 + Z 11, Pf A4 = Z 00 + Z 10 + Z 01 − Z 11

(Kasteleyn’s Identities).
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Pfaffian Sign Problem

The Kasteleyn’s formula

Z =
1

2
(−Pf A1 + Pf A2 + Pf A3 + Pf A4) ,

is very powerful in the asymptotic analysis of the partition
function as m, n →∞, because the absolute value of the Pfaffian
of a square antisymmetric matrix A is determined by its
determinant through the classical identity

(Pf A)2 = detA.

The asymptotic behavior of det Ai as m, n →∞ can be analyzed
by a diagonalization of the matrices Ai , and an obvious problem
arises to determine the sign of the Pfaffians Pf Ai .
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Pfaffian Sign Theorem

Our main result with Elwood and Petrović is the following Pfaffian
Sign Theorem:

Theorem (Bleher, Elwood, and Petrović)

Let zh, zv , zd > 0. Then

Pf A1 < 0, Pf A2 > 0, Pf A3 > 0, Pf A4 > 0.
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Remarks

Kasteleyn considered the dimer model on the square lattice, which
corresponds to the weight zd = 0. He showed that in this case
Pf A1 = 0, and he assumed that Pf Ai ≥ 0 for i = 2, 3, 4. Kenyon,
Sun and Wilson established the sign of the Pfaffians Pf Ai for any
critical dimer model on a lattice on the torus, including the square
lattice. The dimer model on the triangular lattice is not critical and
the result of Kenyon, Sun and Wilson is not applicable in this case.
Different conjectures about the Pfaffian signs for the dimer model
on a triangular lattice are stated, without proof, in the physical
works of McCoy, Fendley–Moessner–Sondhi, and Izmailian–Kenna.
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Ingredients of the Proof

The proof of Pfaffian Sign Theorem is based on the following three
important ingredients:

1. The Kasteleyn identities.

2. The double product formula for det Ai .

3. An asymptotic analysis of Pf Ai as one of the weights tends to
zero.
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Double Product Formula

We have that

det Ai =

m
2
−1∏

j=0

n−1∏
k=0

S

(
j + αi

m
,
k + βi

n

)
,

where

S(x , y) = 4
[
z2
h sin2 2πx + z2

v sin2 2πy + z2
d cos2 (2πx + 2πy)

]
and

α1 = β1 = 0 ; α2 = 0 , β2 =
1

2
; α3 =

1

2
, β3 = 0 ; α4 = β4 =

1

2
.
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Spectral Function

The function

S(x , y) = 4
[
z2
h sin2 2πx + z2

v sin2 2πy + z2
d cos2 (2πx + 2πy)

]
is the spectral function of the dimer model. We have that if

zh, zv , zd > 0 then
S(x , y) > 0, ∀x , y ,

hence
det Ai > 0.

As a consequence, we have that Pf Ai does not change the sign in
the region zh, zv , zd > 0; hence, it is sufficient to establish the sign
of Pf Ai at any point of the region zh, zv , zd > 0.
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Positivity of Pf A3 and Pf A4

Let zh, zv > 0 and zd = 0. Then S(0, 0) = 0 and hence, by the
Double Product Formula, det A1 = 0. This implies that

Pf A1 = Z 00 − Z 10 − Z 01 − Z 11 = 0,

hence

Pf A3 = Z 00 + Z 10 − Z 01 + Z 11 = 2Z 10 + 2Z 11 ≥ 0,

but from the Double Product Formula we obtain that det A3 > 0,
hence Pf A3 > 0 for all zh, zv > 0 and zd = 0. By continuity,
Pf A3 > 0 for all zh, zv > 0 and small zd > 0, and hence for all
zd > 0 (since det A3 > 0). The same argument applies to Pf A4.
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Positivity of Pf A2 and Negativity of Pf A1

The proof of positivity of Pf A2 and negativity of Pf A1 is more
difficult and it depends on the values of m and n modulo 4. To
prove the negativity of Pf A1, we consider the following cases:

1. m ≡ 2 (mod 4) or n ≡ 2 (mod 4).

