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Abstract

We describe a method for constructive membership testing in black-box groups, using
involution centralisers. If the group is of Lie type in odd characteristic, then the resulting
Monte Carlo algorithm runs in polynomial time. The analysis of the algorithm raises interest-
ing questions about the frequencies of certain configurations of elements in various classes of
simple groups. Our implementation outperforms competing algorithms for important classes
of examples.

1 Introduction

A vital component of many group-theoretic algorithms is an efficient solution of thefactorisation
problemwhich may be defined as follows: given an elementg of a groupG = 〈X〉, expressg as
a word inX.

We present a new algorithm to reduce this problem for a groupG to the same problem in proper
subgroups ofG. In fact, we consider a slightly more general problem. We assume that we are
given a groupG and a subgroupH of G. Our algorithm reduces the problem of testing whether
an arbitraryg ∈ G is a member ofH to instances of the same problem forCH(t) for three
involutionst ∈ H. The algorithm is constructive, in the sense that ifg ∈ H then it returns a
word forg in the generators ofH.

Our algorithm addresses the factorisation problem for the class ofblack box groups with an order
oracle [3]. In this model, group elements are represented by bit-strings of uniform length; the
only group operations permissible are multiplication, inversion, and checking for equality with
the identity element. If the order of an element can be computed in polynomial time, we say the
group has an order oracle.

Permutation groups, groups of words with a confluent rewriting system, and matrix groups de-
fined over finite fields are all covered by this model. In the case of matrix groups, an efficient
order oracle is provided by the algorithm of Celler and Leedham-Green [11].

Well-analysed highly effective algorithms already solve the factorisation problem in two major
classes of groups. Membership in a permutation group can be decided constructively by con-
structinga base and strong generating set(BSGS), a concept introduced by Sims [25]. Similarly
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membership can be decided constructively for the class of soluble groups by constructing poly-
cyclic presentations; see Sims [26].

In an attempt to solve the factorisation problem for matrix groups, Butler and Cannon gener-
alised the notion of a base and strong generating set to such groups. Methods of constructing
such a BSGS include the random Schreier–Sims algorithm of Leon [19] and the Todd–Coxeter
Schreier–Sims algorithm of Butler and Cannon [8]. The resulting chain of subgroups—each a
stabiliser of a suitable base point—allows the solution of the factorisation problem. Naturally,
the BSGS technique is limited to those groups in which a suitable stabiliser chain can be found.

Thecomposition treeapproach and other algorithms developed in the matrix group recognition
project [18] can be used to reduce the factorisation problem for arbitrary matrix groups to the
case of non-abelian simple groups. Effective algorithms for the constructive recognition of the
alternating groups have also been developed [6].

We therefore develop our algorithm mainly for the larger sporadic groups and for simple groups
of Lie type, where neither BSGS techniques nor composition trees are effective, and focus our
heuristics and complexity analysis on these groups. The algorithm works well for the sporadic
groups, and for groups of Lie type over fields of odd order, where involutions and their cen-
tralisers are easy to construct. Its performance is poorer for groups defined over small fields of
characteristic 2; for larger fields of even size, it fails completely, since it is difficult by random
selection to find involutions in such groups.

The original application of the algorithm was as one step in the classification of conjugacy classes
of subgroups ofE7(5) isomorphic to the Rudvalis sporadic simple group [17]. An alternative
factorisation algorithm which uses subset chains to solve the factorisation problem for black-box
groups is under development by Ambroseet al [1].

The structure of the paper is as follows. In Section 2 we present our algorithm for reducing the
factorisation problem to involution centralisers. In Section 3 we discuss the construction of the
centraliser of an involution, which is an essential subroutine of our algorithm, and some of the
interesting theoretical questions raised by it. In Section 4 we discuss how to find the required
involutions, and how to direct the choice of involutions to produce the most useful centralisers.
In Section 5 we discuss practical aspects of the choice of involutions in various representations.
In Section 6 we discuss several approaches to solving the factorisation problem in an involution
centraliser. In Section 7 we consider the complexity of the resulting algorithm. Finally, we report
on the performance of our implementations.

2 The algorithm

Assume we are given a black-box groupG with an order oracle, an elementg of G, and a
subgroupH of G. The following algorithm tests whether or notg ∈ H.

1. Findh ∈ H such that|gh| = 2`. Now definez = (gh)`.
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2. Findx, anH-involution, such that|xz| = 2m. Now definey = (xz)m.

3. ConstructX = CH(x) and decide ify ∈ X.

4. If so, constructY = CH(y) and decide ifz ∈ Y .

5. If so, constructZ = CH(z) and decide ifgh ∈ Z.

Note that〈x, z〉 is D2m having central involutiony = (xz)m. Hencey is in the centraliser ofx
andz is in the centraliser ofy.

To see that the algorithm is constructive, observe that after step 1, we know a word forh in the
generators ofH. After step 2 we similarly know a word forx. In step 3 we can record words
for the generators ofX, and so the recursive call will give us a word fory. Similarly, in step 4
we can record words for the generators ofY and so obtain a word forz. Finally in step 5 we can
record words for the generators ofZ and so find a word forgh and hence a word forg.

The order algorithm of Celler and Leedham-Green [11] assumes that we can factorise certain
large integers, which has consequences both for the practical performance and complexity of this
algorithm. We can avoid these factorisations, using instead thepseudo-orderof an element: a
multiple of its order.

If g is an involution we can takeh to be1G so thatz = g and so we avoid step 5. Observe that
bothx andy are involutions, so this remark applies to the subproblems solved at steps 3 and 4.

