Constructive membership testing in black-box groups

P.E. Holmes, S.A. Linton, E.A. O'Brien, A.J.E. Ryba and R.A. Wilson

Abstract

We describe a method for constructive membership testing in black-box groups, using
involution centralisers. If the group is of Lie type in odd characteristic, then the resulting
Monte Carlo algorithm runs in polynomial time. The analysis of the algorithm raises interest-
ing questions about the frequencies of certain configurations of elements in various classes of
simple groups. Our implementation outperforms competing algorithms for important classes
of examples.

1 Introduction

A vital component of many group-theoretic algorithms is an efficient solution déttterisation
problemwhich may be defined as follows: given an elemgnf a groupG = (X), expresg as
aword inX.

We present a new algorithm to reduce this problem for a greup the same problem in proper
subgroups of7. In fact, we consider a slightly more general problem. We assume that we are
given a group and a subgroup/ of G. Our algorithm reduces the problem of testing whether
an arbitraryg € G is a member ofA to instances of the same problem 10f,(¢) for three
involutionst € H. The algorithm is constructive, in the sense thaj ¥ H then it returns a
word for g in the generators aff.

Our algorithm addresses the factorisation problem for the clasiaci box groups with an order
oracle[3]. In this model, group elements are represented by bit-strings of uniform length; the
only group operations permissible are multiplication, inversion, and checking for equality with
the identity element. If the order of an element can be computed in polynomial time, we say the
group has an order oracle.

Permutation groups, groups of words with a confluent rewriting system, and matrix groups de-
fined over finite fields are all covered by this model. In the case of matrix groups, an efficient
order oracle is provided by the algorithm of Celler and Leedham-Green [11].

Well-analysed highly effective algorithms already solve the factorisation problem in two major
classes of groups. Membership in a permutation group can be decided constructively by con-
structinga base and strong generating $BISGS), a concept introduced by Sims [25]. Similarly

1

membership can be decided constructively for the class of soluble groups by constructing poly-
cyclic presentations; see Sims [26].

In an attempt to solve the factorisation problem for matrix groups, Butler and Cannon gener-
alised the notion of a base and strong generating set to such groups. Methods of constructing
such a BSGS include the random Schreier—Sims algorithm of Leon [19] and the Todd—Coxeter
Schreier—Sims algorithm of Butler and Cannon [8]. The resulting chain of subgroups—each a
stabiliser of a suitable base point—allows the solution of the factorisation problem. Naturally,
the BSGS technique is limited to those groups in which a suitable stabiliser chain can be found.

The composition tre@approach and other algorithms developed in the matrix group recognition
project [18] can be used to reduce the factorisation problem for arbitrary matrix groups to the
case of non-abelian simple groups. Effective algorithms for the constructive recognition of the
alternating groups have also been developed [6].

We therefore develop our algorithm mainly for the larger sporadic groups and for simple groups
of Lie type, where neither BSGS techniques nor composition trees are effective, and focus our
heuristics and complexity analysis on these groups. The algorithm works well for the sporadic
groups, and for groups of Lie type over fields of odd order, where involutions and their cen-
tralisers are easy to construct. Its performance is poorer for groups defined over small fields of
characteristic 2; for larger fields of even size, it fails completely, since it is difficult by random
selection to find involutions in such groups.

The original application of the algorithm was as one step in the classification of conjugacy classes
of subgroups off;(5) isomorphic to the Rudvalis sporadic simple group [17]. An alternative
factorisation algorithm which uses subset chains to solve the factorisation problem for black-box
groups is under development by Ambregel [1].

The structure of the paper is as follows. In Section 2 we present our algorithm for reducing the
factorisation problem to involution centralisers. In Section 3 we discuss the construction of the
centraliser of an involution, which is an essential subroutine of our algorithm, and some of the
interesting theoretical questions raised by it. In Section 4 we discuss how to find the required
involutions, and how to direct the choice of involutions to produce the most useful centralisers.
In Section 5 we discuss practical aspects of the choice of involutions in various representations.
In Section 6 we discuss several approaches to solving the factorisation problem in an involution
centraliser. In Section 7 we consider the complexity of the resulting algorithm. Finally, we report
on the performance of our implementations.

2 The algorithm

Assume we are given a black-box groGpwith an order oracle, an elementof G, and a
subgroupH of G. The following algorithm tests whether or npe H.

1. Findh € H such thatgh| = 2¢. Now definez = (gh)".

2

2. Findz, an H-involution, such thatrz| = 2m. Now definey = (zz)™.
3. ConstructX = Cy(x) and decide ify € X.
4. If so, construct” = C'y(y) and decide it € Y.

5. If so, constructl = Cy(z) and decide ifjh € Z.

Note that(z, z) is D,,, having central involutiony = (zz)™. Hencey is in the centraliser of
andz is in the centraliser of.

To see that the algorithm is constructive, observe that after step 1, we know a waradhftire
generators of. After step 2 we similarly know a word for. In step 3 we can record words
for the generators ok, and so the recursive call will give us a word far Similarly, in step 4
we can record words for the generators'oédnd so obtain a word for. Finally in step 5 we can
record words for the generators Bfand so find a word fogh and hence a word fay.

The order algorithm of Celler and Leedham-Green [11] assumes that we can factorise certain
large integers, which has consequences both for the practical performance and complexity of this
algorithm. We can avoid these factorisations, using insteagpskado-ordeof an element: a
multiple of its order.

If g is an involution we can takg to bels; so thatz: = g and so we avoid step 5. Observe that
bothx andy are involutions, so this remark applies to the subproblems solved at steps 3 and 4.

We anticipate that the algorithm will usually be applied in cases where we are confident that
G = H. We may wish to prove this by expressing our generator&fas words in the generators
for H, or we may have other elements@which we need to factorise for other reasons.

In summary, there are three essential components of the algorithm:

1. finding suitable involutions;
2. given an involution, constructing its centraliser;

3. solving the factorisation problem in this centraliser.