2. m ≡ 0 (mod 4) and n ≡ 1 (mod 4).

3. m ≡ 4 (mod 4) and n ≡ 4 (mod 4).

The first case can be analyzed with the help of the Kasteleyn
identities. The second and third cases are more difficult.
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Case 2: m ≡ 0 (mod 4) and n ≡ 1 (mod 4)

In Case 2 we prove the following result. Let zh = 1 and zv = 0.
Then as zd → +0,

Pf A1 = −2
(m

2

)n
zn
d (1 +O(zd)).

This implies that Pf A1 < 0 for zh = 1, zv = 0 and sufficiently
small zd , and hence Pf A1 < 0 for all zh, zv , zd > 0. The
asymptotics of Pf A1 shows that all terms with less than n
diagonal dimers cancel out in the Pfaffian.
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Case 3: m ≡ 0 (mod 4) and n ≡ 0 (mod 4)

In Case 3 we prove the following result. Let zh = 1 and
0 < zv ≤ z2

d . Then as zd → +0,

Pf A1 = −n2
(m

2

)n
z2
v zn−2

d (1 +O (zd)) .

This implies that Pf A1 < 0 for zh = 1, zv = z2
d and sufficiently

small zd , and hence Pf A1 < 0 for all zh, zv , zd > 0.
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Asymptotics of The Partition Function

Theorem
Suppose that m, n →∞ in such a way that C1 ≤ m

n ≤ C2 for some
positive constants C2 > C1. Then for some c > 0,

Z = 2e
1
2
mnF

(
1 +O

(
e−c(m+n)

))
,

where F = ln 2 +
1∫
0

1∫
0

f (x , y) dx dy , and

f (x , y) =
1

2
ln

[
z2
h sin2(2πx) + z2

v sin2(2πy) + z2
d cos2(2πx + 2πy)

]
.
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Dimer Model

Project 2: Exact Solution for the Monomer–Monomer
Correlation Function

This is a joint project with Estelle Basor (American Institute of
Mathematics). We consider the classical dimer model on a
triangular lattice. Again, it is convenient to view the triangular
lattice as a square lattice with diagonals:

0 1

1

2

2

n

q

r
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Main Goal

Our main goal is to calculate an asymptotic behavior as n →∞ of
the monomer-monomer correlation function K2(n) between two
vertices q and r that are n spaces apart in adjacent rows, in the
thermodynamic limit (infinite volume).
We consider the dimer weights

wh = wv = 1, wd = t > 0.

When t = 1, the dimer model is symmetric, and when t = 0, it
reduces to the dimer model on the square lattice, hence changing t
from 0 to 1 gives a deformation of the dimer model on the square
lattice to the symmetric dimer model on the triangular lattice.
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Block Toeplitz Determinant

Monomer-monomer correlation function as a block Toeplitz
determinant

Our starting point is a determinantal formula for K2(n)
(Fendley–Moessner–Sondhi–Basor–Ehrhardt):

K2(n) =
1

2

√
det Tn(φ),

where Tn(φ) is the finite block Toeplitz matrix,

Tn(φ) = (φj−k), 0 ≤ j , k ≤ n − 1,

where

φk =
1

2π

∫ 2π

0
φ(e ix)e−ikxdx .
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Block Symbol φ(e ix)

The 2× 2 matrix symbol φ(e ix) is

φ(e ix) = σ(e ix)

(
p(e ix) q(e ix)
q(e−ix) p(e−ix)

)
,

with

σ(e ix) =
1

(1− 2t cos x + t2)
√

t2 + sin2 x + sin4 x

and
p(e ix) = (t cos x + sin2 x)(t − e ix),

q(e ix) = sin x(1− 2t cos x + t2).
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BOCG Type Formula

To evaluate the asymptotics of det Tn(φ) as n →∞ we use a
Borodin–Okounkov–Case–Geronimo (BOCG) type formula for
block Toeplitz determinants. For any matrix-valued 2π-periodic
matrix-valued function ϕ(e ix) consider the corresponding
semi-infinite matrices, Toeplitz and Hankel,