We anticipate that the algorithm will usually be applied in cases where we are confident that
G = H. We may wish to prove this by expressing our generators forG as words in the generators
for H, or we may have other elements ofG which we need to factorise for other reasons.

In summary, there are three essential components of the algorithm:

1. finding suitable involutions;

2. given an involution, constructing its centraliser;

3. solving the factorisation problem in this centraliser.

We focus first on the problem of constructing a centraliser.

3 Constructing an involution centraliser

The centraliser of an involution in a black-box group having an order oracle can be constructed
using an algorithm of Bray [9]. The generators of the centraliser are constructed from the gener-
ators of the group and the involution itself, making use of the following result.
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Theorem 1 If x is an involution inH, andw is an arbitrary element ofH, then[x,w] either has
odd order2k + 1, in which casew[x,w]k commutes withx, or has even order2k, in which case
both [x,w]k and [x,w−1]k commute withx.

Proof. In the first casexw[x,w]k = wx[x,w]k+1 = wx[x,w]−k = w[x,w]kx sincex is an
involution; in the second casex[x,w±1]k = x[x,w±1]−k = [x,w±1]−kx. ut

This theorem is used to convert a supply of independent nearly uniformly distributed random
elements ofH into a supply of elements ofCH(x). While these are not, in general, nearly
uniformly-distributed, we have the following result:

Theorem 2 With the above notation, ifw is uniformly distributed among the elements of the
group for which[x,w] has odd order, thenw[x,w]k is uniformly distributed among the elements
of the centraliser ofx.

Proof. If w′ = yw, wherey ∈ CH(x), then[x,w′] = [x,w] so thatw′[x,w′]k = yw[x,w]k; so
each element ofCH(x) occurs exactly once asw runs through any coset. ut

Thus if the odd order case occurs sufficiently often (with probability at least a positive rational
function of the input size), then we can construct nearly-uniformly distributed random elements
of the involution centraliser in polynomial time.

Our approach to constructing the centraliser of a given involution is to use Theorem 1 to obtain
a supply of elements of the centraliser and to use a variety of heuristic methods, depending on
our knowledge of the groupH and our ability to analyse the group generated by the centraliser
elements obtained so far, to decide when they generate the complete centraliser. We call this
processBray’s algorithm.

Problems may arise in applying Bray’s algorithm to construct involution centralisers in arbitrary
groups. If[z, w] almost always has even order, then we have limited control over the distribution
of the centraliser elements that we create, and may not in practice be able to generate the complete
involution centraliser. In particular it may happen thatCG(z) is not generated by involutions; in
this case we have no chance of success unless we find enough cases with[x,w] of odd order.

In this application, we will usually apply the algorithm to simple groups. IfH is known to be
simple, then we conjecture that the probability of[x,w] having odd order is not too small. More
precisely, we formulate the following:

Conjecture 3 If G is a finite simple group andx is an involution inG, then[x, g] has odd order
for at least a proportion1/ log2 |G| of the elementsg ∈ G.

Of course, in each sporadic group we can calculate explicitly the proportion of[x, g] which have
odd order. For every class of involutionsx this proportion is always greater than 17%, and
therefore the conjecture is true in this case, and Bray’s algorithm completes rapidly.
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For the groups of Lie type we content ourselves with the following slightly weaker conjecture,
which nevertheless is sufficient to ensure that this step of our algorithm runs in Monte Carlo
polynomial time.

Conjecture 4 There exist constantsc1, c2 > 0 such that ifG is a finite simple group, of Lie type
and rankr, andx is an involution inG then[x, g] has odd order for at least a proportionc1/r

c2

of the elementsg ∈ G.

We believe that we can takec2 = 2. It may be possible to takec2 = 1.

Parker and Wilson [24] prove the following version of the conjecture for classical groups defined
over fields of odd characteristic.

Theorem 5 There is an absolute constantc such that ifG is a finite simple classical group, with
natural module of dimensiond over a field of odd order, andx is an involution inG, then[x, g]
has odd order for at least a proportionc/d of the elementsg ∈ G.

The exceptional groups require individual treatment, but the rank may now be treated as a con-
stant, as may the order of the Weyl group. The essence of the proof is to find a suitable class of
dihedral subgroup of twice odd order, and use a dimension-counting argument to show that there
are enough involution pairs in these groups.

Theorem 6 Conjecture 4 holds ifG is an exceptional group over a field of odd order.

Proof. First we consider the cases in which the central involution in the Weyl group fuses into
the given class ofG. It follows that such an involutiont inverts every type of maximal torusT in
G. We choose the following tori of odd order; in the case ofE7(q), we take(q7± 1)/2 according
asq ≡ 1 or 3 mod 4.

G T |N(T )/T | dimG dimCG(t)
2G2 q +

√
3q + 1 6 7 3

G2 q2 + q + 1 6 14 6
3D4 q4 − q2 + 1 4 28 12
F4 q4 − q2 + 1 12 52 24
E7 (q7 ± 1)/2 14 133 63
E8 q8 − q4 + 1 24 248 120

In particular there are some nontrivial odd-order products of two involutions in the given class.
We can ignore finitely many values ofq, at the expense of possibly having to change the con-
stants in the conjecture. Now for largeq, the proportion of pairs of inverting involutions whose
product is a regular semisimple element tends to1. Therefore the number of pairs of involutions
accounted for in this way is∼ qk/c, wherek = 2rk (G) + (dimG − rk (G)) = dimG + rkG
andc is a constant, equal to|N(T )/T | in all cases exceptE7, where it is4|N(T )/T |. On the
other hand, the total number of pairs of involutions in this class is2(dimG − dimCG(t)). But
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dimCG(t) is the number of positive roots in these cases, so is1/2(dimG− rkG), and therefore
2(dimG − dimCG(t)) = k. Hence the proportion of pairs of involutions whose product is a
regular semisimple element in a torus of this type, tends to1/c asq tends to infinity. This proves
the theorem in these cases.

