Enumerating big orbits and an application: B acting on the cosets of $F i_{23}$

Jürgen Müller ${ }^{\text {a }}$ Max Neunhöffer ${ }^{\text {a }}$ Robert A. Wilson ${ }^{\text {b }}$
${ }^{\text {a }}$ Lehrstuhl D für Mathematik
RWTH Aachen
Templergraben 64
52056 Aachen
Germany
${ }^{\mathrm{b}}$ School of Mathematical Sciences
Queen Mary, University of London
Mile End Road
London E1 4 NS
United Kingdom

Abstract

We describe a novel technique to handle "big" permutation domains for "large" groups. It is applied to the multiplicity-free action of the sporadic simple Baby Monster group on the cosets of its maximal subgroup $F i_{23}$, to determine the character table of the associated endomorphism ring.

Key words: permutation groups, orbit enumeration, multiplicity-free action, character tables, sporadic simple Baby Monster group

1 Introduction

In recent years there has been increasing interest in dealing with "large" permutation representations, in particular of the "large" sporadic finite simple groups. The aim of the present paper is to describe a novel technique to handle "big" permutation domains for "large" groups, and to give a substantial example application. The basic setup is as follows:

Let $G=\langle\mathcal{G}\rangle$ be a finite group acting from the right on a finite set X. For a given $x_{1} \in X$ we want to enumerate the G-orbit $x_{1} G:=\left\{x_{1} g \in X ; g \in G\right\} \subseteq X$. This can be achieved efficiently with the well-known orbit-stabiliser algorithm given as Algorithm 1. As for its correctness recall that since only elements
of G are applied, only points in $x_{1} G$ are put into \mathcal{D}, and since $x_{1} G$ is finite, Algorithm 1 indeed terminates. After termination all generators of G have been applied to all points in \mathcal{D}, therefore \mathcal{D} contains all points in the G-orbit $x_{1} G$ exactly once. Note that here we do not need to know the group order $|G|$, nor whether G acts faithfully on X.

```
Require: \(G=\langle\mathcal{G}\rangle\) acting on \(X, x_{1} \in X\)
    \(\mathcal{D} \leftarrow\left[x_{1}\right] \quad\) \{collects the orbit\}
    \(\mathcal{T} \leftarrow\left[1_{G}\right] \quad\{\) collects a transversal \(\}\)
    \(\mathcal{S} \leftarrow[] \quad\) \{collects generators for the stabiliser\}
    \(i \leftarrow 1\)
    while \(i \leq \operatorname{Length}(\mathcal{D})\) do
        for \(g \in \mathcal{G}\) do
            \(x \leftarrow \mathcal{D}[i] \cdot g\)
            if not \((x\) in \(\mathcal{D})\) then
                append \(x\) to \(\mathcal{D}\)
                append \(\mathcal{T}[i] \cdot g\) to \(\mathcal{T}\)
            else
                \(j \leftarrow \operatorname{Position}(\mathcal{D}, x) \quad\{\mathcal{D}[j]=x\}\)
                append \(\mathcal{T}[i] \cdot g \cdot \mathcal{T}[j]^{-1}\) to \(\mathcal{S} \quad\{\) Schreier generator \(\}\)
            end if
        end for
        \(i \leftarrow i+1\)
    end while
    return \((\mathcal{D}, \mathcal{T}, \mathcal{S}) \quad\) \{orbit, transversal, stabiliser \(\}\)
```


Algorithm 1: Orbit-Stabiliser

Moreover, \mathcal{S} contains generators for the stabiliser $\operatorname{Stab}_{G}\left(x_{1}\right)$, as is implied by Schreier's Theorem, see e. g. (Johnson, 1990, La.2.3.3), which we recall for convenience: If $\mathcal{T}=\left\{t_{x} \in G ; x \in x_{1} G\right\} \subseteq G$ is a transversal for the G-orbit $x_{1} G$ with respect to x_{1}, i. e. we have $x_{1} t_{x}=x$ for all $x \in x_{1} G$, and additionally assume $t_{x_{1}}=1$, then the set $\mathcal{S}:=\left\{t g \cdot\left(t_{x_{1} t g}\right)^{-1} \in G ; t \in \mathcal{T}, g \in \mathcal{G}\right\} \subseteq G$ of "Schreier generators" generates $\operatorname{Stab}_{G}\left(x_{1}\right)$. By all experience, by far most of the Schreier generators typically turn out to be superfluous for generating $\operatorname{Stab}_{G}\left(x_{1}\right)$.

To perform Algorithm 1 we have to be able to keep all points in $x_{1} G$ in the list \mathcal{D} in main memory, and we have to be able to recognise whether a given point has already been stored. The necessary storing and recognising of points can of course be done using hashing techniques, such that we only need a nearly constant amount of time to look up a point, regardless of how many points have been stored. But if the G-orbit $x_{1} G$ is "too large" to be stored completely in main memory, Algorithm 1 is no longer feasible. In this paper we present a novel technique allowing to enumerate very big G-orbits being much "too large" in this sense, at the expense that we assume the group order $|G|$ plus some additional information about G to be known in advance.

In the first part, consisting of Sections 2-5, we discuss the ideas behind this technique and show how these lead to suitable generalisations of Algorithm 1. The basic idea of using a "helper" subgroup U, recalled in Section 2, was already considered by Richard Parker around 1995 (unpublished), and was independently made explicit in Lübeck et al. (2001). Based on practical experience, see e. g. Müller et al. (2002); Müller (2003), we were led to elaborate on this idea, and to use a whole chain of "helper" subgroups instead of a single one. To this end we first reconsider the basic idea in a more abstract context in Sections 2 and 3, and then allow for more than one "helper" subgroup in Section 4. The first part concludes with Section 5, where we briefly indicate how the situation needed to run these methods can be achieved in the most frequent case of linear actions.

The strategy described here has been implemented in GAP (GAP (2005)). Altogether, the implementation of the various orbit enumeration algorithms and hashing techniques needs some 3000 lines of code and will be published soon in a GAP package "ORB" (Müller et al. (2006)), including explicit input data for several examples, in particular the one considered below.

In the second part, consisting of Sections 6-9, we consider a particular application, which actually was part of the original motivation to develop the novel technique presented here, see Müller (2003): the multiplicity-free action of the sporadic simple Baby Monster group B on the cosets of its maximal subgroup $F i_{23}$, one of the sporadic simple Fischer groups.

Multiplicity-freeness of permutation actions, by way of the associated orbital graphs, is intimately related to the notions of distance-transitivity and distance-regularity, see Ivanov et al. (1995); Brouwer et al. (1989), as well as to spectra and the Ramanujan property, see Davidoff et al. (2003), in algebraic graph theory. A lot of information is encoded in concise form in the character table of the endomorphism ring of the underlying permutation module; the necessary facts for this paper are recalled in Section 6.

The multiplicity-free actions of the sporadic simple groups have been classified in Breuer et al. (1996), and the associated character tables, including the one computed in this paper, have been collected from various sources in Breuer et al. (2006, 2005). In particular, for the Baby Monster group B there are four multiplicity-free actions: on the cosets of $2 .{ }^{2} E_{6}(2) .2$, of $2 .{ }^{2} E_{6}(2)$, of $2^{1+22} . \mathrm{Co}_{2}$, and of $F i_{23}$. The character tables for the former two actions have been determined in Higman (1976), while the character table for the third one has been computed in Müller (2003), also applying the computational techniques described here.

The aim of the second part now is to determine the character table for the fourth and "largest" multiplicity-free action of B on the cosets of $F i_{23}$, which
has degree $\sim 10^{15}$. This action is particularly interesting, since not even the sizes of the associated $F i_{23}$-orbits have been known before, and since it is related to the conjugation action of the sporadic simple Fischer-Griess Monster group \mathbb{M} on its " 6 -transpositions", see Ivanov et al. (1995).

In Section 7 we provide the infrastructure, consisting of helper subgroups and associated helper sets, to apply the strategy described in Section 4. In Section 8 a combination of the novel computational technique and a group theoretical analysis, using the action of \mathbb{M} on its 6 -transpositions, is applied to determine the $F i_{23}$-orbits and the associated stabilisers, the result being given in Table 2. Finally, in Section 9 the character table of the associated endomorphism ring is computed, and given in Tables 6-9.

2 Archiving suborbits

The basic idea of the techniques described here is not to store single points in the G-orbit $x_{1} G$, but to archive the G-orbit in bigger chunks. To this end, we use a helper subgroup $U<G$: To enumerate $x_{1} G$ we may as well enumerate the set of U-orbits contained in $x_{1} G$. Thus we want to be able to perform the following two tasks:
(1) Given a point $x \in X$, determine the size $|x U|$ and store appropriate pieces of the U-orbit $x U$, such that we can later perform (2).
(2) Given a point $x \in X$, decide whether or not x lies in one of the already stored U-orbits from (1).