We focus first on the problem of constructing a centraliser.

3 Constructing an involution centraliser

The centraliser of an involution in a black-box group having an order oracle can be constructed
using an algorithm of Bray [9]. The generators of the centraliser are constructed from the gener-
ators of the group and the involution itself, making use of the following result.

Theorem 1 If z is an involution inH, andw is an arbitrary element off, then[z, w] either has
odd order2k + 1, in which caseuv|z, w]* commutes with, or has even orde2k, in which case
both [z, w]* and [, w™!]* commute withe.

Proof. In the first caserw[z, w|* = wz[z, w*! = wr[r,w]™* = wlr, w*z sincez is an
involution; in the second casgér, w*'|* = x|z, w*| ™% = [z, w*!]|*z, 0

This theorem is used to convert a supply of independent nearly uniformly distributed random
elements ofH into a supply of elements af';(z). While these are not, in general, nearly
uniformly-distributed, we have the following result:

Theorem 2 With the above notation, i@ is uniformly distributed among the elements of the
group for which[z, w] has odd order, them [z, w]* is uniformly distributed among the elements
of the centraliser of.

Proof. If w' = yw, wherey € Cy(z), then[z, w'] = [z, w] so thatw'[x, w']* = yw[z, w]*; so

each element aof';; (x) occurs exactly once as runs through any coset. O

k

Thus if the odd order case occurs sufficiently often (with probability at least a positive rational
function of the input size), then we can construct nearly-uniformly distributed random elements
of the involution centraliser in polynomial time.

Our approach to constructing the centraliser of a given involution is to use Theorem 1 to obtain
a supply of elements of the centraliser and to use a variety of heuristic methods, depending on
our knowledge of the groufd and our ability to analyse the group generated by the centraliser
elements obtained so far, to decide when they generate the complete centraliser. We call this
procesBray’s algorithm

Problems may arise in applying Bray'’s algorithm to construct involution centralisers in arbitrary
groups. If[z, w| almost always has even order, then we have limited control over the distribution

of the centraliser elements that we create, and may not in practice be able to generate the complete
involution centraliser. In particular it may happen th&f(z) is not generated by involutions; in

this case we have no chance of success unless we find enough cageswiithf odd order.

In this application, we will usually apply the algorithm to simple groupsHIfs known to be
simple, then we conjecture that the probabilityofw] having odd order is not too small. More
precisely, we formulate the following:

Conjecture 3 If G is a finite simple group and is an involution inG, then[z, g| has odd order
for at least a proportion / log, |G| of the elementsg € G.

Of course, in each sporadic group we can calculate explicitly the proportion gfwhich have
odd order. For every class of involutionsthis proportion is always greater than 17%, and
therefore the conjecture is true in this case, and Bray’s algorithm completes rapidly.

4

For the groups of Lie type we content ourselves with the following slightly weaker conjecture,
which nevertheless is sufficient to ensure that this step of our algorithm runs in Monte Carlo
polynomial time.

Conjecture 4 There exist constants, c; > 0 such that ifG is a finite simple group, of Lie type
and rankr, andz is an involution inG then[z, g| has odd order for at least a proportian /r
of the elementg € G.

We believe that we can take = 2. It may be possible to take = 1.

Parker and Wilson [24] prove the following version of the conjecture for classical groups defined
over fields of odd characteristic.

Theorem 5 There is an absolute constansuch that ifG is a finite simple classical group, with
natural module of dimensiod over a field of odd order, and is an involution inG, then|[z, g]
has odd order for at least a proportiatyd of the elementg € G.

The exceptional groups require individual treatment, but the rank may now be treated as a con-
stant, as may the order of the Weyl group. The essence of the proof is to find a suitable class of
dihedral subgroup of twice odd order, and use a dimension-counting argument to show that there
are enough involution pairs in these groups.

Theorem 6 Conjecture 4 holds i€7 is an exceptional group over a field of odd order.

Proof. First we consider the cases in which the central involution in the Weyl group fuses into
the given class af;. It follows that such an involutioninverts every type of maximal tordsin

G. We choose the following tori of odd order; in the casé®fq), we take(q” +1)/2 according

asq = 1 or3 mod 4.

G T IN(T)/T| dimG dimCg(t)
Gy q++/3¢+1 6 7 3

Gy ¢F+q+1 6 14 6
D, =2 +1 4 28 12

Fy ¢ —-¢+1 12 52 24

E, ("+1))2 14 133 63

Ey ¢&—-q¢" +1 24 248 120

In particular there are some nontrivial odd-order products of two involutions in the given class.
We can ignore finitely many values ¢f at the expense of possibly having to change the con-
stants in the conjecture. Now for largethe proportion of pairs of inverting involutions whose
product is a regular semisimple element tends. tbherefore the number of pairs of involutions
accounted for in this way is- ¢*/c, wherek = 2rk (G) + (dim G — rk (G)) = dim G + tk G

andc is a constant, equal §aV(7")/T| in all cases excepk;, where it is4|N(7')/T|. On the
other hand, the total number of pairs of involutions in this claggdsm G — dim C(t)). But

5

dim C(t) is the number of positive roots in these cases, $¢2¢dim G — rk G), and therefore
2(dim G — dim C¢(t)) = k. Hence the proportion of pairs of involutions whose product is a
regular semisimple element in a torus of this type, tendg t@sq tends to infinity. This proves
the theorem in these cases.

Before we treat the remaining cases, note that all we really need to check xdinaf” +
codim Cg(T') = 2codim C(t), for a suitable toru§” of (nearly) odd order inverted by

In Ex(q) consider the subgroup (P (q) x PQg (¢)) inside2: PQ{s(¢). The involutions of type
—141%in Qg (¢) lift to involutions in the spin group, and it is straight-forward to calculate the
trace of these involutions acting on the Lie algebra: this is 24, and therefore they are involutions
of type A, E7. In particularcodim Cg(t) = 112. Also these involutions invert every maximal
torus of Og, in particular the cyclic torus of order' + 1, of twice odd order. Finally, the
centraliser ofl" is essentiallyl” x D, so has dimensio# + 28 = 32 and codimension 216. So
2dim T + codim Cg(T) = 8 + 216 = 224 = 2 x 112 as required.