Before we treat the remaining cases, note that all we really need to check is that2 dimT +
codimCG(T ) = 2codimCG(t), for a suitable torusT of (nearly) odd order inverted byt.

InE8(q) consider the subgroup2.(PΩ−8 (q)×PΩ−8 (q)) inside2.PΩ+
16(q). The involutions of type

−1414 in Ω−8 (q) lift to involutions in the spin group, and it is straight-forward to calculate the
trace of these involutions acting on the Lie algebra: this is 24, and therefore they are involutions
of typeA1E7. In particularcodimCG(t) = 112. Also these involutions invert every maximal
torus ofO−8 , in particular the cyclic torus of orderq4 + 1, of twice odd order. Finally, the
centraliser ofT is essentiallyT ×D4 so has dimension4 + 28 = 32 and codimension 216. So
2 dimT + codimCG(T ) = 8 + 216 = 224 = 2× 112 as required.

In E7(q) we look inside(SL2(q)◦2Ω+
12(q).2).2 at the involutions of type(−1, 1)⊗ (−12110) and

calculate their trace on the Lie algebra to be 25. ThuscodimCG(t) = 54. Such involutions can
simultaneously invertq ± 1 in SL2(q) andq2 + 1 in O−4 (q) so we obtain a torusT of rank3 and
at most 4 times odd order, with centraliser of typeT ×D4(q). Thus2 dimT + codimCG(T ) =
6 + 133− 3− 28 = 108 = 2× 54 as required.

The other class of involutions inE7(q) can be dealt with again in(SL2(q) ◦ 2Ω+
12(q).2).2, this

time looking at the involutions of type−1418 in O+
12. These have trace 5 on the Lie algebra so

are of typeA1D6, and have centraliser of codimension133 − 3 − 66 = 64 in G. They invert
a torus of typeq4 + 1 (and so of twice odd order) insideO−8 (q), and therefore this torus has
centraliser of typeT × A1(q)A1(q2), and dimension4 + 3 + 6 = 13. Finally we calculate
2 dimT + codimCG(T ) = 8 + 133− 13 = 128 = 2× 64 as required.

In E6(q) or 2E6(q) we look inside the subgroup(3D4(q)× (q2 ± q + 1)):3, and find involutions
inverting a torus of shapeq4 − q2 + 1 (and hence odd order) inside3D4(q). This torus has
centraliser of dimension6 only, and the involutions have centraliser codimension78− 3− 35 =
40. Finally, 2 dimT + codimCG(T ) = 8 + 78− 6 = 80 = 2× 40 as required.

The other class of involutions inE6(q) or 2E6(q) can be dealt with by looking inside the subgroup
of typeA1A5 at an outer involution of type(−1, 1)⊗(−1, 15). This involution has trace 14 on the
Lie algebra, so is of typeT1D5. It inverts various toriT of rank2 with centralisersT × GL4(q)
of dimension 18, and we havecodimCG(t) = 78− 1− 45 = 32, so2 dimT + codimCG(T ) =
4 + 78− 18 = 64 = 2codimCG(t) as required.

Finally consider the involutions of typeB4 in F4(q). First note that the pre-images in2.Ω9(q) of
negatives of reflections in vectors of plus type lift to involutions in this class. They invert toriT
of dimension1, centralisingT ◦ 2.Ω7(q). In particularcodimCG(T ) = 52 − 1 − 21 = 30 and
codimCG(t) = 52− 36 = 16, so2 dimT + codimCG(T ) = 2 + 30 = 2× 16 as required. We
can chooseT to have orderq ± 1, so of twice odd order. ut
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Remark. For groups of Lie type in characteristic 2, “most” elements are regular semisimple
elements, and therefore have odd order. It seems that “most” products of two conjugate invo-
lutions are regular semisimple elements of a suitable subgroup, and again have odd order. The
casePSLn(q) can be proved by a modification of the argument in [24] and we expect that this
argument can be generalised to the other classical groups.

In practice, producing elements that generate the centralisers of involutions of simple groups by
this means is effective, although, as the open questions and conjectures above suggest a rigorous
complexity analysis is some way off. On the other hand, this technique does not work well if the
involution is in a normal subgroup of large index. It is particularly ineffective if the involution is
in a normal2-subgroup, and the involution centraliser has large index (or even if these properties
hold in a quotient group).

The other problem arising is knowing when we have enough elements to generate the required
involution centraliser. This is particularly acute when we have noa priori knowledge of the
structure of the involution centralisers inH. However, in our application, we do not necessarily
need the full involution centraliser – we just need to generate enough of the involution centraliser
to contain the element that we are looking for. Our implementations used various heuristics
to decide when we have constructed enough of the involution centraliser and add additional
generators as necessary.

A variation of Theorem 1 allows us to test constructively for conjugacy of involutions in suitable
groups. To decide conjugacy ofx andy we construct random conjugatesxi of x, until we find
xiy with odd order2k + 1, say. In the dihedral groupD4k+2 = 〈xi, y〉, we can see that(yxi)k

conjugatesxi to y. If two random conjugates ofx have a high enough probability of having
product of odd order, this provides an effective method.