This of course means that this should be done in a better way than just storing all points in $x U$ separately. This is achieved using the following idea, see also Lübeck et al. (2001): Let Y be another finite U-set and let ${ }^{-}: X \rightarrow Y$ be a homomorphism of U-sets, i. e. we have $\overline{x u}=\bar{x} u \in Y$ for all $x \in X$ and $u \in U$.

We then do the following preparations: After enumerating Y completely, using Algorithm 1, in every U-orbit in Y we arbitrarily choose a point and call it " U minimal". Furthermore, for each U-minimal point $y \in Y$ we store generators for the stabiliser $\operatorname{Stab}_{U}(y)$ together with its order, and for each point $y \in Y$ which is not U-minimal we store an element $u_{y} \in U$ such that $y u_{y} \in Y$ is the U-minimal point in the U-orbit $y U$. Here we have to assume that ${ }^{-}$is efficiently computable, and that U and Y are "small enough" such that we can perform these preparations.

A point $x \in X$ is called " U-minimal", if $\bar{x} \in Y$ is U-minimal. Note that in a U-orbit $x U \subseteq X$ there may be more than one U-minimal point. More
precisely, if $x \in X$ is U-minimal, the set of U-minimal points in $x U$ is exactly $x \bar{S}$, where $\bar{S}:=\operatorname{Stab}_{U}(\bar{x})$, because by definition \bar{x} is the only U-minimal point in $\bar{x} U$ and ${ }^{-}$is a homomorphism of U-sets.

Equipped with the above data, we now store U-orbits $x U \subseteq X$ by only storing its U-minimal points. Given any point $x \in X$, we find a U-minimal point in $x U$ by looking up $\bar{x} \in Y$: If \bar{x} is U-minimal, then $x^{\prime}:=x$ is already U-minimal and we are done. Otherwise we have computed and stored an element $u_{\bar{x}} \in U$ such that $\bar{x} u_{\bar{x}}$ is U-minimal. But then $x^{\prime}:=x u_{\bar{x}} \in x U$ is U-minimal, because by ${ }^{-}$it is mapped to $\overline{x u_{\bar{x}}}=\bar{x} u_{\bar{x}}$. The point x^{\prime} is called the " U-minimalisation" of x.

Then to find the set $x^{\prime} \bar{S}$ of all U-minimal points in $x^{\prime} U$ we look up the stored generators for the stabiliser \bar{S} and compute the set $x \bar{S}$ by an application of Algorithm 1.

Since ${ }^{-}$is a homomorphism of U-sets we have $\operatorname{Stab}_{U}\left(x^{\prime}\right)=\operatorname{Stab}_{\bar{S}}\left(x^{\prime}\right)$, and thus once we know $\left|x^{\prime} \bar{S}\right|$, we also know $\left|\operatorname{Stab}_{\bar{S}}\left(x^{\prime}\right)\right|=|\bar{S}| /\left|x^{\prime} \bar{S}\right|$ and thus $\left|x^{\prime} U\right|=$ $|U| /\left|\operatorname{Stab}_{U}\left(x^{\prime}\right)\right|$. Therefore, both parts of task (1) are done.

If we are now given a point $x \in X$, we can decide whether we already know the U-orbit $x U$, by U-minimalising x and looking up its U-minimalisation x^{\prime}. If we already know $x U$, then we have stored the U-minimal point x^{\prime}. Otherwise, the U-orbit $x U$ is new. Thus task (2) is done as well.

We now turn to the question of what we gain using this idea: To enumerate X completely using Algorithm 1, simply all points in X have to be stored. In contrast, to enumerate X as described above for each U-orbit $y U \subseteq Y$, where $y \in Y$ is its U-minimal point, we only have to store the U-minimal points $\{x \in X ; \bar{x}=y\} \subseteq X$, i. e. precisely the fibre of ${ }^{-}$over y. Since only the U orbits $y U$ being in the image of ${ }^{-}$are needed, we may assume that ${ }^{-}: X \rightarrow Y$ is surjective. Since ${ }^{-}$maps U-orbits in X to U-orbits in Y we have

$$
|\{x \in X ; \bar{x}=y\}|=\sum_{x U \in X / U, \overline{x U}=y U}\left|\operatorname{Stab}_{U}(y)\right| /\left|\operatorname{Stab}_{U}(x)\right| .
$$

Hence the number of U-minimal points in X to be stored is

$$
\begin{aligned}
N_{X} & :=\sum_{y U \in Y / U}|\{x \in X ; \bar{x}=y\}| \\
& =\sum_{y \in Y} 1 /|y U| \cdot|\{x \in X ; \bar{x}=y\}| \\
& =1 /|U| \cdot \sum_{y \in Y}\left|\operatorname{Stab}_{U}(y)\right| \cdot|\{x \in X ; \bar{x}=y\}|
\end{aligned}
$$

$$
=1 /|U| \cdot \sum_{y \in Y} \sum_{x U \in X / U, \overline{x U}=y U}\left|\operatorname{Stab}_{U}(y)\right|^{2} /\left|\operatorname{Stab}_{U}(x)\right|
$$

We have $N_{X} \geq 1 /|U| \cdot \sum_{y \in Y}|\{x \in X ; \bar{x}=y\}|=|X| /|U|$, with equality if and only if $\left|\operatorname{Stab}_{U}(y)\right|=1$ for all $y \in Y$. Thus the "saving factor" is $|X| / N_{X} \leq|U|$, where equality is achieved if and only if Y entirely consists of regular U-orbits.

Letting ν_{Y} be the number of U-orbits in Y, and $\lambda_{Y}:=|Y| / \nu_{Y}$ be the average length of the U-orbits in Y, we have

$$
|X| / N_{X}=\lambda_{Y} \cdot \frac{1 /|Y| \cdot \sum_{y \in Y}|\{x \in X ; \bar{x}=y\}|}{1 / \nu_{Y} \cdot \sum_{y U \in Y / U}|\{x \in X ; \bar{x}=y\}|}
$$

The fraction on the right hand side can be understood as a quotient of average cardinalities of fibres, where in the numerator we average over Y, while in the denominator we average over the U-orbits in Y. Actually, for the common cases discussed in Section 5, where X and Y are "linear structures" and the homomorphism ${ }^{-}: X \rightarrow Y$ of U-sets is derived from a linear map, the fibres $\{x \in X ; \bar{x}=y\} \subseteq X$ all have one and the same cardinality, which hence equals $|X| /|Y|$. Thus in this case we indeed get a "saving factor" of $|X| / N_{X}=\lambda_{Y}$. In general, the numerator of course always equals $|X| /|Y|$, but in practice the denominator does not seem to be under good control.

Some numerical data is given in Table 3 below: E. g. letting X be the subset of the $F i_{23}$-orbit $X_{23}^{\pi} \subseteq M_{4}$ enumerated as described at the end of Section 8, we have $|X|=281092626984960 \sim 2.8 \cdot 10^{14}$, and for its image $Y \subseteq M_{3}$ we have $|Y|=4397288393040 \sim 4.4 \cdot 10^{12}$ and $\nu_{Y}=471$, hence $\lambda_{Y} \sim 9.3 \cdot 10^{9}$, where $|U|=47377612800 \sim 4.7 \cdot 10^{10}$. Hence we have $|X| /|Y| \sim 64$, while it turns out that $1 / \nu_{Y} \cdot \sum_{y U \in Y / U}|\{x \in X ; \bar{x}=y\}| \sim 3038$, yielding a "saving factor", compared to λ_{Y}, of only $|X| / N_{X} \sim 196455480 \sim 2 \cdot 10^{8}$.

Recall that the price we pay for this saving is that we need structural information about G, to build up the additional infrastructure with U and ${ }^{-}: X \rightarrow Y$, and to be able to compute stabiliser orders efficiently.

3 Orbit enumeration "by suborbits"

The algorithm presented in this section is the heart of the whole method. For the enumeration of an orbit $x_{1} G$ it outperforms a standard orbit algorithm like Algorithm 1, because it can save up to a factor of $\sim|U|$ in space usage under good conditions. It is also used in a crucial way in the generalisation of the trick from Section 2 to a chain of helper subgroups that is described in Section 4.

We first describe how U-orbits are archived in the slightly more abstract situation in this section, then we present Algorithm 2 and explain all the procedures called in it, before we proceed to define a certain transversal to use Schreier's Theorem and then prove termination and correctness.