In E7(q) we look inside(S Ly (q) 02915 (¢).2).2 at the involutions of typé—1,1) ® (—121%%) and
calculate their trace on the Lie algebra to be 25. Tdwdim C(¢) = 54. Such involutions can
simultaneously inverg + 1 in SLy(q) andg® + 1 in O; (¢) so we obtain a torug of rank3 and
at most 4 times odd order, with centraliser of typex D,(q). Thus2dim 7" + codim C¢(T) =
6+ 133 —3 — 28 = 108 = 2 x 54 as required.

The other class of involutions ifi;(¢) can be dealt with again i0SL,(q) o 2Q15(¢).2).2, this
time looking at the involutions of type 1418 in O7;. These have trace 5 on the Lie algebra so
are of typeA; Dg, and have centraliser of codimensio$8 — 3 — 66 = 64 in G. They invert

a torus of typeg! + 1 (and so of twice odd order) insid@; (¢), and therefore this torus has
centraliser of typel’ x A;(q)A;(¢*), and dimensiont + 3 + 6 = 13. Finally we calculate
2dim T + codim C(T) = 8 + 133 — 13 = 128 = 2 x 64 as required.

In Es(q) or 2Es(q) we look inside the subgrouD4(q) x (¢? & ¢ + 1)):3, and find involutions
inverting a torus of shape' — ¢> + 1 (and hence odd order) insidé,(¢). This torus has
centraliser of dimensiof only, and the involutions have centraliser codimensgi®n- 3 — 35 =
40. Finally, 2 dim 7" + codim C¢(T') = 8 + 78 — 6 = 80 = 2 x 40 as required.

The other class of involutions ifis(¢) or 2 Es(q) can be dealt with by looking inside the subgroup
of type A, A5 at an outer involution of typé—1, 1) ® (-1, 1°). This involution has trace 14 on the
Lie algebra, so is of typ&) Ds. It inverts various toril” of rank2 with centralisers” x G'L4(q)

of dimension 18, and we havedim C¢(t) = 78 — 1 — 45 = 32, so2dim T + codim Cg(T') =
44 78 — 18 = 64 = 2codim C;(t) as required.

Finally consider the involutions of typB, in F,(q). First note that the pre-imagesamy(q) of
negatives of reflections in vectors of plus type lift to involutions in this class. They inveft'tori
of dimensionl, centralisingl’ o 2:Q;(q). In particularcodim C(7") = 52 — 1 — 21 = 30 and
codim C(t) = 52 — 36 = 16, s02dim 7" + codim C(T') = 2+ 30 = 2 x 16 as required. We
can choosé" to have order + 1, so of twice odd order. O

Remark. For groups of Lie type in characteristic 2, “most” elements are regular semisimple
elements, and therefore have odd order. It seems that “most” products of two conjugate invo-
lutions are regular semisimple elements of a suitable subgroup, and again have odd order. The
casePSL,(q) can be proved by a modification of the argument in [24] and we expect that this
argument can be generalised to the other classical groups.

In practice, producing elements that generate the centralisers of involutions of simple groups by
this means is effective, although, as the open questions and conjectures above suggest a rigorous
complexity analysis is some way off. On the other hand, this technique does not work well if the
involution is in a normal subgroup of large index. It is particularly ineffective if the involution is

in a normak-subgroup, and the involution centraliser has large index (or even if these properties
hold in a quotient group).

The other problem arising is knowing when we have enough elements to generate the required
involution centraliser. This is particularly acute when we havearfriori knowledge of the
structure of the involution centralisers lh. However, in our application, we do not necessarily
need the full involution centraliser — we just need to generate enough of the involution centraliser
to contain the element that we are looking for. Our implementations used various heuristics
to decide when we have constructed enough of the involution centraliser and add additional
generators as necessary.

A variation of Theorem 1 allows us to test constructively for conjugacy of involutions in suitable
groups. To decide conjugacy ofandy we construct random conjugatesof x, until we find

x;y with odd order2k + 1, say. In the dihedral groupy..» = (z;,y), we can see thdyx;)*
conjugatese; to y. If two random conjugates of have a high enough probability of having
product of odd order, this provides an effective method.

This observation enables us to construct involution centralisers as conjugates of centralisers al-
ready constructed, or taken from a database. In practice, if, after a small number of random
selections, this method fails to find a product of odd order, we assume tad y are non-
conjugate, and use the original Bray algorithm to construct generat6ts(gf.

4 Finding involutions

The first step of the algorithm constructs an involution by powering up an element of even order.

If our group has enough even order elements, we can choose which involutions to use in the first
two steps of the algorithm. This is important because our algorithm reduces the problem being
solved to the same problem in the centralisers of these involutions, and it may be more tractable
in some centralisers than in others. For example, in the classical groups over fields of odd order,
the involutions with the smallest centralisers are those whose eigenspaces on the natural module
have dimension roughly half the dimension of the space.

Two choices are involved, one of the eleménftand hence the involution), and the other of
the involutionz (and hence the involution). To what extent can we control which conjugacy
classes the involutions, y andz belong to?

Two central questions arise. Are there enough involutions in the desired classes and with the
right properties? How do we identify which class an involution belongs to? We consider the first
here, and the second in Section 5.

For the first choice (of the involution = (gh)%), we can try severak € H until we find

one with(gh)* in our desired class of involutions. The second choice in the algorithm is of the
involutionz. This s a little more complicated, since we impose conditions on the two involutions
x andy = (zz)™ simultaneously. However, we can first find an involutianin a suitableH -
conjugacy class, and then take random conjugatekz, until we find one such thaj is in a
suitable conjugacy class.