This observation enables us to construct involution centralisers as conjugates of centralisers al-
ready constructed, or taken from a database. In practice, if, after a small number of random
selections, this method fails to find a product of odd order, we assume thatx andy are non-
conjugate, and use the original Bray algorithm to construct generators ofCG(y).

4 Finding involutions

The first step of the algorithm constructs an involution by powering up an element of even order.

If our group has enough even order elements, we can choose which involutions to use in the first
two steps of the algorithm. This is important because our algorithm reduces the problem being
solved to the same problem in the centralisers of these involutions, and it may be more tractable
in some centralisers than in others. For example, in the classical groups over fields of odd order,
the involutions with the smallest centralisers are those whose eigenspaces on the natural module
have dimension roughly half the dimension of the space.

Two choices are involved, one of the elementh (and hence the involutionz), and the other of
the involutionx (and hence the involutiony). To what extent can we control which conjugacy
classes the involutionsx, y andz belong to?
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Two central questions arise. Are there enough involutions in the desired classes and with the
right properties? How do we identify which class an involution belongs to? We consider the first
here, and the second in Section 5.

For the first choice (of the involutionz = (gh)`), we can try severalh ∈ H until we find
one with(gh)` in our desired class of involutions. The second choice in the algorithm is of the
involutionx. This is a little more complicated, since we impose conditions on the two involutions
x andy = (xz)m simultaneously. However, we can first find an involutionx0 in a suitableH-
conjugacy class, and then take random conjugatesx of x0 until we find one such thaty is in a
suitable conjugacy class.

The effectiveness of these choices in practice depends on the proportions of elementsgh (resp.
xz) which power up to involutions of each class. For the sporadic groups, these proportions are
constants which can be calculated from the character tables. In some cases, these proportions
are zero: for certain choices of involution classesC1, C2, C3, there are no elementsx ∈ C1,
z ∈ C2, with xz powering to an element inC3. Hence we do not have a completely free choice of
these three classes. In practice we normally want to choosex, y andz all to be elements of the
largest class of involutions, in which case the probabilities are all positive. Indeed, in this case
the probability thatgh powers to an element in this class is at least5/64 = 0.078125, while the
probability thatxz powers to an element in this class is at least6181967/148341375 ≈ 0.041674.

For groups of Lie type in odd characteristic, we have the following result:

Theorem 7 There exists a constantc > 0 such that for every simple groupG of Lie type in odd
characteristic, of Lie rankr, and every conjugacy classC of involutions ofG, the proportion of
elements ofG having a power inC is at leastc/r2.

Proof. Our strategy is for each class of involutions to find a suitable class of maximal torus, such
that at least some fixed proportion of regular semisimple elements (rss-elements) in that torus
power up to an involution in the required class. By choosing a torusT with |N(T )/T | bounded
by a constant timesr2 in each case, we prove the result.

Consider first the classical groups, starting with the symplectic groups as they are the easiest to
describe. LetG ∼= PSp2r(q) with q odd, and letz be an involution inG. ThenCG(z) is the
inverse image inG of one of the following subgroups of̂G = Sp2r(q):

• Sp2k(q)× Sp2r−2k(q), with 0 < k < r/2;

• Spr(q) o C2, if r is even;

• GLr(q).2, if q ≡ 1 mod 4;

• GUr(q).2, if q ≡ 3 mod 4.

A Singer cycle inSp2k(q) has orderqk + 1, so in the four cases we can choose maximal tori in
Sp2r(q) of shape:
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• Cqk+1 × Cqr−k+1, with 0 < k < r/2;

• Cqk+1 × Cqk+1, with k = r/2 whenr is even;

• Cqr−1;

• Cqr+1.

In the case of the cyclic tori, our involution is the image of an element of order4 in Sp2r(q),
and at least half of the rss-elements in the torus power up to such an element. In the other two
cases, we are interested in the powers of2 which divideqk + 1 andqr−k + 1. If these powers
are different (for example ifr is odd) then at least half the rss-elements power up to our desired
involution (modulo±1). On the other hand, if both are divisible by the same2-power, we need
to power up an element which has the full2-power order in one factor but not the other. Again,
half the rss-elements have this property.

Finally, in the four cases we haveN(T )/T isomorphic toC2k×C2r−2k, Cr oC2, C2r andC2r, all
of which have order at most2r2 as required. This completes the proof for symplectic groups.

We turn now to orthogonal groups. There are again essentially two kinds of involutions in
PΩn(q), those which lift to involutions inΩn(q) and those which lift to elements of order4.
The former have centralisers which are essentially products of two smaller orthogonal groups,
while the latter have centralisers which are essentiallyGLr(q).2 or GUr(q).2, wheren = 2r.
The same argument now works as in the symplectic case, except that orthogonal groups in odd
dimensions do not have Singer cycles: in this case we use the Singer cycle in an orthogonal
group in one dimension fewer.

Next consider the groupsG ∼= PSLn(q). Here the involution centralisers are the images of the
following subgroups ofSLn(q):

• (SL2k(q)× SLn−2k(q)).Cq−1, for 0 < k < n/2;

• (SL2k−1(q) × SLn−2k+1(q)).Cq−1, for n even,0 < k ≤ n/2, andq ≡ 1 mod 2n2, where
n2 denotes the2-part ofn.

• (SLk(q)× SLk(q)).Cq−1.C2, wheren = 2k and eitherk is even orq ≡ 1 mod 4;

• SLk(q2).Cq+1.C2, wheren = 2k and eitherq ≡ 3 mod 4 or n2 does not divideq − 1.