We keep the notation from Section 2, that is $U<G$ and ${ }^{-}: X \rightarrow Y$ is a homomorphism of U-sets, we assume that we have chosen a U-minimal point in each U-orbit in Y and again a point $x \in X$ is called U-minimal, if \bar{x} is the chosen U-minimal point in $\bar{x} U$.

Now we can perform the following tasks, which are an abstraction of what was described in Section 2, allowing us to formulate Algorithm 2:
(a) For every $x \in X$, find $u \in U$ such that $x u$ is U-minimal.
(b) For every U-minimal point $x \in X$, find generators for $\bar{S}:=\operatorname{Stab}_{U}(\bar{x})$ and the order $|\bar{S}|$.

In the sequel let Minimaliser $U_{U}(x)$ be the result of a procedure returning an element $u \in U$ as in (a), where we assume that $\operatorname{Minimaliser}_{U}(x)=1_{U}$ whenever x already is U-minimal. Moreover, let $\operatorname{BarStabiliser}_{U}(x)$ be the result of a procedure returning $|\bar{S}|$ and generators for \bar{S} as in (b). Having (a) and (b) at hand, we can devise procedures StoreSuborbit and LookupSuborbit performing tasks (1) and (2) exactly as described in Section 2:

Information on the U-orbits is collected in a database \mathcal{D}. If $x \in x_{1} t U$ is U minimal, where $t \in G$, then StoreSuborbit (\mathcal{D}, x, t) invokes BarStabiliser $_{U}(x)$, enumerates the orbit $x \bar{S}$ using Algorithm 1 thereby determining $|x U|$ exactly as described in Section 2. Then it stores the set $x \bar{S}$ of U-minimal points $x^{\prime} \in x U$ in the database \mathcal{D} together with $|x U|$. Hence this allows it to keep track of the total number $\operatorname{Size}(\mathcal{D})$ of points in all U-orbits already stored in the database \mathcal{D}. In addition, an element $t \in G$ with $x_{1} t U=x U$ representing the U-orbit is stored as a word in the generators of G. This is used below to define a right transversal of $\operatorname{Stab}_{G}\left(x_{1}\right)$ in G.

The procedure LookupSuborbit (\mathcal{D}, x), where $x \in X$ is U-minimal, returns either true or false, depending on whether $x U$ is already stored in \mathcal{D} or not. This is just done by looking up x itself, exactly as in Section 2 . If x is already stored, we also have access to a representative $t \in G$ with $x_{1} t U=x U$ stored above.

Note that for both procedures (1) and (2) task (a) was crucial to first reach a U-minimal x at all. Also, as in Section 2, we have to be able to compute orders of any subgroup $\langle\mathcal{S}\rangle \leq G$ generated by some subset $\mathcal{S} \subseteq G$, usually by using a relatively small permutation representation for G. Note that the ability to compute subgroup orders also facilitates membership testing for $\langle\mathcal{S}\rangle$. Moreover, to save memory, all occurring group elements of G are stored
as words in the given generators \mathcal{G} and \mathcal{U}.

```
Require: \(G=\langle\mathcal{G}\rangle\) acting on \(X, U=\langle\mathcal{U}\rangle \leq G, x_{1} \in X U\)-minimal, \(0 \leq f \leq 1\)
    \(\mathcal{D} \leftarrow\) empty database of \(U\)-orbits
    StoreSuborbit \(\left(\mathcal{D}, x_{1}, 1_{G}\right)\)
    \(\mathcal{R} \leftarrow\left[1_{G}\right]\)
    \(\mathcal{S} \leftarrow[] \quad\) \{collects generators for the stabiliser\}
    \(p \leftarrow 1\)
    loop
        \(i \leftarrow 1\)
        while \(i \leq \operatorname{Length}(\mathcal{R})\) do
            \(r \leftarrow \mathcal{R}[i]\)
            for \(g \in \mathcal{G}\) do
                    \(u \leftarrow\) Minimaliser \(_{U}\left(x_{1} r g\right)\)
                    \(l \leftarrow \operatorname{LookupSuborbit}\left(\mathcal{D}, x_{1}\right.\) rgu \()\)
                    if \(l=\) false then
                                    StoreSuborbit \(\left(\mathcal{D}, x_{1} r g u, r g\right) \quad\) \{with determining its size \(\}\)
                                    append \(r g\) to \(\mathcal{R}\)
                    end if
                    if \(l=\) true or \(p>1\) then
                \(s \leftarrow \operatorname{SchreierGenerator}\left(\mathcal{D}, x_{1} r, g\right)\)
                if \(s \notin\langle\mathcal{S}\rangle\) then
                    append \(s\) to \(\mathcal{S}\)
                end if
                    end if
                    if \(\operatorname{Size}(\mathcal{D}) \cdot|\langle\mathcal{S}\rangle| \geq f \cdot|G|\) then
                return \((\mathcal{D}, \mathcal{S}) \quad\{\) database, stabiliser \(\}\)
                    end if
                end for
                \(i \leftarrow i+1\)
        end while
        \(p \leftarrow p+1\)
        \(\mathcal{R}_{0} \leftarrow \mathcal{R}\)
        \(\mathcal{R} \leftarrow[]\)
        for \(t\) in \(\mathcal{R}_{0}\) do
            for \(u \in \mathcal{U}\) do
                append \(t u\) to \(\mathcal{R}\)
            end for
        end for
    end loop
```

Algorithm 2: Orbit-Stabiliser by Suborbits
We now proceed to prove termination and correctness of Algorithm 2. To use Schreier's Theorem from the introduction, we have to define a right transversal of $\operatorname{Stab}_{G}\left(x_{1}\right)$ in G. As this would be too big to be kept in memory completely,
we define the transversal by means of an algorithm that, given $x \in x_{1} G$, produces an element $t_{x} \in G$ with $x_{1} t_{x}=x$. Remember that for every U-orbit $x U$ in our database we have stored an element $t \in G$ such that $x U=x_{1} t U$, and by U-minimalisation we can find an element $u \in U$ with $x_{1} t u$ being U minimal.

Given $x \in x_{1} G$, we let $v:=\operatorname{Minimaliser}_{U}(x)$ and then look up $x v$ in the database finding $t \in G$ such that $x v U=x U=x_{1} t U$.

With $u:=$ Minimaliser $_{U}\left(x_{1} t\right)$ we have that $x v$ and $x_{1} t u$ are both U-minimal and lie in the same U-orbit, thus there is an $s \in \bar{S}:=\operatorname{Stab}_{U}\left(\overline{x_{1} t u}\right)$ with $x_{1} t u s=x v$. To compute and uniquely define s we perform Algorithm 1 with the stored and thus fixed generators of \bar{S} and set s to be the first element found with the above property. We then define $t_{x}:=t u s v^{-1}$. Note that this uniquely defines t_{x} using our stored data.

This definition has two important consequences: Firstly because the stored representative for the very first stored U-orbit $x_{1} U$ is the identity, we have $t_{x_{1}}=1_{G}$. Secondly, if t is the stored representative for a U-orbit $x_{1} t U$ then $t_{x_{1} t}=t$ and $t_{x_{1} t u}=t u$ for $u:=\operatorname{Minimaliser}_{U}\left(x_{1} t\right)$.

Now we explain what the procedure SchreierGenerator in Algorithm 2 does to compute generators of $\operatorname{Stab}_{G}\left(x_{1}\right)$: During the execution of Algorithm 2 we constantly apply a generator $g \in \mathcal{G}$ to some point $x_{1} r$, where $r=t w$ with t being the stored representative of the U-orbit $x_{1} t U$, and w being some element of U that comes from the last two for loops in the main loop. Then we try to look up the U-orbit $x_{1} t w g U$.

In such a situation, $x_{1} t w g U$ either is a newly found U-orbit, in which case it is stored with $t w g$ as its representative, or it is already known. If in the latter case we have $w=1$, which happens in the first iteration of the outer loop, the Schreier generator $t_{x_{1} t} g t_{x_{1} t g}^{-1}$ is trivial, because t is the stored representative for $x_{1} t U$ and $t g$ is the one for $x_{1} t g U$. Therefore Algorithm 2 does not calculate a Schreier generator in that case.

In all other cases $x_{1} t w g U$ is then known as a stored U-orbit $x_{1} t^{\prime} U$. The procedure call SchreierGenerator $\left(\mathcal{D}, x_{1} t, g\right)$ then returns $t_{t w} g t_{t w g}^{-1}$ by calculating the two transversal elements as described above from stored data.