The effectiveness of these choices in practice depends on the proportions of elgingea&p.

xz) which power up to involutions of each class. For the sporadic groups, these proportions are
constants which can be calculated from the character tables. In some cases, these proportions
are zero: for certain choices of involution classks(C,, C3, there are no elements € C,,

z € Cy, With zz powering to an element i;. Hence we do not have a completely free choice of
these three classes. In practice we normally want to chepgand: all to be elements of the

largest class of involutions, in which case the probabilities are all positive. Indeed, in this case
the probability thayh powers to an element in this class is at leég&td = 0.078125, while the
probability thatz = powers to an element in this class is at |€d8t1967 /148341375 ~ 0.041674.

For groups of Lie type in odd characteristic, we have the following result:

Theorem 7 There exists a constant> 0 such that for every simple group of Lie type in odd
characteristic, of Lie rank, and every conjugacy clags of involutions ofGG, the proportion of
elements of7 having a power irC'is at leastc/r?.

Proof. Our strategy is for each class of involutions to find a suitable class of maximal torus, such
that at least some fixed proportion of regular semisimple elements (rss-elements) in that torus
power up to an involution in the required class. By choosing a térusth | N (7") /7| bounded

by a constant times? in each case, we prove the result.

Consider first the classical groups, starting with the symplectic groups as they are the easiest to
describe. Leti = PSp,,.(q) with ¢ odd, and let: be an involution inGG. ThenCg(z) is the
inverse image itz of one of the following subgroups @f = Sp,.(q):

® Spar(q) X Spar—ar(q), With 0 < k < r/2;
o Sp,.(q)1Cy, if ris even;

e GL,(q).2,if ¢ =1 mod 4;

e GU,.(q).2,if ¢ =3 mod 4.

A Singer cycle inSp,.(q) has order* + 1, so in the four cases we can choose maximal tori in
Spa,(q) of shape:

Cyei1 X Cgryq, With k = /2 whenr is even;
[] qu_l;

[Cq7'+1 .

In the case of the cyclic tori, our involution is the image of an element of otderSp..(q),

and at least half of the rss-elements in the torus power up to such an element. In the other two
cases, we are interested in the powerg ofhich divide¢® + 1 and¢"~* + 1. If these powers

are different (for example if is odd) then at least half the rss-elements power up to our desired
involution (modulo+1). On the other hand, if both are divisible by the sain@ower, we need

to power up an element which has the f2dpower order in one factor but not the other. Again,

half the rss-elements have this property.

Finally, in the four cases we havé(T") /T isomorphic toCyy, X Co, ok, C,. 1 Ca, Co, andCy,., all
of which have order at mogt-? as required. This completes the proof for symplectic groups.

We turn now to orthogonal groups. There are again essentially two kinds of involutions in
PQ,(q), those which lift to involutions 2, (¢) and those which lift to elements of ordér

The former have centralisers which are essentially products of two smaller orthogonal groups,
while the latter have centralisers which are essenti@lly.(q).2 or GU,(q).2, wheren = 2r.

The same argument now works as in the symplectic case, except that orthogonal groups in odd
dimensions do not have Singer cycles: in this case we use the Singer cycle in an orthogonal
group in one dimension fewer.

Next consider the groups = PSL,(q). Here the involution centralisers are the images of the
following subgroups of'L,,(q):

o (SLak(q) x SLy—2k(q)).Cy—q, for0 < k < n/2;

o (SLok—1(q) x SLy—2+1(q)).Cy—1, forn even,0 < k < n/2, andg = 1 mod 2n,, where
no denotes the-part ofn.

o (SLi(q) x SLi(q)).Cy—1.C2, wheren = 2k and eitherk is even org = 1 mod 4;

e SLi(q?).Cyy1.C2, wheren = 2k and eithely = 3 mod 4 or n, does not dividey — 1.

In the last case we choose the Singer cycle, of ogtler 1/¢ — 1, and note that our desired
involution is the image of an element of ordegcd(nq, ¢ — 1) in this torus. Therefore at least
half of the elements in this torus power up to our desired element.

In the second case, our desired involution is the image of an element oRarderthe maximal
torus which is a diagonal product of cyclic groups of orgiér' — 1 andg™—2*+! — 1, of index
g — 1 in the direct product. Half the rss-elements in this torus have even order in the quotient

C,—1, SO power up to our involution. The same argument applies in the first caserwbenld,
and the third case whehis odd.

We are left with the first case whenis even and the third case whéns even. Here the torus

is a diagonal product of cyclic groups of ordgfé — 1 and¢*™ — 1 where2(¢ + m) = n. But

now if the2-parts of¢ andm are equal, most elements of the torus fail to power up to our desired
involution. Therefore we must choose a different maximal torus, su€h=as_; x Cpm_q, in
which half the rss-elements do now power to our involution.

The groupsPSU, (¢) can be treated in the same way.

This leaves us now with only the exceptional groups to consider. See Table 1 for the shapes of
involution centralisers and tori that we use; the information about centralisers appears in [14],
and about shapes of tori in [16]. In each case it is easy to see that at least a quarter of the rss-
elements in the torus power up to our desired involution. In particular, if the torus is cyclic, then
at least half its elements power to the involution. In the non-cyclic cases we have chosen tori
such that the power &f dividing the two factors is either the same or differsiby O

Thus for groups of Lie type in odd characteristic we can choose the class pblynomial time.

Now we turn to the choice of the involutionsandy. As in the case of the sporadic groups, there
are certain combinations of conjugacy classesfarandz which are impossible. For example,

in SLy(q) (with d odd) if x and z are involutions whos¢—1)-eigenspaces have dimensions
andm respectively, then thé—1)-eigenspace of clearly cannot have dimension greater than

k + m. It appears in practice that, subject to some restrictions of this kind, we can also get both
x andy in our desired conjugacy classes in polynomial time. However, this depends on certain
reasonable assumptions about the distribution of the elemeritsthe group, which we have

not been able to prove. We formulate the following:

Conjecture 8 If C;, C, and C; are three classes of involutions in a group of Lie type over a
field of odd order, and Lie rank, then the probability that random elements Cy, z € C; have
(z2)* € C3 for some integek;, is either(or at leastc/r, for some absolute constantMoreover,

for each choice of; and(C, there exists a class; such that this probability is non-zero.