In the last case we choose the Singer cycle, of orderqn − 1/q − 1, and note that our desired
involution is the image of an element of order2 gcd(n2, q − 1) in this torus. Therefore at least
half of the elements in this torus power up to our desired element.

In the second case, our desired involution is the image of an element of order2n2 in the maximal
torus which is a diagonal product of cyclic groups of orderq2k−1 − 1 andqn−2k+1 − 1, of index
q − 1 in the direct product. Half the rss-elements in this torus have even order in the quotient
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Cq−1, so power up to our involution. The same argument applies in the first case whenn is odd,
and the third case whenk is odd.

We are left with the first case whenn is even and the third case whenk is even. Here the torus
is a diagonal product of cyclic groups of ordersq2` − 1 andq2m − 1 where2(` + m) = n. But
now if the2-parts of̀ andm are equal, most elements of the torus fail to power up to our desired
involution. Therefore we must choose a different maximal torus, such asCq2`−1−1 × Cq2m−1, in
which half the rss-elements do now power to our involution.

The groupsPSUn(q) can be treated in the same way.

This leaves us now with only the exceptional groups to consider. See Table 1 for the shapes of
involution centralisers and tori that we use; the information about centralisers appears in [14],
and about shapes of tori in [16]. In each case it is easy to see that at least a quarter of the rss-
elements in the torus power up to our desired involution. In particular, if the torus is cyclic, then
at least half its elements power to the involution. In the non-cyclic cases we have chosen tori
such that the power of2 dividing the two factors is either the same or differs by1. ut

Thus for groups of Lie type in odd characteristic we can choose the class ofz in polynomial time.

Now we turn to the choice of the involutionsx andy. As in the case of the sporadic groups, there
are certain combinations of conjugacy classes forx, y andz which are impossible. For example,
in SLd(q) (with d odd) if x andz are involutions whose(−1)-eigenspaces have dimensionsk
andm respectively, then the(−1)-eigenspace ofy clearly cannot have dimension greater than
k + m. It appears in practice that, subject to some restrictions of this kind, we can also get both
x andy in our desired conjugacy classes in polynomial time. However, this depends on certain
reasonable assumptions about the distribution of the elementsxz in the group, which we have
not been able to prove. We formulate the following:

Conjecture 8 If C1, C2 and C3 are three classes of involutions in a group of Lie type over a
field of odd order, and Lie rankr, then the probability that random elementsx ∈ C1, z ∈ C2 have
(xz)k ∈ C3 for some integerk, is either0 or at leastc/r, for some absolute constantc. Moreover,
for each choice ofC1 andC2 there exists a classC3 such that this probability is non-zero.

In practice we do not need as much as this, as we can chooseC2 to be equal toC1, and both
of these can be relatively large classes of involutions. For example, an easy modification of the
proof of Theorem 5 proves the following special case of the conjecture:

Theorem 9 There is an absolute constantc > 0 such that if(x, y) is a random pair of involutions
of type(−12k, 1n−2k) in PSLn(q), with q odd, then the probability thatxy powers up to an
involution of type(−14k, 1n−4k) or (−14k−n, 12n−4k) is at leastc/n2.

Similarly, we can modify the arguments of Theorem 6 to prove the following:
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Table 1: Involution centralisers in simple exceptional groups,q odd

Group Involution centraliser Conditions Torus
3D4(q) (SL2(q) ◦ SL2(q3)).2 C(q−1)(q3+1)

G2(q) (SL2(q) ◦ SL2(q)).2 Cq2−1
2G2(q) C2 × PSL2(q) Cq−1

F4(q) (SL2(q) ◦ Sp6(q)).2 C(q−1)(q3+1)

2.Ω9(q) Cq4+1

E6(q) (C(q−1)/3 ◦ 4.Ω+
10(q)).4 q ≡ 1 mod 12 Cq−1 ◦3 Cq5−1

(Cq−1 ◦ 4.Ω+
10(q)).4 q ≡ 5 mod 12 Cq−1 × Cq5−1

(C(q−1)/3 ◦ 2.Ω+
10(q)).2 q ≡ 7 mod 12 Cq−1 ◦3 Cq5−1

(Cq−1 ◦ 2.Ω+
10(q)).2 q ≡ 11 mod 12 Cq−1 × Cq5−1

2.(PSL2(q)× PSL6(q)).2 d = (3, q − 1) C(q+1) ◦d C(q2+q+1)(q3+1)
2E6(q) (Cq+1 ◦ 2.Ω−10(q)).2 q ≡ 1 mod 12 Cq+1 × Cq5+1

(Cq+1 ◦ 4.Ω−10(q)).4 q ≡ 5 mod 12 Cq+1 × Cq5+1

(C(q+1)/3 ◦ 2.Ω−10(q)).2 q ≡ 7 mod 12 Cq+1 ◦3 Cq5+1

(C(q+1)/3 ◦ 4.Ω−10(q)).4 q ≡ 11 mod 12 Cq+1 ◦3 Cq5+1

2.(PSL2(q)× PSU6(q)).2 d = (3, q + 1) Cq+1 ◦d C(q2+q+1)(q3+1)