We now address the question of correctness: Algorithm 2 by construction only stores U-orbits that are contained in $x_{1} G$, thus at any time $\operatorname{Size}(\mathcal{D}) \leq\left|x_{1} G\right|$. Moreover, in \mathcal{S} only elements of the stabiliser $\operatorname{Stab}_{G}\left(x_{1}\right)$ are collected, thus at any time $|\langle\mathcal{S}\rangle|$ is a divisor of $\left|\operatorname{Stab}_{G}\left(x_{1}\right)\right|$.

Let first $f:=1$. In the while loop we first apply the generators \mathcal{G} of G to representatives of known U-orbits. At the end of the outer loop the generators
\mathcal{U} of U are then applied to these representatives, such that in the next iteration of loop new points in the same U-orbits are used. Thus the algorithm will eventually apply all generators of G to all points in all enumerated U-orbits and thus will eventually find all U-orbits. Similarly, all Schreier generators will eventually be found, which by Schreier's Theorem implies $\langle\mathcal{S}\rangle=\operatorname{Stab}_{G}\left(x_{1}\right)$. Since $\left|x_{1} G\right| \cdot\left|\operatorname{Stab}_{G}\left(x_{1}\right)\right|=|G|$, this implies that Algorithm 2 terminates, and returns a database \mathcal{D} containing all U-orbits in $x_{1} G$, as well as generators for $\operatorname{Stab}_{G}\left(x_{1}\right)$.

The above analysis shows that Algorithm 2 also terminates for any $0 \leq f<1$, and returns part of $x_{1} G$ and a subgroup $\langle\mathcal{S}\rangle \leq \operatorname{Stab}_{G}\left(x_{1}\right)$. The idea behind this is as follows: As soon as we have $\operatorname{Size}(\mathcal{D}) \cdot|\langle\mathcal{S}\rangle|>|G| / 2$, we conclude that indeed $\langle\mathcal{S}\rangle=\operatorname{Stab}_{G}\left(x_{1}\right)$, in particular we know the size $\left|x_{1} G\right|$. Hence if we specify $f>1 / 2$, then Algorithm 2 only computes the fraction f of the whole G-orbit $x_{1} G$, which is often enough for applications, see Section 8 .

The above correctness proof shows that in the worst case the running time of Algorithm 2 is no better than the running time of Algorithm 1. Still, in practice a rather small subset of Schreier generators suffices to generate the full stabiliser $\operatorname{Stab}_{G}\left(x_{1}\right)$, hence typically $\operatorname{Stab}_{G}\left(x_{1}\right)$ is already reached after a small fraction of the whole computation. Moreover, the counter p typically assumes only very small values, in particular if we enumerate only part of the orbit by specifying $f<1$; see also Table 3 . Hence in practice the computation is dominated by enumerating U-orbits, which is done by applying the elements of \mathcal{G} only to the stored U-orbit representatives, instead of applying them to all elements of $x_{1} G$. Thus if the infrastructure is set up optimally we are able to obtain a "time saving factor" of $\sim|U|$ as well.

4 Iterating orbit enumeration "by suborbits"

To archive U-orbits we had to assume that U is "small enough" such that enumeration of the U-orbits in the helper U-set can be done by Algorithm 1 . For "large" groups G this tends to imply that U is "too small" to be helpful indeed. Now the idea is to use a "larger" helper subgroup $U<V<G$, together with a helper V-set, to enumerate a G-orbit by V-orbits using Algorithm 2, where in turn orbit enumeration in the helper V-set is done by U-orbits, for some "small" helper subgroup $U<V$. This is done in a way that we can iterate it to use a chain of subgroups totally ordered by inclusion.

Recall that to perform an orbit enumeration by U-orbits we need a definition of U-minimality and we need to be able to do tasks (a) and (b) from Section 3, that is we need procedures Minimaliser ${ }_{U}$ and BarStabiliser $_{U}$. We now present the setup for building this infrastructure for V, using the same infrastructure
already in place for U.
Let X be a finite G-set, let Z be a finite V-set, and let Y be a finite U-set, together with a homomorphism of V-sets $\sim: X \rightarrow Z$ and a homomorphism of U-sets ${ }^{-}: Z \rightarrow Y$. By abuse of notation we denote the composition of ${ }^{\sim}$ and ${ }^{-}$, mapping X to Y, also by ${ }^{-}$, it is a homomorphism of U-sets. We can now use the definition of U-minimality for both the group V acting on Z and the group G acting on X.

In a precomputation we first calculate a transversal \mathcal{L} for the left cosets of U in V, that is a subset $\mathcal{L} \subseteq V$ of size $|\mathcal{L}|=[V: U]$ such that $V=\bigcup_{t \in \mathcal{L}} t U$, where we assume the index $[V: U]$ to be "small enough" such that this is feasible, and that $1_{V} \in \mathcal{L}$.

Then we enumerate all of Z by U-orbits. Note that when the U-infrastructure is set up optimally, this saves a factor of $\sim|U|$ in space usage. In every V-orbit of Z we arbitrarily choose one U-minimal point z and call it " V-minimal". We run the V-orbit by U-orbit enumeration of that V-orbit with starting point z using Algorithm 2, such that we get as an additional result the order and generators for $\operatorname{Stab}_{V}(z)$, which we store together with z. Note that during this calculation we store every U-minimal point in $z V$.

Further, for every U-minimal point $w \in z U, w \neq z$, we store a word in the generators of $\operatorname{Stab}_{U}(\bar{z})=\operatorname{Stab}_{U}(\bar{w})$ mapping w to z. For every U-minimal point $w \in z V \backslash z U$ we compute and store the number of an element of \mathcal{L} mapping w into the U-orbit $z U$. Note that this is possible, because for every point $w \in z V$ there is an element of V mapping it to z and thus an element of \mathcal{L} mapping it into $z U$.

We now define similarly to the above a point $x \in X$ to be " V-minimal" if $\tilde{x} \in Z$ is V-minimal. With these preparations we can now perform the procedures Minimaliser ${ }_{V}$ for all points in X, and BarStabiliser ${ }_{V}$ for V-minimal points in X in the following way:

Given any $x \in X$, we first use Minimaliser ${ }_{U}$ to find a U-minimal point $w:=$ $x u \in X$ for some $u \in U$. Thus by definition \widetilde{w} is U-minimal as well, because it is mapped by ${ }^{-}$to \bar{w}. Therefore, \widetilde{w} was stored during our precomputation. Let $z \in Z$ be the chosen V-minimal point in $\widetilde{w} V$.

There are three cases: Firstly, if $\widetilde{w}=z$, then we are done returning $v:=u$, since w is V-minimal by definition. Secondly, if $\widetilde{w} \in z U, \widetilde{w} \neq z$, then since both z and \widetilde{w} are U-minimal, we have a stored element $s \in \operatorname{Stab}_{U}(\bar{z})=\operatorname{Stab}_{U}(\bar{w}) \leq U$ such that $\widetilde{w} s=z$ and we can return $v:=u s$. If $\widetilde{w} \notin z U$ we have stored an element $t \in \mathcal{L}$ such that $\widetilde{w} t \in z U$, thus letting $u^{\prime}:=\operatorname{Minimaliser}_{U}(w t)$, the above cases finally give us an element $v:=u t u^{\prime} s$ such that rutu's is V minimal. In all three cases, we have found an element $v \in V$ such that $x v$ is
V-minimal thereby finding Minimaliser ${ }_{V}(x)$.
If $x \in X$ is V-minimal we have that \widetilde{x} is the V-minimal point in $\widetilde{x} V$ and thus we have stored the order and generators for $\operatorname{Stab}_{V}(\widetilde{x})$ during our precomputation using Algorithm 2. Therefore we can easily provide a procedure BarStabiliser ${ }_{V}$.

The definition of V-minimality for points in X together with the procedures Minimaliser $_{V}$ and BarStabiliser ${ }_{V}$ now fulfil exactly tasks (a) and (b) from Section 3 with Z in place of Y and ${ }^{\sim}$ in place of ${ }^{-}$and V in place of U. Thus we can iterate the saving trick in this way and enumerate G-orbits by V-orbits.

Note that in practice the above-mentioned precomputations can all be done "on the fly" whenever a point $x \in X$ is encountered which is mapped by ${ }^{\sim}$ to an as yet unknown V-orbit $\widetilde{x} V \subseteq Z$. Moreover, to compute a transversal \mathcal{L} for the left cosets of U in V, we can just use a transitive V-set a point stabiliser of which is contained in U and enumerate it by U-orbits.