T (ϕ) = (ϕj−k)∞j ,k=0 ; H(ϕ) = (ϕj+k+1)
∞
j ,k=0 ,

where

ϕk =
1

2π

∫ 2π

0
ϕ(e ix)e−ikxdx
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BOCG Type Formula

Let ψ(e ix) = φ−1(e ix), where the matrix symbol φ(e ix) was
introduced before, and the inverse is the matrix inverse. Then the
following BOCG type formula holds:

det Tn(φ) =
E (ψ)

G (ψ)n
det (I − Φ) ,

where det (I − Φ) is the Fredholm determinant with

Φ = H
(
e−inxψ(e ix)

)
T−1

(
ψ(e−ix)

)
H

(
e−inxψ(e−ix)

)
T−1

(
ψ(e ix)

)
.

In our case G (ψ) = 1 and

E (ψ) =
t

2t(2 + t2) + (1 + 2t2)
√

2 + t2

(the Basor–Ehrhardt formula).
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Order Parameter

The Basor–Ehrhardt formula implies that the order parameter is
equal to

K2(∞) := lim
n→∞

K2(n) =
1

2

√
E (ψ)

=
1

2

√
t

2t(2 + t2) + (1 + 2t2)
√

2 + t2
.

Our goal is to evaluate an asymptotic behavior of K2(n) as
n →∞. The problem reduces to evaluating an asymptotic
behavior of the Fredholm determinant det (I − Φ), because

K2(n) = K2(∞)
√

det (I − Φ) .
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The Wiener–Hopf Factorization of φ(z)

To evaluate det (I − Φ) we need to invert the semi-infinite Toeplitz
matrices T−1

(
ψ(e ix) and to do so we use the Wiener–Hopf

factorization of the symbol φ. Let z = e ix . Denote

π(z) =

(
p(z) q(z)

q(z−1) p(z−1)

)
,

so that
φ(z) = σ(z)π(z),

where

σ(z) =
1

(1− 2t cos x + t2)
√

t2 + sin2 x + sin4 x

is a scalar function.
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The Wiener–Hopf Factorization

The Wiener–Hopf factorization

Our goal is to factor the matrix-valued symbol φ(z) as
φ(z) = φ+(z)φ−(z), where φ+(z) and φ−(z−1) are analytic
invertible matrix valued functions on the disk D = {z | |z | ≤ 1}.
Denote

τ =
1

t
.

We start with an explicit factorization of the function
t2 + sin2 x + sin4 x .
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Factorization of t2 + sin2 x + sin4 x and the Numbers η1,2

We have that

t2+sin2 x+sin4 x =
1

16η2
1η

2
2

(
z−2 − η2

1

) (
z−2 − η2

2

) (
z2 − η2

1

) (
z2 − η2

2

)
,

where

η1,2 =
1√

2± µ− 2
√

1− t2 ± µ
, µ =

√
1− 4t2 .

The numbers η1,2 are positive for 0 ≤ t ≤ 1
2 and complex

conjugate for t > 1
2 .

Pavel Bleher Dimer model



Graphs of η1, η2

The graphs of |η1(t)| (dashed line), |η2(t)| (solid line), the upper
graphs, and arg η1(t) (dashed line), arg η2(t) (solid line), the lower
graphs
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Wiener–Hopf Factorization

Theorem 1. We have the Wiener–Hopf factorization:

φ(z) = φ+(z)φ−(z),

where
φ+(z) = A(z)Ψ(z), φ−(z) = Ψ−1(z−1),

with
A(z) =

τ

z − τ
,

and

Ψ(z) =
1√
f (z)

D0(z)P1D1(z)P2D2(z)P3D3(z)P4D4(z)P5,

with
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Wiener–Hopf Factorization

f (z) =
(z2 − η2

1)(z
2 − η2

2)