E7(q) (SL2(q) ◦ 2.Ω+
12(q).2).2 q ≡ 1 mod 4 Cq−1 ◦2 Cq6−1

(SL2(q) ◦ 2.Ω+
12(q).2).2 q ≡ 3 mod 4 Cq+1 ◦2 Cq6−1

2.PSL8(q).4.2 q ≡ 1 mod 8 C(q7−1)/2

2× PSU8(q).2.2 q ≡ 3 mod 8 C(q7+1)/2

2× PSL8(q).2.2 q ≡ 5 mod 8 C(q7−1)/2

2.PSU8(q).4.2 q ≡ 7 mod 8 C(q7+1)/2

(3.E6(q) ◦ C(q−1)/2).S3 q ≡ 1 mod 12 C(q6+q3+1)(q−1)/2

(E6(q) ◦ C(q−1)/2).2 q ≡ 5 mod 12 C(q6+q3+1)(q−1)/2

(2E6(q) ◦ C(q+1)/2).2 q ≡ 7 mod 12 C(q6−q3+1)(q+1)/2

(3.2E6(q) ◦ C(q+1)/2).S3 q ≡ 11 mod 12 C(q6−q3+1)(q+1)/2

E8(q) 2.Ω+
16(q).2 Cq8−1

SL2(q) ◦ 2E7(q) C(q+1)(q7−1)

Note: the notation◦d means that the central product in which the subgroupsCd of the two
factors are identified. Of course, as abstract groups these central products are isomorphic to
direct products of smaller groups, but we use the central product notation to make it clear which
elements of the torus are central in the universal group of Lie type.
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Theorem 10 There is an absolute constantc > 0 such that ifC is any class of involutions in an
exceptional group of Lie type over a field of odd order, then the probability that a random pair of
elements fromC has product of even order is at leastc.

We have already noted that there are better algorithms for the alternating groups, so we do not
consider these groups further.

Most of our results do not carry over to the remaining class of simple groups: those of Lie type
defined over fields of characteristic 2. In particular, Theorems 5 and 6 do not hold. Most elements
are now regular semisimple elements, which have odd order, and the proportion of elements of
even order in a group of Lie type over the field of sizeq = 2e isO(q−1). Therefore the complexity
of our algorithm in these cases is at least linear inq (since for example we may need to chooseq
random elements for step 1), and so is exponential in the size of the input.

For small fields of characteristic 2, we can at least obtain elements of even order, and power them
up to obtain involutions. But the number of conjugacy classes of involutions increases as the Lie
rank increases, and in only a bounded number of classes can we obtain members by constructing
powers of random elements of even order. Moreover, the centralisers of involutions in these
classes have very large normal subgroups of 2-power order making the factorisation problems
in these subgroups intractable by any currently available means. Our algorithm is therefore
unsuitable for this class of groups.

5 Identifying the class of an involution

Since our algorithm reduces the factorisation problem inG to three factorisation problems in
involution centralisers, it makes sense to try to make these latter problems as easy as possible.
The best way to do this is to choose involutions whose centralisers are small. Indeed, if we do
not do this, it is possible for the depth of the recursion to beO(d), whered is the dimension of
the underlying vector space, and since the number of calls to the factorisation algorithm more
than doubles at each level, we obtain an exponential-time algorithm.

In the classical groups, the involutions with the smallest centralisers are those whose eigenspaces
on the natural module have dimensions roughly half the dimension of the space. Theorem 7
implies that in step 1 of the algorithm we need at mostO(d2) trials to find an involution in a
particular conjugacy class. By allowing a range of dimensions for the eigenspace, we can reduce
this toO(d).

Theorem 11 Let λ be a constant,0 < λ < 1/2, and letG be a classical group over a field
of odd order, with natural representation of dimensiond. Then the proportion of elements ofG
which power to an involution (modulo scalars) whose eigenspaces have dimensions in the range
λd to (1− λ)d isO(d−1).

Proof. For each eigenspace dimension the proportion isO(d−2), and there areO(d) choices for
this dimension. ut
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This raises the question: how do we ensure that our involutions are in these suitable conjugacy
classes? Indeed, we really need a quick test to eliminate those which are not.

Since we construct the involutions as powers of other elements, it makes sense to try to identify
the class of the involution without explicitly powering. To find involutions in particular classes,
if we are working in the natural representation, we calculate the characteristic polynomial of
our elementgh (resp.xz), and look for cases where this polynomial is a product of two irre-
ducible factors of roughly the same degree. Then with reasonably high probability the element
in question powers up to an involution with the required property.

For large degree representations this strategy works well in practice; for small degrees it is not
so important to specify the classes of involutions we use.

The other cases we need to consider are classical groups in representations other than the natural
representation, and exceptional groups. In all cases we may assume that the characteristic of
the representation is the defining characteristic of the group, for otherwise the degree of the
representation is at least linear in the field size.

One strategy in these cases is to construct the involution centraliser using Bray’s algorithm, and
non-constructively recognise the composition factors using the methods of [5] or [22]. However,
we can streamline this by exploiting the information we already have, in particular the order of
the element which powers up to our involution.

Recall that aprimitive prime divisor(ppd) is a prime divisor ofpk − 1 which does not divide
pi−1 for i < k. By [22] ppds exist for all(p, k) except(2, 6) and fork = 1 whenp is a Mersenne
prime, andk = 2 whenp is a Fermat prime. These small values ofk, however, are not relevant
to us. Apk-ppd element is an element of order divisible by a primitive prime divisor ofpk − 1.

In G ∼= SLn(q) orGLn(q) whereq = pe, we look for aqk-ppd element withk close ton/2, and
power it up to an involutiont. NowH = CG(t) is isomorphic to(SLk(q)× SLn−k(q)).(q − 1).
In natural characteristic, we can discover the exact value ofk by constructingH, restricting its
action to the+1 or −1 eigenspace oft and non-constructively recognising the almost-simple
group which results.