Finally, this can be iterated as follows: Let $U_{1}<U_{2}<\cdots<U_{k}<U_{k+1}:=G$ be a chain of helper subgroups, together with U_{i}-sets Y_{i} and homomorphisms $\pi_{i}: Y_{i+1} \rightarrow Y_{i}$ of U_{i}-sets, for $1 \leq i \leq k$, where we let $Y_{k+1}:=X$. Then we are able to enumerate a G-orbit in X by U_{k}-orbits using Algorithm 2, while successively U_{i}-orbits in Y_{i}, for $k \geq i \geq 2$, are enumerated by U_{i-1}-orbits also using Algorithm 2, and where finally U_{1}-orbits in Y_{1} are enumerated using Algorithm 1.

5 Common case: linear actions

In this section we describe concrete cases in which the above methods can be used, together with ways to find suitable helper sets and subgroups. These techniques have already been applied successfully in the single helper subgroup case to various substantial examples, see for example Lübeck et al. (2001); Müller et al. (2002); Müller (2003).

5.1 Action on vectors

Let X be a finite-dimensional $F G$-module, where F is a finite field and $F G$ is the group algebra of G over F. Then in particular X can be considered as a G-set. Let $U<G$ be a subgroup such that there is an $F U$-submodule $0<X^{\prime}<\left.X\right|_{U}$. Then the natural map ${ }^{-}: X \rightarrow X / X^{\prime}=: Y$ to the quotient $F U-$ module Y is a homomorphism of $F U$-modules, and thus is a homomorphism of U-sets.

The quotient $F U$-module Y has to fulfil several conditions in order to be of practical use: On the one hand, the F-dimension of Y has to be small enough such that all its U-orbits can be enumerated in the precomputation and such that we can store the necessary information for U-minimalisation. On the other hand, the F-dimension of Y has to be big enough such that the average size of the U-orbits in Y is as big as possible. Thus to find an appropriate helper subgroup U together with a "good" quotient fulfilling these conditions simultaneously is usually tricky. Anyway, given a subgroup U, a suitable $F U$ submodule X^{\prime} can be found for example using the algorithms to compute submodule lattices described in Lux et al. (1994), available in the MeatAxe (Ringe (2003)).

Note that a possible pitfall is that the zero vector in Y is necessarily U minimal, hence all points in X^{\prime} are U-minimal as well. Thus, given $x_{1} \in X$, all points in $x_{1} G \cap X^{\prime}$ have to be stored, which means that for these points we do not save anything. A possible remedy is to choose $X^{\prime}<X$ such that $x_{1} G \cap X^{\prime}=\emptyset$, but this poses a further condition for the quotient to be "good", which cannot always be fulfilled.

Now we proceed as follows: First we choose helper subgroups $U<V<G$. Then we try to find an $F V$-submodule $0<X^{\prime \prime}<\left.X\right|_{V}$, and subsequently we try to find an $F U$-submodule $0<X^{\prime} / X^{\prime \prime}<\left.\left(X / X^{\prime \prime}\right)\right|_{U}$, which amounts to looking for an $F U$-submodule $X^{\prime}<\left.X\right|_{U}$ which contains $X^{\prime \prime}$. We then let $Z:=X / X^{\prime \prime}$ and $Y:=X / X^{\prime}$. The natural maps ${ }^{\sim}: X \rightarrow Z$ and ${ }^{-}: X \rightarrow Y$ are then homomorphisms of $F V$-modules and $F U$-modules, respectively, and factors through ${ }^{\sim}$ as required. Of course this procedure can be iterated for more than two helper subgroups to get a whole chain of submodules.

5.2 Projective action

In the situation of Section 5.1 we can also use "projective action", i. e. the natural action on the set of one-dimensional F-subspaces $\mathbb{P}(X)$ of X. The action on $\mathbb{P}(X)$ is usually implemented by choosing an F-basis for X, and storing one-dimensional subspaces as "normalised vectors", i. e. vectors in which the first nonzero entry is equal to 1 ; note that this choice of representative depends on the chosen F-basis. The action of a group element, given by a representing matrix, is then vector-matrix multiplication, followed by multiplying with a scalar to re-normalise vectors.

Given an $F U$-submodule $X^{\prime}<\left.X\right|_{U}$, the natural map ${ }^{-}: X \rightarrow X / X^{\prime}=: Y$ induces a map from $\mathbb{P}(X) \rightarrow \mathbb{P}(Y) \dot{\cup}\{0\}$, where all one-dimensional F-subspaces of X^{\prime} are mapped to the zero-space $\{0\} \leq Y$. Since $0 \in Y$ is fixed under the action of U, this again is a homomorphism of U-sets.

In practice, if we have $\operatorname{dim}_{F}(X)=d$ and $\operatorname{dim}_{F}\left(X^{\prime}\right)=e$, we may choose an F basis $\left(b_{1}, b_{2}, \ldots, b_{d}\right)$ of X such that $\left(b_{d-e+1}, b_{d-e+2}, \ldots, b_{d}\right)$ is an F-basis for X^{\prime}. Writing the vectors in X with respect to this F-basis, and writing the vectors in Y with respect to the truncated F-basis $\left(b_{1}+X^{\prime}, b_{2}+X^{\prime}, \ldots, b_{d-e}+X^{\prime}\right)$, the natural map ${ }^{-}$is just taking the first $d-e$ components. Note that using these F-bases we do not have to re-normalise vectors after applying the natural map.

5.3 Action on d-dimensional subspaces

Similar to the projective action case, for any $1<d \leq \operatorname{dim}_{F}(X)$ we get a natural homomorphism of U-sets from the set of d-dimensional F-subspaces of X to the set of F-subspaces of Y of dimension at most d.

After choosing an F-basis for X, the d-dimensional F-subspaces of X are described by matrices of full rank d in "full echelon form". Hence the action of a group element, given by a representing matrix, on such a d-dimensional F-subspace is matrix-matrix multiplication, followed by computing the full echelon form of the resulting matrix. In practice, we choose F-bases as described in Section 5.2.

Note that typically the set of F-subspaces of Y of dimension at most d, where we assume $\operatorname{dim}_{F}(Y)>d$, is too large to be enumerated completely. Thus in practice we only consider the F-subspaces of dimension exactly d in Y, and to treat the F-subspaces of X being mapped by ${ }^{-}$to F-subspaces of dimension less than d as "zero vectors". But since for the latter we do not save anything, the saving factor might become too small. A possible remedy in turn is to consider various quotients $X / X^{\prime}, X / X^{\prime \prime}, X / X^{\prime \prime \prime}, \ldots$, and to treat only those F-subspaces of X as "zero vectors" which by all associated natural maps are mapped to F-subspaces of dimension less than d. For an application of this idea see (Müller, 2003, Sect.III.15.2) and Müller et al. (2002).

6 Endomorphism rings and their character tables

We recall the necessary facts about permutation modules and their endomorphism rings; as general references see e. g. Müller (2003); Zieschang (1996); Bannai et al. (1984).

Let G be a finite group, let $H \leq G$ and let $n:=[G: H]$. Let $X \neq \emptyset$ be a transitive G-set such that $\operatorname{Stab}_{G}\left(x_{1}\right)=H$, for some $x_{1} \in X$, and let $X=$ $\dot{U}_{i=1}^{r} X_{i}$, where the $X_{i} \subseteq X$ are the H-orbits. The number $r \in \mathbb{N}$ is called the
"rank" of X. For all $1 \leq i \leq r$ we choose $x_{i} \in X_{i}$ and $g_{i} \in G$ such that $x_{1} g_{i}=$ x_{i}, where we assume $g_{1}=1$ and $X_{1}=\left\{x_{1}\right\}$, and we let $H_{i}:=\operatorname{Stab}_{H}\left(x_{i}\right) \leq H$ and $k_{i}:=\left|X_{i}\right|=|H| /\left|H_{i}\right|$.

For $1 \leq i \leq r$, the orbits $\Gamma_{i}:=\left(x_{1} g, x_{i} g\right) G \subseteq X \times X$ of the diagonal action of G on $X \times X$ are called "orbitals"; hence we have $\left|\Gamma_{i}\right|=|G| /\left|H_{i}\right|=n k_{i}$. Let $1 \leq i^{*} \leq r$ be defined by $\Gamma_{i^{*}}=\left(x_{i}, x_{1}\right) G$, then $X_{i^{*}}$ is called the H-orbit "paired" to X_{i}; note that we have $k_{i^{*}}=k_{i}$. Let the i-th "orbital graph" be the simple directed graph with vertex set X and edge set Γ_{i}, and let $A_{i}=\left[a_{i, x, y}\right] \in$ $\{0,1\}^{n \times n}$, with row index $x \in X$ and column index $y \in X$, be its adjacency matrix, i. e. we have $a_{i, x, y}=1$ if and only if $(x, y) \in \Gamma_{i}$.