In practice we do not need as much as this, as we can clibasebe equal ta’;, and both
of these can be relatively large classes of involutions. For example, an easy modification of the
proof of Theorem 5 proves the following special case of the conjecture:

Theorem 9 There is an absolute constant- 0 such thatif(x, y) is a random pair of involutions
of type (—1%,1"-2%) in PSL,(q), with ¢ odd, then the probability thaty powers up to an
involution of typg(— 1%, 1"=%) or (—1%-" 127~} js at leastc/n>.

Similarly, we can modify the arguments of Theorem 6 to prove the following:

10

Table 1: Involution centralisers in simple exceptional groypsid

Group Involution centraliser Conditions Torus
Dila) (SLa(q) 0 SLa(d?))2 Clatia+)
G2(q) (SLs(q) 0 SLa(q)).2 Cp1
2G2(Q) 02 X PSLQ(Q) Cq,1
Fi(q) (SLa2(q) © Spe(q)).2 Cla-1)(g*+1)
2.Q9(q) Cq4+1
Es(q) (Clg=1y/3 0 4.075(q)) 4 g =1mod 12 Cy-103 Cps_1
(Cye104.0%(q)) 4 g =5 mod 12 Cyo1 X Cpp_4
(Clg—1y/3 0 2.0(q)).2 = 7 mod 12 Cy—103Cyps_4
(Cye102.9(q)) ¢ =11 mod 12 Cyo1 X Cppy
2(PSL2((]) X PSLﬁ(q))Q d= (3, q— 1) C(q+1) Og C(q2+q+1)(q3+1)
2Fs(q) (Cyi102.07(q)).2 q =1 mod 12 Cyr1 X Cpp i1
(Cy104.27(q)) 4 g =5 mod 12 Co1 X Cppia
(Clg+1y3©02.800(9)).2 ¢ =Tmod 12 Cyr1 03 Cop
(Crg41y/304.00(9))4 ¢=11mod 12 Cyt1 03 Cppia
2. (PSL2() X PSUﬁ(q)) 2 d= (3, q+ 1) Cq+1 Oy C(q2+q+1)(q3+1)
E:(q) (SLa(q) 0 2.09%5(q).2).2 g=1mod4 Cy—102 Cpo_y
(SLy(q) o Q.QE().2).2 g =3 mod 4 Cyt1 02 Cpo_q
2.PSLg(q).4.2 g =1 mod 8 Cl-1)/2
2 X PSUS(Q)22 q = 3 mod 8 C(741)/2
2 x PSLg(q).2.2 ¢ = 5 mod 8 Clr-1)/2
2.PSUs(q).4.2 g = 7mod 8 Clg+1)/2
(3.E6(q) o O(q_l)/g).33 q= 1 mod 12 C(q6+q3+1)(q 1)/2
(Eg((]) o C(qfl)/g).Q q = 5 mod 12 C(q6+q3+1)(q 1)/2
(2E6(q) o C(q+1)/2).2 q = 7 mod 12 C(q(i_q3+1)(q+1)/2
(32E6(q) o C(q+1)/2).53 q= 11 mod 12 C(q67q3+1)(q+1)/2
Es(q) 2.0{(q).2 Cgs—1
SLy(q) 0 2E7(q) Clat1)@7-1)

Note: the notatioro; means that the central product in which the subgralipof the two

factors are identified. Of course, as abstract groups these central products are isomorphic to
direct products of smaller groups, but we use the central product notation to make it clear which
elements of the torus are central in the universal group of Lie type.

11

Theorem 10 There is an absolute constant> 0 such that ifC is any class of involutions in an
exceptional group of Lie type over a field of odd order, then the probability that a random pair of
elements fron® has product of even order is at least

We have already noted that there are better algorithms for the alternating groups, so we do not
consider these groups further.

Most of our results do not carry over to the remaining class of simple groups: those of Lie type
defined over fields of characteristic 2. In particular, Theorems 5 and 6 do not hold. Most elements
are now regular semisimple elements, which have odd order, and the proportion of elements of
even order in a group of Lie type over the field of sjze 2¢is O(¢~'). Therefore the complexity

of our algorithm in these cases is at least lineay {gince for example we may need to chogse
random elements for step 1), and so is exponential in the size of the input.

For small fields of characteristic 2, we can at least obtain elements of even order, and power them
up to obtain involutions. But the number of conjugacy classes of involutions increases as the Lie
rank increases, and in only a bounded number of classes can we obtain members by constructing
powers of random elements of even order. Moreover, the centralisers of involutions in these
classes have very large normal subgroups of 2-power order making the factorisation problems
in these subgroups intractable by any currently available means. Our algorithm is therefore
unsuitable for this class of groups.

5 Identifying the class of an involution

Since our algorithm reduces the factorisation problendito three factorisation problems in
involution centralisers, it makes sense to try to make these latter problems as easy as possible.
The best way to do this is to choose involutions whose centralisers are small. Indeed, if we do
not do this, it is possible for the depth of the recursion t@lj€), whered is the dimension of

the underlying vector space, and since the number of calls to the factorisation algorithm more
than doubles at each level, we obtain an exponential-time algorithm.

In the classical groups, the involutions with the smallest centralisers are those whose eigenspaces
on the natural module have dimensions roughly half the dimension of the space. Theorem 7
implies that in step 1 of the algorithm we need at mos$t?) trials to find an involution in a
particular conjugacy class. By allowing a range of dimensions for the eigenspace, we can reduce
this toO(d).

Theorem 11 Let A be a constant) < A < 1/2, and letG be a classical group over a field

of odd order, with natural representation of dimensianThen the proportion of elements Gf

which power to an involution (modulo scalars) whose eigenspaces have dimensions in the range
Adto (1 —N)disO(d™).