In the other classical groups a similar approach works. For the symplectic and orthogonal groups,
we again look for aqk-ppd element withk close ton/2. It then has a good chance of powering
up to an involution negating ak-space. For the unitary groups, the calculations are slightly
complicated by the fact that the underlying field has orderq2 rather thanq. Therefore aqk-ppd
element no longer has to move ak-space: it could move just ak/2-space. In any case, it has a
reasonable chance to power up to an involution that negates either ak-space or ak/2-space in
the natural representation. If necessary, we can determine which, by finding its centraliser and
then performing non-constructive recognition.
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6 Working in the involution centralisers

Applying the algorithm requires three membership tests for elements in involution centralisers.
A critical component in its success is the method of solving these subproblems. This choice may
depend on the representation of the group. If the group is a matrix group, we can use the BSGS
approach mentioned in Section 1, but this technique is limited to those groups in which a suitable
stabiliser chain can be found. If the group is very small, simple algorithms can be applied. We
discuss three other possible approaches and comment on their effectiveness.

6.1 The recursive approach

The conceptually simplest approach is to apply the algorithm recursively to each centraliser in
turn as long as possible and then rely on simple methods.

One consequence is that we have to apply our algorithm to arbitrary iterated involution cen-
tralisers in our original groupG, which may have a very wide range of structures. Many of our
refinements to the algorithm do not apply in this more general context. For example, we know
nothing about the structure of the arbitrary centralisers, so we cannot choose “nice” involutions
within these.

To understand the limits of this approach, we consider the situations in which the algorithm may
fail, and discuss how some of them can be addressed.

Firstly, we make no progress if any of the involutionsx, y or z is central inH. Therefore we need
first to reduce toH/Z(H), then solve the problem in this quotient group, and finally lift back toH
by testing all elements of the relevant coset ofZ(H). Of course, ifZ(H) is large (for example if
H is abelian) this lifting can be time-consuming. However, membership testing in a large abelian
group is known to be hard in the black-box context (although soluble in polynomial time in the
matrix group context [20]), and this step cannot be avoided in any recursive implementation of
our algorithm applied to arbitrary black-box groups. If we have a black box representation ofH,
we can easily derive one forH/Z(H), so that this reduction is possible.

There are other types of group in which our algorithm does not improve on simple direct methods.
Firstly, if H/Z(H) has odd order then we fail at the first step. But in this caseH is soluble, by
the Feit–Thompson theorem, so soluble group methods would be more appropriate. Secondly,
if H/Z(H) does not contain a Klein 4-group, then we fail at the second step. But in this case,
by Glaubermann’sZ∗-theorem [13],H is the product of a soluble normal subgroup with the
involution centraliser. Thirdly, if all involutions inH/Z(H) are central, we fail to recurse to a
smaller group. In this case we might as well work inH/Z∞(H), and if this fails to contain any
involutions, then againH is soluble.
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6.2 The database approach

In its original application, it was envisaged that the algorithm would be applied primarily to
sporadic groups, which have a small number of conjugacy classes and where the involution cen-
tralisers are well-known. Hence it would be feasible to consult a database of the involution
centralisers, containing sufficient information to solve the factorisation problem. An implemen-
tation along these lines was developed [15], but the limited gains did not seem to be worth the
additional storage requirements and complications in the programming. In any case, such a pro-
posal is impractical if we consider arbitrary simple groups.

6.3 The composition tree approach

Perhaps the most powerful approach is to construct acomposition treefor each centraliser. Recall
that Aschbacher [2] classified the maximal subgroups ofGL(d, q) into nine categories. In sum-
mary, a linear group preserves some natural linear structure and has a normal subgroup related
to this structure, or it is almost simple modulo scalars. The on-going matrix group recognition
project [18] explores the structure of a linear group by determining (at least one of) its categories
in the Aschbacher classification. The homomorphisms and associated normal subgroups for the
various categories are captured by constructing a composition tree, whose leaves are composition
factors for the matrix groupG. If we can write the image of an element ofG in the generators
of each composition factor ofG, and so solve the factorisation problem for a composition factor,
then we can construct the composition tree and solve the factorisation problem forG. We solve
the factorisation problem for the leaves using a variety of approaches which depend on the con-
crete realisation of the leaf: in particular, if the leaf is a matrix group, we may apply the BSGS
machinery discussed above.

If our input group is sporadic or of Lie type, then an involution centraliser is usually reducible.
Hence, we can exploit the geometric structure of the involution centraliser and decide member-
ship in the centraliser by constructing its composition tree. With this approach, we solve the
factorisation problem for the centraliser by constructing its composition tree and solving the
factorisation problem for each of its composition factors.

If a composition factor, described as a matrix group, is too large to solve the factorisation prob-
lem directly, we can now use our factorisation algorithm to reduce the problem to involution
centralisers, and so on. If the composition factor is isomorphic toPSL(2, q), then the algorithm
of [12] provides a constructive solution in polynomial time to the factorisation problem for this
factor.

7 The complexity of the algorithm

We have already ruled out applying our algorithm to the alternating groups, as better methods
are available [6], and there are only finitely many sporadic groups, so they play no role in an

15



asymptotic complexity analysis. As an algorithm for arbitrary black box groups, or groups of
Lie type over fields of characteristic 2, it is certainly exponential in the worst case.

Thus, the interesting case for complexity analysis is that of groups of Lie type in odd charac-
teristic. Since any cross characteristic representation gives considerably longer input length and
therefore better complexity, we can assume that the group is given as a matrix group in defining
characteristic.