Let $\mathbb{Z} X$ be the associated permutation $\mathbb{Z} G$-module, and let $E:=\operatorname{End}_{\mathbb{Z} G}(\mathbb{Z} X)$ be its endomorphism ring, i. e. the set of all \mathbb{Z}-linear maps $\mathbb{Z} X \rightarrow \mathbb{Z} X$ commuting with the action of G. By Schur (1933), see also (Landrock, 1983, Ch.II.12), the set $\left\{A_{i} ; 1 \leq i \leq r\right\} \subseteq E$ is a \mathbb{Z}-basis for E, called the "Schur basis", and it can also be considered as a \mathbb{C}-basis for $E_{\mathbb{C}}:=E \otimes_{\mathbb{Z}} \mathbb{C} \cong \operatorname{End}_{\mathbb{C} G}(\mathbb{C} X)$, which is a split semisimple \mathbb{C}-algebra. Moreover, E is commutative if and only if the permutation character $1_{H}^{G} \in \mathbb{Z} \operatorname{Irr}_{\mathbb{C}}(G)$ associated with the G-set X is "multiplicity-free", i. e. all the constituents of 1_{H}^{G} occur with multiplicity 1 , where $\operatorname{Irr}_{\mathbb{C}}(G)$ denotes the set of irreducible \mathbb{C}-valued characters of G.

From now on suppose E is commutative. Then letting $\operatorname{Irr}_{\mathbb{C}}(E)$ be the set of irreducible \mathbb{C}-valued characters of $E_{\mathbb{C}}$, we have $\left|\operatorname{Irr}_{\mathbb{C}}(E)\right|=r$, and $\lambda\left(A_{1}\right)=1$ for all $\lambda \in \operatorname{Irr}_{\mathbb{C}}(E)$. The "character table" of E is defined as the matrix $\Phi_{E}:=$ $\left[\lambda\left(A_{i}\right)\right] \in \mathbb{C}^{r \times r}$, with row index $\lambda \in \operatorname{Irr}_{\mathbb{C}}(E)$ and column index $1 \leq i \leq r$. Hence in particular Φ_{E} is invertible. Moreover, there is a natural bijection, called the "Fitting correspondence", between the irreducible characters of $E_{\mathbb{C}}$ and the constituents of 1_{H}^{G}; the Fitting correspondent of $\lambda \in \operatorname{Irr}_{\mathbb{C}}(E)$ is denoted by $\chi_{\lambda} \in \operatorname{Irr}_{\mathbb{C}}(G)$. In particular, we have $1 / \chi_{\lambda}(1)=(1 / n) \cdot \sum_{i=1}^{r}\left\|\lambda\left(A_{i}\right)\right\|^{2} / k_{i}$, where $\|\cdot\|$ denotes the complex absolute value; thus degrees of Fitting correspondents are easily computed from Φ_{E}.

For $1 \leq i \leq r$ let $P_{i}=\left[p_{h, i, j}\right] \in \mathbb{Z}^{r \times r}$, with row index $1 \leq h \leq r$ and column index $1 \leq j \leq r$, be the representing matrix of A_{i} for its right regular action on E, with respect to the Schur basis, i. e. we have $A_{h} A_{i}=\sum_{j=1}^{r} p_{h, i, j} A_{j}$. Hence the map $E \rightarrow \mathbb{Z}^{r \times r}: A_{i} \mapsto P_{i}$, for $1 \leq i \leq r$, is a faithful representation of E. The matrices P_{i} are called "collapsed adjacency matrices" or "intersection matrices", since their entries are given by $p_{h, i, j}=\left|X_{h} \cap X_{i^{*}} g_{j}\right| \in \mathbb{N}_{0}$.

In particular, the first row and the first column of P_{i} are given as $p_{1, i, j}=\delta_{i, j}$ and $p_{h, i, 1}=k_{h} \cdot \delta_{h, i^{*}}$, where $\delta_{., \text {, }} \in\{0,1\}$ denotes the Kronecker function, and the column sums of P_{i} are for all j identically given as $\sum_{h=1}^{r} p_{h, i, j}=$ $\sum_{h=1}^{r}\left|X_{h} \cap X_{i^{*}} g_{j}\right|=k_{i}$. Moreover, we have $k_{j} \cdot\left|X_{h} \cap X_{i^{*}} g_{j}\right|=k_{h} \cdot\left|X_{j} \cap X_{i} g_{h}\right|$, implying the identity $p_{h, i, j}=\left|X_{j} \cap X_{i} g_{h}\right| \cdot k_{h} / k_{j}=p_{j, i^{*}, h} \cdot k_{h} / k_{j}$. Thus from
$\sum_{j=1}^{r}\left|X_{j} \cap X_{i} g_{h}\right|=k_{i}$, depending on h we get the weighted row sums of P_{i} as $\sum_{j=1}^{r} k_{j} p_{h, i, j}=k_{h} k_{i}$.

The character table of E and the intersection matrices are related as follows: If Φ_{E} is given, the P_{i} are easily computed using the formula $P_{i}=$ $\Phi_{E}^{\operatorname{tr}} \cdot \operatorname{diag}\left[\lambda\left(A_{i}\right) ; \lambda \in \operatorname{Irr}_{\mathbb{C}}(E)\right] \cdot \Phi_{E}^{-\operatorname{tr}}$, where $\operatorname{diag}[\cdot] \in \mathbb{C}^{r \times r}$ denotes the diagonal matrix having the indicated entries. Conversely, if the P_{i} are given, the set $\left\{\left[\lambda\left(A_{i}\right) ; 1 \leq i \leq r\right] \in \mathbb{C}^{r} ; \lambda \in \operatorname{Irr}_{\mathbb{C}}(E)\right\}$, consisting of the rows of Φ_{E} to be computed, is characterised as the unique \mathbb{C}-basis of \mathbb{C}^{r} consisting of simultaneous eigenvectors for all the matrices $P_{i}^{\operatorname{tr}} \in \mathbb{C}^{r \times r}$, for $1 \leq i \leq r$, and having 1 as their first entry.

$7 \quad B$ acting on the cosets of $F i_{23}$

We are now ready to consider the promised example. The group theoretical and representation theoretic data concerning the groups involved is available in Conway et al. (1985). Computations with characters and with permutation and matrix representations are done with GAP (GAP (2005)) and the MeatAxe (Ringe (2003)), in particular we make use of the algorithms to compute submodule lattices described in Lux et al. (1994). We only indicate the major steps, while for more technical details we refer to Müller (2003), where we have already reported on these computations.

From now on let $G:=B$ be the sporadic simple Baby Monster group, and let $H:=F i_{23}$ be the sporadic simple Fischer group, which is a maximal subgroup of G. Then the permutation character 1_{H}^{G} has degree $1015970529280000 \sim$ 10^{15}, and by Breuer et al. (1996) it is multiplicity-free of rank $r=23$, its constituents have pairwise distinct degrees, and hence in particular are \mathbb{Q} valued. We consider the action of G on the set of right cosets of H, the ultimate aim being to determine the character table of the associated endomorphism ring; recall that not even the sizes of the H-orbits have been known before.

First of all we construct an $\mathbb{F}_{2} G$-module, containing an H-invariant but not G invariant vector, placing ourselves into the situation described in Section 5.1: Let $4370 a$ be the absolutely irreducible $\mathbb{F}_{2} G$-module of \mathbb{F}_{2}-dimension 4370; by Jansen (2005) this is the smallest faithful representation of G over fields of characteristic 2. Representing matrices for standard generators, in the sense of Wilson (1996), have been constructed in Wilson (1993) and are available in Wilson et al. (2005), where also words in the standard generators giving standard generators for H are available. It turns out that $\left.4370 a\right|_{H}$ has absolutely irreducible constituents $782 a$ and $3588 a$, the notation as usual indicating \mathbb{F}_{2}-dimensions. Thus $4370 a$ does not serve our purposes, and we proceed as follows:

Table 1
The subgroup chain

i	U_{i}	$\left\|U_{i}\right\|$	$\left[U_{i}: U_{i-1}\right]$	$\operatorname{dim}_{\mathbb{F}_{2}}\left(M_{i}\right)$
5	B	4154781481226426191177580544000000	$\sim 10^{15}$	4371
4	$F i_{23}$	4089470473293004800	86316516	782
3	$S_{8}(2)$	47377612800	2295	42
2	$2^{10}: A_{8}$	20643840	8192	31
1	A_{7}	2520	2520	18

Since the unique absolutely irreducible ordinary representation of G of degree 4371 has 2 -modular constituents $4370 a$ and $1 a$, where the latter denotes the trivial $\mathbb{F}_{2} G$-module, by Thompson's Theorem, see (Landrock, 1983, Cor.I.17.5), there is a uniserial $\mathbb{F}_{2} G$-module M having descending composition series $(1 a, 4370 a)$. Since $\left.4371\right|_{H}$ has absolutely irreducible ordinary constituents having degrees 1, 782 and 3588, we conclude by Zassenhaus's Theorem, see (Landrock, 1983, Cor.I.17.3), that $\left.M\right|_{H} \cong 1 a \oplus 782 a \oplus 3588 a$ as $\mathbb{F}_{2} H$-modules. Hence we let $0 \neq x_{1} \in M$ be the non-trivial H-invariant vector, which is not G-invariant, and thus its G-orbit $X:=x_{1} G \subseteq M$ is isomorphic as a G-set to the set of right cosets of H.