4η1η2

and

D0(z) =

(
1 0
0 z − τ

)
,

D1(z) =

(
z − η1 0

0 1

)
, D2(z) =

(
z + η1 0

0 1

)
,

D3(z) =

(
z − η2 0

0 1

)
, D4(z) =

(
1 0
0 z + η2

)
,

and

Pj =

(
1 pj

0 1

)
, j = 1, 2, 3, 5; P4 =

(
1 0
p4 1

)
.
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Wiener–Hopf Factorization

Here

p1 =
i
[
τ(η2

1 − 1)2 − 2η1(η
2
1 + 1)

]
2(η2

1 − 1)
, p2 = − i(η2

1 + 1)

η2
1 − 1

,

p3 =
iτ(η1 + 1)

2η1
, p4 = −2iη1η2

τ
, p5 = − iτ

2η1
.
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Idea of the Proof

Idea of the proof

The idea of the proof goes back to the works of McCoy and Wu on
the Ising model, and even before to the works of Hopf and
Grothendieck.
Let us recall that φ(z) = σ(z)π(z), where σ(z) is a scalar
function. The difficult part is to factor π(z). To factor π(z) we
use a decreasing power algorithm. In this algorithm at every step
we make a substitution decreasing the power in z of the matrix
entries under consideration.
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Minus-Plus Factorization of φ(z)

Applying the symmetry relation,

φ(z) = σ3φ
T(z)σ3,

to the plus-minus factorization of φ(z),

φ(z) = φ+(z)φ−(z),

we obtain a minus-plus factorization of φ(z):

φ(z) = θ−(z)θ+(z),

where
θ−(z) = σ3φ

T
−(z), θ+(z) = φT

+(z)σ3.

Pavel Bleher Dimer model



A Useful Formula for the Fredholm Determinant det(I −Φ)

Our goal is to evaluate the Fredholm determinant det(I −Φ), with

Φ = H
(
e−inxψ(e ix)

)
T−1

(
ψ(e−ix)

)
H

(
e−inxψ(e−ix)

)
T−1

(
ψ(e ix)

)
.

This Φ is not very handy for an asymptotic analysis. We have
another useful representation of det(I − Φ):

det(I − Φ) = det(I − Λ),

where
Λ = H(z−nα)H(z−nβ)

with

α(z) = φ−(z)θ−1
+ (z), β(z) = θ−1

− (z−1)φ+(z−1).
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The Matrix Elements of the Matrix Λ

The matrix elements of the matrix Λ are

Λjk =
∞∑

a=0

αj+n+a+1βk+n+a+1,

where

αk =
1

2π

∫ 2π

0
α(e ix)e−ikxdx , βk =

1

2π

∫ 2π

0
β(e ix)e−ikxdx .

We point out that this representation allows for a more direct
computation of the determinant of interest without the more
complicated formula involving the operator inverses.
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Main Results

Asymptotics of the monomer-monomer correlation function
for 0 < t < 1

2 .

Theorem 2. Let 0 < t < 1
2 . Then as n →∞,

K2(n) = K2(∞)

[
1− e−2n ln η2

2n

(
C1 + (−1)n+1C2 +O(n−1)

)]
,

with some explicit C1,C2 > 0.
Corollary. This gives that the correlation length is equal to

ξ =
1

2 ln η2
.

As t → 0,

ξ =
1

2t
+O(1) .
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Main Results

Asymptotics of the monomer-monomer correlation function
for 1

2 < t < 1 .

If t > 1
2 , then η1, η2 are complex conjugate numbers,

η1 = es−iθ, η2 = es+iθ;

s = ln |η1| = ln |η2| > 0; 0 < θ <
π

4
.
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Main Results

Theorem 3. Assume that 1
2 < t < 1 . Then as n →∞,

K2(n) = K2(∞)

[
1− e−2ns

2n

(
C1 cos(2θn + ϕ1)

+ C2(−1)n cos(2θn + ϕ2) + C3 + C4(−1)n
)

+O(n−1)

]
,

with s = ln |η1| = ln |η2|, θ = | arg η1| = | arg η2|, and explicit C1,
C2, C3 , C4, ϕ1, ϕ2.
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Thank you!

The End

Thank you!
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