Theorem 12 Assuming Conjecture 8, if the factorisation algorithm is applied to a group of Lie
type in odd characteristic, it runs in timeO(d4), excluding the recursive calls.

Proof. In step 1, we may needO(d) attempts to findz in a suitable class. Each attempt requires
a multiplication, computation of a characteristic polynomial and its factorisation, which have
complexityO(d3).

In step 2 a similar argument applies, except that we need to be sure that the distribution of the
involutions to whichxz powers is random enough. Conjecture 8 implies that we again need at
mostO(d) attempts to find a suitabley.

Each time we calculate an involution centraliser, we needO(d) attempts to find a commutator of
odd order, and we need only a bounded number of these to obtain the full centraliser with high
probability. ut

Corollary 13 Assuming Conjecture 8, running our algorithm recursively is stillO(d4), exclud-
ing external calls to the composition tree algorithm.

Proof. Each time we invoke the algorithm, we recurse to three more calls to the algorithm.
However, as noted in Section 2, in two of these calls the element we are trying to factorise is
itself an involution, which means we can dispense with steps 1 and 5. Therefore at depthk in the
recursion we have exactly2k+1 − 1 calls to our algorithm.

Moreover, at depthk our group has become essentially a direct product of2k smaller classical
groups. In terms of complexity, the worst case is when each involution splits the space up into
two pieces, one twice the dimension of the other. Thus a step which took timed4 at one level
takes time(d/3)4 + (2d/3)4 = 17d4/81 at the next level down.

Lettingµ = 17/81 we find that the total running time is bounded byd4 times

∞∑
k=0

(2k+1 − 1)µk =
2

1− 2µ
− 1

1− µ
=

1

(1− 2µ)(1− µ)
,

sinceµ < 1/2. Since this is a constant, our total running time is stillO(d4). ut
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8 Implementation and performance

This algorithm uses random elements of various groups. For a discussion of algorithms used to
produce such elements see [4, 10, 23]. In our implementations, we use the product replacement
algorithm [10].

One remark relevant to any implementation is that, in practice, if a membership test in a group
succeeds, then the resulting word is constructed and stored as astraight line program: the length
of a word in a given generating set constructed inn multiplications and inversions can increase
exponentially withn, whereas the length of the corresponding straight line program is linear in
n. One may intuitively think of a straight line program forh ∈ H = 〈X〉 simply as a group word
onX that evaluates toh, but is stored in compressed format. For further discussion of this point,
see [18].

Two early versions of the algorithm were implemented: a database-driven version [15] in MAGMA

[7], with a database covering a few of the smaller sporadic groups; and a recursive version in
GAP [21], which used standard library functions for the base case.

These implementations accepted a group of arbitrary type, but of course their performance de-
pended heavily on this type, since the costs of the basic operations vary. The second implemen-
tation revealed the problems of the purely recursive approach discussed above, in that the algo-
rithm could become “stuck” in iterated involution centralisers with very large normal subgroups
of 2-power order where the Bray algorithm struggled to obtain involution centralisers. Another
problem was the difficulty of deciding when there were sufficient generators for an involution
centraliser, and if not, which of the centralisers in the recursion was at fault. Nevertheless it was
often successful in factoring elements of the sporadic groupCo1.

Our current implementation of the algorithm is in MAGMA [7]. One motivation for its develop-
ment is to use the algorithm to solve for membership in composition factors of matrix groups.
Hence the input to this implementation is an irreducible matrix group. It constructs (at most)
three involution centralisers. A composition tree is now constructed for each centraliser, thus
allowing a solution to the factorisation problem in each. The composition tree reduces the
factorisation problem to almost simple groups. At this stage we may generate further calls to
the factorisation algorithm. Alternatively, if the groups are sufficiently small, we invoke the
Schreier–Sims algorithm (or its variations) to solve the problem.

Let g, h be two involutions in a groupG. Recall from Section 3 that a variation of Bray’s al-
gorithm allows one to decide ifg is conjugate toh; if so, we obtain a conjugating element. If
we repeatedly test for membership in the same group, then we store the chosen involutions and
their associated composition trees; as a preliminary step in a new membership test, we decide if
the new involutions are conjugate to the known ones; if so, we do not need to construct a new
composition tree.

Our algorithm is competitive with the standard BSGS machinery for matrix groups of “moderate”
dimension. If the matrix group has no subgroup of reasonable index, our algorithm is currently
the only practical approach. For example, the largest proper subgroup ofJ4 has index about
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108; our algorithm readily completes a constructive membership test in the112-dimensional
representation overGF (2).

The computations reported in Table 2 were carried out using MAGMA V2.10 on a Pentium III
800 MHz processor. The input to the algorithm is an irreducible representation of a matrix group.
In the column entitled “Time”, we list the CPU time in seconds (averaged over three runs) needed
to solve the factorisation problem for a random element of the group.

We report on the application of the algorithm to some of the larger sporadic groups and to certain
classical groups. The strategy outlined in Section 4 to direct the choice of involution works well.
For example inSL20(5) the three centralisers obtained areSLn(5), with n = 8, 10 or 12. A
further recursion then reduces ton ≤ 6, and an invocation of a random Schreier–Sims algorithm
now completes the task. None of these examples completed using the random Schreier–Sims
algorithm in MAGMA .

Name d q Time

J4 112 2 20.1

SL(20, 5) 20 5 10.0

G2(35) 7 35 1.0

Ly 111 5 120

Th 248 3 4300

Sp(10, 9) 10 9 6.1

Table 2: Performance of implementation for a sample of groups
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