To construct the $\mathbb{F}_{2} G$-module M explicitly, we consider the cohomology group $\operatorname{Ext}_{\mathbb{F}_{2} G}^{1}(1 a, 4370 a) \cong H_{\mathbb{F}_{2}}^{1}(G, 4370 a):=Z_{\mathbb{F}_{2}}^{1}(G, 4370 a) / B_{\mathbb{F}_{2}}^{1}(G, 4370 a)$, where the latter are the groups of 1-cocycles and 1-coboundaries of G with values in $4370 a$, respectively, see (Benson, 1983, Ch.3.4). As we already know that there is a non-split extension of $1 a$ with $4370 a$, we conclude by (Benson, 1983, Cor.2.5.4) that $H_{\mathbb{F}_{2}}^{1}(G, 4370 a) \neq\{0\}$. By an application of the probabilistic technique to compute upper bounds on dimensions of group 1-cohomology described in Lux (1997), we find $\operatorname{dim}_{\mathbb{F}_{2}}\left(H_{\mathbb{F}_{2}}^{1}(G, 4370 a)\right) \leq 1$, hence we have equality, and thus the probabilistic technique indeed yields a genuine nontrivial 1-cocycle in $Z_{\mathbb{F}_{2}}^{1}(G, 4370 a) \backslash B_{\mathbb{F}_{2}}^{1}(G, 4370 a)$. Using the interpretation in (Benson, 1983, Prop.3.7.2) any such 1-cocycle describes the matrix entries for a non-split extension M of $1 a$ with 4370a.

Note that to store a point in M we need $\lceil 4371 / 8\rceil=547$ Bytes, hence to store all of X needs $555735879516160000 \sim 5.6 \cdot 10^{17}$ Bytes. Hence we are indeed tempted to apply the strategy described in Section 4. We choose the following chain of subgroups, see Table 1:

$$
G=B>H=F i_{23}>U_{3}:=S_{8}(2)>U_{2}:=2^{10}: A_{8}>U_{1}:=A_{7}
$$

Words in the standard generators for H giving non-standard generators for
the maximal subgroup $S_{8}(2)$ are available in Wilson et al. (2005). We derive a suitable small faithful permutation representation of $S_{8}(2)$, and by a random search we find standard generators for $S_{8}(2)$. The subgroup $2^{10}: A_{8}<S_{8}(2)$ again is maximal, and since the unique transitive permutation representation of $S_{8}(2)$ on 2295 points also is available in terms of standard generators in Wilson et al. (2005), Algorithm 1 yields generators for $2^{10}: A_{8}$. By a random search we find generators for a complement A_{8} of the normal subgroup $2^{10} \triangleleft 2^{10}: A_{8}$, and finally generators for $A_{7}<A_{8}$.

As described in Section 5.1, we specify a chain of smaller and smaller quotients M_{i} of M : First let $M_{5}:=M$ and $M_{4}:=782 a$ and let $\pi=\pi_{4}$ be the natural projection of $\left.M\right|_{H}$ onto its direct summand isomorphic to M_{4}. We find that $\left.M_{4}\right|_{U_{3}}$ has a uniquely determined quotient module M_{3} being isomorphic to a uniserial module with descending composition series (16a, 26a). Moreover, we similarly find that $\left.M_{3}\right|_{U_{2}}$ has a uniquely determined submodule of $\mathbb{F}_{2^{-}}$ dimension 11. The quotient module M_{2} with respect to this submodule has Loewy series ($1 a, 4 a, 6 a \oplus 6 a, 14 a$). Finally, $\left.M_{2}\right|_{U_{1}}$ turns out to have a uniquely determined quotient module $M_{1} \cong 4 a \oplus 14 a$. The associated homomorphisms $\pi_{i}: M_{i+1} \rightarrow M_{i}$, for $1 \leq i \leq 3$, are just the natural maps.

8 The $F i_{23}$-orbits

Keeping the notation of Section 6, the next task is to determine the partition $X=\dot{U}_{i=1, \ldots, 23} X_{i} \subseteq M$ of X into the H-orbits $X_{i}=x_{i} H$ by finding suitable representatives $x_{i} \in X$; note that we do not even know the sizes $k_{i}=\left|X_{i}\right|$ in advance. To do this, we do not describe the X_{i} directly, but instead find the H-orbits $X_{i}^{\pi}=x_{i}^{\pi} H \subseteq M_{4}$. These in turn are enumerated using the strategy described in Section 4, applied to the group H and the chain of helper subgroups $U_{3}>U_{2}>U_{1}$. The final result is given in Table 2, where the H-orbits X_{i} are sorted according to their size k_{i}.

If we are given some $x_{i} \in X$, to enumerate $x_{i}^{\pi} H$ we run Algorithm 2 with some parameter $1 / 2<f<1$; some numerical data on how this behaves in practice is given in Table 3 at the end of this section. This ensures that we find $\widetilde{H}_{i}:=\operatorname{Stab}_{H}\left(x_{i}^{\pi}\right) \leq H$. Then we compute $x_{i} \widetilde{H}_{i} \subseteq X_{i}$ by Algorithm 1. Thus we obtain $H_{i}:=\operatorname{Stab}_{H}\left(x_{i}\right) \leq \widetilde{H}_{i}$, and we have $\left[H_{i}: \widetilde{H}_{i}\right]=\left|x_{i} \widetilde{H}_{i}\right|$ as well as $k_{i}=\left[H: H_{i}\right]$. For group theoretical computations, such as the determination of subgroup orders, we use the smallest faithful permutation representation of H on 31671 points, being available in Wilson et al. (2005).

Hence we have to find suitable representatives $x_{i} \in X$ for the H-orbits X_{i}. Beginning with $x_{1} \in X$, we apply a few random elements of G, and for the points $x \in X$ thus obtained we enumerate $x^{\pi} H$. This random search yields 14

Table 2
H-orbits in X.

i	k_{i}	$\left\|H_{i}\right\|$	H_{i}	\widetilde{H}_{i}	$\left[\widetilde{H}_{i}: H_{i}\right]$
1	1	$\sim 4.1 \cdot 10^{18}$	$F i_{23}$		
2	412896	9904359628800	$O_{8}^{+}(3): 2_{2}$		
3	86316516	47377612800	$S_{8}(2)$	$F i_{23}$	86316516
4	195747435	20891566080	$2^{11} \cdot M_{23}$	Fi_{23}	195747435
5	8537488128	479001600	S_{12}		
6	23478092352	174182400	$O_{8}^{+}(2)$		
7	33816182400	120932352	$\left[3^{9}\right] .\left[2^{10}\right] . S_{3}$	$\left[3^{9}\right] \cdot\left[2^{10}\right] .3^{2} .2$	3
8	113778447552	35942400	$2 \times{ }^{2} F_{4}(2)^{\prime}$	2.Fi ${ }_{22}$	3592512
9	160533964800	25474176	$S_{3} \times G_{2}(3)$	$S_{3} \times O_{7}(3)$	1080
10	504245392560	8110080	$2^{10} \cdot M_{11}$	$2^{11} \cdot M_{11}$	2
11	1044084577536	3916800	$S_{4}(4): 4$		
12	1152560897280	3548160	$\left(2 \times 2 . M_{22}\right) .2$		
$\underline{13}$	1584771233760	2580480	$2^{7} . A_{8}$		
$\underline{14}$	5282570779200	774144	$2^{7} . U_{3}(3)$	$2^{7} . U_{3}(3) .2$	2
$\underline{15}$	7888639030272	518400	$\left(A_{6} \times A_{6}\right): 2^{2}$		
16	12678169870080	322560	$2^{2} . L_{3}(4) .2^{2}$		
$\underline{17}$	21514470082560	190080	$2 \times M_{12}$		
18	43028940165120	95040	M_{12}		
$\underline{19}$	50712679480320	80640	2. $L_{3}(4) .2{ }_{2}$		
$\underline{20}$	133120783635840	30720	$2^{4} .2^{4} . A_{5} .2$		
$\underline{21}$	190172548051200	21504	$2^{6}: L_{3}(2): 2$		
$\underline{22}$	262954634342400	15552	$3^{4} .2^{1+4} \cdot S_{3}$		
$\underline{23}$	283991005089792	14400	$\left(A_{5} \times A_{5}\right): 2^{2}$		

of the H-orbits, namely those for $i \in\{1,7,11,13, \ldots, 23\}$, being underlined in Table 2. These H-orbits of course tend to be the "large" ones, and summing up the associated orbit sizes k_{i}, and dividing by $|X|$, we obtain a fraction of \sim 499/500. Hence it seems to be rather improbable to find further H-orbits using such a random search. As the "small" H-orbits for $i \in\{2, \ldots, 6,8,9,10,12\}$ are missing, we are tempted to look for "large" candidate subgroups of H instead which might occur as stabilisers H_{i}.