Proof. For each eigenspace dimension the proportiaii(ig—2), and there aré€(d) choices for
this dimension. O

12

This raises the question: how do we ensure that our involutions are in these suitable conjugacy
classes? Indeed, we really need a quick test to eliminate those which are not.

Since we construct the involutions as powers of other elements, it makes sense to try to identify
the class of the involution without explicitly powering. To find involutions in particular classes,

if we are working in the natural representation, we calculate the characteristic polynomial of
our elementyh (resp.zz), and look for cases where this polynomial is a product of two irre-
ducible factors of roughly the same degree. Then with reasonably high probability the element
in question powers up to an involution with the required property.

For large degree representations this strategy works well in practice; for small degrees it is not
so important to specify the classes of involutions we use.

The other cases we need to consider are classical groups in representations other than the natural
representation, and exceptional groups. In all cases we may assume that the characteristic of
the representation is the defining characteristic of the group, for otherwise the degree of the
representation is at least linear in the field size.

One strategy in these cases is to construct the involution centraliser using Bray’s algorithm, and
non-constructively recognise the composition factors using the methods of [5] or [22]. However,
we can streamline this by exploiting the information we already have, in particular the order of
the element which powers up to our involution.

Recall that gprimitive prime divisor(ppd) is a prime divisor op* — 1 which does not divide
p'—1fori < k. By [22] ppds exist for al(p, k) except(2, 6) and fork = 1 whenp is a Mersenne
prime, andk = 2 whenp is a Fermat prime. These small valuestphowever, are not relevant
to us. Ap*-ppd element is an element of order divisible by a primitive prime divisgr*of 1.

InG = SL,(q) or GL,(q) whereq = p¢, we look for ag*-ppd element wittk close ton /2, and
power it up to an involution. Now H = C¢(t) is isomorphic to(SLi(q) X SL,—x(q)).(¢ — 1).

In natural characteristic, we can discover the exact valuelf constructingH, restricting its
action to the+1 or —1 eigenspace of and non-constructively recognising the almost-simple
group which results.

In the other classical groups a similar approach works. For the symplectic and orthogonal groups,
we again look for a/*-ppd element withi close ton /2. It then has a good chance of powering

up to an involution negating a-space. For the unitary groups, the calculations are slightly
complicated by the fact that the underlying field has okgdenather than;. Therefore a*-ppd
element no longer has to move:espace: it could move just/a/2-space. In any case, it has a
reasonable chance to power up to an involution that negates eithepace or & /2-space in

the natural representation. If necessary, we can determine which, by finding its centraliser and
then performing non-constructive recognition.

13

6 Working in the involution centralisers

Applying the algorithm requires three membership tests for elements in involution centralisers.
A critical component in its success is the method of solving these subproblems. This choice may
depend on the representation of the group. If the group is a matrix group, we can use the BSGS
approach mentioned in Section 1, but this technique is limited to those groups in which a suitable
stabiliser chain can be found. If the group is very small, simple algorithms can be applied. We
discuss three other possible approaches and comment on their effectiveness.

6.1 The recursive approach

The conceptually simplest approach is to apply the algorithm recursively to each centraliser in
turn as long as possible and then rely on simple methods.

One consequence is that we have to apply our algorithm to arbitrary iterated involution cen-
tralisers in our original groug;, which may have a very wide range of structures. Many of our
refinements to the algorithm do not apply in this more general context. For example, we know
nothing about the structure of the arbitrary centralisers, so we cannot choose “nice” involutions
within these.

To understand the limits of this approach, we consider the situations in which the algorithm may
fail, and discuss how some of them can be addressed.

Firstly, we make no progress if any of the involutiang, or z is central inff. Therefore we need
firstto reduce td{/Z(H), then solve the problem in this quotient group, and finally lift back'to

by testing all elements of the relevant coseZ¢#). Of course, ifZ(H) is large (for example if

H is abelian) this lifting can be time-consuming. However, membership testing in a large abelian
group is known to be hard in the black-box context (although soluble in polynomial time in the
matrix group context [20]), and this step cannot be avoided in any recursive implementation of
our algorithm applied to arbitrary black-box groups. If we have a black box representafibn of

we can easily derive one f@f /Z(H), so that this reduction is possible.

There are other types of group in which our algorithm does not improve on simple direct methods.
Firstly, if H/Z(H) has odd order then we fail at the first step. But in this ddse soluble, by

the Feit-Thompson theorem, so soluble group methods would be more appropriate. Secondly,
if H/Z(H) does not contain a Klein 4-group, then we fail at the second step. But in this case,
by Glaubermann'sz*-theorem [13],H is the product of a soluble normal subgroup with the
involution centraliser. Thirdly, if all involutions i/ /Z(H) are central, we fail to recurse to a
smaller group. In this case we might as well workAHiZ>°(H), and if this fails to contain any
involutions, then agaitt/ is soluble.

14

6.2 The database approach

In its original application, it was envisaged that the algorithm would be applied primarily to
sporadic groups, which have a small number of conjugacy classes and where the involution cen-
tralisers are well-known. Hence it would be feasible to consult a database of the involution
centralisers, containing sufficient information to solve the factorisation problem. An implemen-
tation along these lines was developed [15], but the limited gains did not seem to be worth the
additional storage requirements and complications in the programming. In any case, such a pro-
posal is impractical if we consider arbitrary simple groups.

6.3 The composition tree approach

Perhaps the most powerful approach is to constraotaposition treéor each centraliser. Recall

that Aschbacher [2] classified the maximal subgroup& bfd, ¢) into nine categories. In sum-

mary, a linear group preserves some natural linear structure and has a normal subgroup related
to this structure, or it is almost simple modulo scalars. The on-going matrix group recognition
project [18] explores the structure of a linear group by determining (at least one of) its categories
in the Aschbacher classification. The homomorphisms and associated normal subgroups for the
various categories are captured by constructing a composition tree, whose leaves are compaosition
factors for the matrix groug:. If we can write the image of an element@fin the generators

of each composition factor @f, and so solve the factorisation problem for a composition factor,
then we can construct the composition tree and solve the factorisation probléin Wée solve

the factorisation problem for the leaves using a variety of approaches which depend on the con-
crete realisation of the leaf: in particular, if the leaf is a matrix group, we may apply the BSGS
machinery discussed above.

If our input group is sporadic or of Lie type, then an involution centraliser is usually reducible.
Hence, we can exploit the geometric structure of the involution centraliser and decide member-
ship in the centraliser by constructing its composition tree. With this approach, we solve the
factorisation problem for the centraliser by constructing its composition tree and solving the
factorisation problem for each of its composition factors.

If a composition factor, described as a matrix group, is too large to solve the factorisation prob-
lem directly, we can now use our factorisation algorithm to reduce the problem to involution
centralisers, and so on. If the composition factor is isomorphieSd.(2, ¢), then the algorithm

of [12] provides a constructive solution in polynomial time to the factorisation problem for this
factor.

7 The complexity of the algorithm

We have already ruled out applying our algorithm to the alternating groups, as better methods
are available [6], and there are only finitely many sporadic groups, so they play no role in an

15

asymptotic complexity analysis. As an algorithm for arbitrary black box groups, or groups of
Lie type over fields of characteristic 2, it is certainly exponential in the worst case.

Thus, the interesting case for complexity analysis is that of groups of Lie type in odd charac-
teristic. Since any cross characteristic representation gives considerably longer input length and
therefore better complexity, we can assume that the group is given as a matrix group in defining
characteristic.

Theorem 12 Assuming Conjecture 8, if the factorisation algorithm is applied to a group of Lie
type in odd characteristic, it runs in tim@(d*), excluding the recursive calls.

Proof. In step 1, we may nee@(d) attempts to find in a suitable class. Each attempt requires
a multiplication, computation of a characteristic polynomial and its factorisation, which have
complexityO(d?).

In step 2 a similar argument applies, except that we need to be sure that the distribution of the
involutions to whichzz powers is random enough. Conjecture 8 implies that we again need at
mostO(d) attempts to find a suitablg

Each time we calculate an involution centraliser, we n@éd) attempts to find a commutator of
odd order, and we need only a bounded number of these to obtain the full centraliser with high
probability. O

Corollary 13 Assuming Conjecture 8, running our algorithm recursively is 8ilii*), exclud-
ing external calls to the composition tree algorithm.

Proof. Each time we invoke the algorithm, we recurse to three more calls to the algorithm.
However, as noted in Section 2, in two of these calls the element we are trying to factorise is
itself an involution, which means we can dispense with steps 1 and 5. Therefore ak defie
recursion we have exactyf ! — 1 calls to our algorithm.

Moreover, at deptit our group has become essentially a direct produ@ afmaller classical
groups. In terms of complexity, the worst case is when each involution splits the space up into
two pieces, one twice the dimension of the other. Thus a step which tookitimeone level

takes timg(d/3)* + (2d/3)* = 17d*/81 at the next level down.

Letting u = 17/81 we find that the total running time is bounded &ytimes

> 2 1 1
YoM -1t = — = ,
= =2 1—p (1—=2p)(1—p)
sinceu < 1/2. Since this is a constant, our total running time is §#i{tl*). O

16

8 Implementation and performance

This algorithm uses random elements of various groups. For a discussion of algorithms used to
produce such elements see [4, 10, 23]. In our implementations, we use the product replacement
algorithm [10].

One remark relevant to any implementation is that, in practice, if a membership test in a group
succeeds, then the resulting word is constructed and storesti@sght line program the length

of a word in a given generating set constructed imultiplications and inversions can increase
exponentially withn, whereas the length of the corresponding straight line program is linear in
n. One may intuitively think of a straight line program fbore H = (X') simply as a group word

on X that evaluates th, but is stored in compressed format. For further discussion of this point,
see [18].

Two early versions of the algorithm were implemented: a database-driven version [1AGKM
[7], with a database covering a few of the smaller sporadic groups; and a recursive version in
GAP [21], which used standard library functions for the base case.

These implementations accepted a group of arbitrary type, but of course their performance de-
pended heavily on this type, since the costs of the basic operations vary. The second implemen-
tation revealed the problems of the purely recursive approach discussed above, in that the algo-
rithm could become “stuck” in iterated involution centralisers with very large normal subgroups
of 2-power order where the Bray algorithm struggled to obtain involution centralisers. Another
problem was the difficulty of deciding when there were sufficient generators for an involution
centraliser, and if not, which of the centralisers in the recursion was at fault. Nevertheless it was
often successful in factoring elements of the sporadic growp

Our current implementation of the algorithm is inAdMA [7]. One motivation for its develop-
ment is to use the algorithm to solve for membership in composition factors of matrix groups.
Hence the input to this implementation is an irreducible matrix group. It constructs (at most)
three involution centralisers. A composition tree is now constructed for each centraliser, thus
allowing a solution to the factorisation problem in each. The composition tree reduces the
factorisation problem to almost simple groups. At this stage we may generate further calls to
the factorisation algorithm. Alternatively, if the groups are sufficiently small, we invoke the
Schreier—Sims algorithm (or its variations) to solve the problem.

Let g, h be two involutions in a groug:. Recall from Section 3 that a variation of Bray’s al-
gorithm allows one to decide if is conjugate td; if so, we obtain a conjugating element. If

we repeatedly test for membership in the same group, then we store the chosen involutions and
their associated composition trees; as a preliminary step in a new membership test, we decide if
the new involutions are conjugate to the known ones; if so, we do not need to construct a new
composition tree.

Our algorithm is competitive with the standard BSGS machinery for matrix groups of “moderate”
dimension. If the matrix group has no subgroup of reasonable index, our algorithm is currently
the only practical approach. For example, the largest proper subgrodphafs index about

17

108; our algorithm readily completes a constructive membership test in thalimensional
representation over F'(2).

The computations reported in Table 2 were carried out using A V2.10 on a Pentium Il

800 MHz processor. The input to the algorithm is an irreducible representation of a matrix group.
In the column entitled “Time”, we list the CPU time in seconds (averaged over three runs) needed
to solve the factorisation problem for a random element of the group.

We report on the application of the algorithm to some of the larger sporadic groups and to certain
classical groups. The strategy outlined in Section 4 to direct the choice of involution works well.
For example inS Ly (5) the three centralisers obtained &fé,,(5), with n = 8, 10 or 12. A

further recursion then reducesric< 6, and an invocation of a random Schreier-Sims algorithm
now completes the task. None of these examples completed using the random Schreier—Sims
algorithm in MAGMA.

Name d| q | Time
J4 112 2| 201
SL(20,5) | 20| 5| 10.0
G2(3°) 735 1.0
Ly 111 | 5 120
Th 248 | 3| 4300
Sp(10,9) 10| 9 6.1

Table 2: Performance of implementation for a sample of groups

References

[1] Sophie Ambrose, Max Neuiilfer, Cheryl E. Praeger and Csaba Schneider, Generalised
sifting in black-box groups, preprint 2004.

[2] M. Aschbacher, On the maximal subgroups of the finite classical groupgnt. Math,
76:469-514, 1984.

[3] Laszb Babai and Endre Szen&sli, On the complexity of matrix group problemsProc.
25th IEEE Sympos. Foundations Comp. Sap. 229-240, 1984.

[4] Laszb Babai, Local expansion of vertex-transitive graphs and random generation in finite

groups,Theory of ComputingLos Angeles, 1991), pp. 164-174. Association for Comput-
ing Machinery, New York, 1991.

[5] Laszb Babai, William M. Kantor, Bter P. Rlfy andAkos Seress, Black box recognition of
finite simple groups of Lie type by statistics of element ordér&roup Theornb (2002),
383-401.

18

[6] Robert Beals, Charles R. Leedham-Green, Alice C. Niemeyer, Cheryl E. Praeger, and
Akos Seress, A black-box group algorithm for recognizing finite symmetric and alternating
groups. I, Trans. Amer. Math. Sa855, no. 5, 2097-2113, 2003.

[7] Wieb Bosma, John Cannon, and Catherine Playoust, TheWh algebra system I: The
user language]. Symbolic Comput24, 235-265, 1997.

[8] Gregory Butler and John J. Cannon, Computing in permutation and matrix groups I: Normal
closure, commutator subgroups, seriggth. Comp, 39, 663—-670, 1982.

[9] J. N. Bray, An improved method of finding the centralizer of an involutidrgh. Math.
(Basel)74(2000), 241-245.

[10] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer and E.A.
O’Brien, Generating random elements of a finite grabpmm. Algebra23(1995), 4931
4948.

[11] Frank Celler and C.R. Leedham-Green, Calculating the order of an invertible matrix, In
Groups and Computation,livolume 28 ofAmer. Math. Soc. DIMACS Serjgsmges 55-60.
(DIMACS, 1995), 1997.

[12] M.D.E. Conder, C.R. Leedham-Green, and E.A. O’Brien, Constructive recognition of
PSL(2, q), accepted to appelans. Amer. Math. Soc2003.

[13] Daniel Gorensteinkinite Groups Harper’s Series in Modern Mathematics. Harper & Row,
New York, Evanston, London, 1968.

[14] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite
simple groups. Number 3. Part I, American Mathematical Society, Providence, RI, 1998.

[15] P.E. Holmes, A Matrix Group Recognition Algorithm and a New Construction of the Mon-
ster, MSc thesis, University of Birmingham, 2000.

[16] W.M. Kantor and A. Seress, Prime power graphs for groups of Lie typélgebra247
(2002), 370-434.

[17] P.B. Kleidman, U. Meierfrankenfeld and A.J.E. Ryld&, < E-(5), Comm. Algebra8,
3555-3583, 2000.

[18] Charles R. Leedham-Green, The computational matrix group proje@tomps and Com-
putation Il (Columbus, OH, 1999), 229-247, Ohio State Univ. Math. Res. Inst. P8bl.,
de Gruyter, Berlin, 2001.

[19] Jeffrey S. Leon, On an algorithm for finding a base and strong generating set for a group
given by generating permutationglath. Comp.20:941-974, 1980.

[20] E.M. Luks, Computing in solvable matrix groupByoc. 33rd IEEE Symp. Found. Comp.
Sci, 111-120, 1992.

19

[21] The GAP Group,GAP — Groups, Algorithms, and Programming, Version; 42802,
(http://www.gap-system.org)

[22] A. C. Niemeyer & C. E. Praeger, A recognition algorithm for classical groups over finite
fields,Proc. London Math. So@.7 (1998), 117-169.

[23] Igor Pak (2001), What do we know about the product replacement algoritBra@ps and
Computationll, Ohio State Univ. Math. Res. Inst. Publ., (Ohio, 1999). de Gruyter, Berlin.

[24] C.W. Parker and R.A. Wilsom-cores in black-box groups, in preparation.

[25] Charles C. Sims, Computational methods in the study of permutation groupSpntA
putational problems in abstract algebrpages 169-183, Oxford, 1970. (Oxford, 1967),
Pergamon Press.

[26] Charles C. SimsComputation with finitely presented groyg3ambridge University Press,
1994.

P.E. Holmes, Department of Mathematics, The University of Birmingham, Birmingham B15
2TT, UK.

S.A. Linton, Centre for Interdisciplinary Research in Computational Algebra, University of St
Andrews, St Andrews, Fife KY16 9SS, UK.

E.A. O'Brien, Department of Mathematics, University of Auckland, Auckland, New Zealand.

A.J.E. Ryba, Department of Computer Science, City University of New York, Flushing, NY
11367, USA.

R.A. Wilson, School of Mathematical Sciences, Queen Mary, University of London, London E1
4NS, United Kingdom.

Last updated 11th November 2004.

20