Now the Schur double cover $2 . G:=2 . B$ of the Baby Monster group is a subgroup of the sporadic simple Fischer-Griess Monster group \mathbb{M}. More precisely, it is the involution centraliser 2.G $=C_{\mathbb{M}}(a)$ of an element a in the $2 A$-conjugacy class in \mathbb{M}, where a is a " 6 -transposition", since the product of a with any of its conjugates has order at most 6 .

Let $Z:=Z(2 . G)=\langle a\rangle$ and let $H^{\prime}<2 . G$ be a subgroup isomorphic to the Fischer group $F i_{23}$, hence we have $H \cong\left(H^{\prime} \times Z\right) / Z$. By Norton (1985) we have $H^{\prime}=C_{\mathbb{M}}(a, b)$, where $\langle a, b\rangle \cong S_{3}$, where in turn b also is a 6 -transposition and $a b$ belongs to the $3 A$-conjugacy class in \mathbb{M}. Given $g \in 2 . G$ we have $H^{\prime} \cap H^{\prime g}=$ $C_{\mathbb{M}}(\langle a, b\rangle,\langle a, c\rangle)=C_{\mathbb{M}}(a, b, c)$, where $c=a^{g}$ also is a 6 -transposition and $\langle a, c\rangle \cong S_{3}$. Since $N_{2 . G}\left(H^{\prime}\right)=\langle a\rangle \times H^{\prime}$, we may assume that $H^{\prime g} \neq H^{\prime}$, and thus $\langle a, b\rangle \cap\langle a, c\rangle=\langle a\rangle$.

To deduce the corresponding information in G itself, we need to quotient by the subgroup Z, i. e. we have to determine $\left(\left(H^{\prime} \times Z\right) \cap\left(H^{\prime g} \times Z\right)\right) / Z$. Since $\left(H^{\prime} \times Z\right) \cap\left(H^{\prime g} \times Z\right)=\left(H^{\prime} \cap\left(H^{\prime g} \times Z\right)\right) \times Z$, there are two cases: In the "split" case we have $\left(H^{\prime} \cap H^{\prime g}\right) \times Z=\left(H^{\prime} \times Z\right) \cap\left(H^{\prime g} \times Z\right)$, while in the "non-split" case we have $\left(H^{\prime} \cap H^{\prime g}\right) \times Z \triangleleft\left(H^{\prime} \times Z\right) \cap\left(H^{\prime g} \times Z\right)$, a normal subgroup of index 2. Thus we are in the non-split case if and only if

$$
C_{\mathbb{M}}(a, b, c)=H^{\prime} \cap H^{\prime g}<H^{\prime} \cap\left(H^{\prime g} \times Z\right)=C_{\mathbb{M}}(a, b) \cap\left(C_{\mathbb{M}}(a, c) \times\langle a\rangle\right) .
$$

This in turn is the case if and only if there is $x \in N_{\mathbb{M}}(\langle a, b, c\rangle)$ such that $a^{x}=a, b^{x}=b$ and $c^{x}=c^{a}$.

We use the table of centralisers of subgroups of \mathbb{M} given in (Norton, 1997, Table 1) to look for suitable subgroups being generated by triples (a, b, c) of 6 -transpositions, such that $\langle a, b\rangle \cong\langle a, c\rangle \cong S_{3}$, and both $a b$ and $a c$ belong to the $3 A$-conjugacy class in \mathbb{M}. To check conjugacy class fusions we use the character table library of GAP, even though in many cases they are well-known or easy to see.

For example, the subgroup generated might be isomorphic to S_{4}, where $a=$ $(1,2)$ and $b=(2,3)$, while $c=(1,4)$ or $c=(2,4)$. Two such subgroups isomorphic to S_{4} leap to mind: one has centraliser $S_{8}(2)$ and normaliser $S_{4} \times$ $S_{8}(2)$ in \mathbb{M}, while the other has centraliser $2^{11} . M_{23}$ and normaliser $S_{4} \times 2^{11} . M_{23}$.

In the first case the involutions in S_{4} are 6-transpositions, since they centralise elements of order 17 , but the centraliser in \mathbb{M} of the $2 B$-conjugacy class is isomorphic to $2^{1+24} . C o_{1}$, thus has no such elements. It follows from (Norton, 1985, Table 3) that there is a conjugacy class of subgroups isomorphic to S_{4}, being generated by a triple (a, b, c) where $b c$ also is a 6 -transposition. This obviously is a split case, proving row $i=3$ of Table 2 .

In the second case, considering the conjugacy class fusion from $S_{4} \times 2^{11} \cdot M_{23}$
to \mathbb{M} shows that the transpositions in S_{4} indeed are 6 -transpositions. This obviously also is a split case, proving row $i=4$ of Table 2.

Another possibility is $3^{2}: 2$, having centraliser $O_{8}^{+}(3)$ and normaliser $\left(\left(3^{2}: 2\right) \times\right.$ $\left.O_{8}^{+}(3)\right) \cdot S_{4}$. The involutions in $3^{2}: 2$ are 6 -transpositions, since $2^{1+24} . C o_{1}$ has no elements belonging to the $13 A$-conjugacy class. Now $3^{2}: 2$ is generated by a triple as desired, and this is a non-split case. Hence we get a stabiliser of shape $O_{8}^{+}(3): 2$, and since H does not have a subgroup of type $O_{8}^{+}(3): 2_{1}$, this proves row $i=2$ of Table 2. We remark that the existence of stabilisers as in rows $i=2$ and $i=3$ has also been stated in (Ivanov et al., 1995, p.3422).

Next there is A_{5}, with $a=(1,2)(3,4)$ and $b=(1,2)(4,5)$ and $c=(3,4)(2,5)$. By (Norton, 1997, Table 3) there is a conjugacy class of subgroups isomorphic to A_{5} containing 6 -transpositions and $3 A$-elements. Such an A_{5} has centraliser A_{12} and normaliser $\left(A_{5} \times A_{12}\right): 2$. Letting $x=(1,2)$, we get $a^{x}=a$ and $b^{x}=b$ and $c^{x}=(1,5)(3,4)=c^{a}$. Thus this is a non-split case and we get a stabiliser of type S_{12}, proving row $i=5$ of Table 2 .

Moreover there is $2 S_{4}$, having centraliser $2 \times{ }^{2} F_{4}(2)^{\prime}$ and normaliser $\left(2 S_{4} \times\right.$ $\left.{ }^{2} F_{4}(2)^{\prime}\right) .2$. Hence again the involutions in $2 S_{4}$ are 6 -transpositions, since they centralise elements belonging to the $13 A$-conjugacy class. Indeed $2 S_{4}$ is generated by a triple (a, b, c) as desired, but there is no element in the normaliser centralising a and b, and mapping c to c^{a}. Therefore this is a split case, proving row $i=8$ of Table 2 .

Finally there is $3^{1+2}: 2^{2}$, with centraliser $G_{2}(3)$ and normaliser $\left(3^{1+2}: 2^{2} \times\right.$ $\left.G_{2}(3)\right) .2$. The involutions in $3^{1+2}: 2^{2}$ are 6 -transpositions, since they centralise elements belonging to the $13 A$-conjugacy class. There is a subgroup of shape $3^{1+2}: 2$ being generated by a triple (a, b, c) as desired. The group $3^{1+2}: 2$ has a centre $\langle d\rangle$ of order 3 , and there is an element of $3^{1+2}: 2^{2}$ centralising a and b, mapping c to c^{a}, and inverting d; thus this in particular is a non-split case. Hence the centraliser $C:=C_{\mathbb{M}}\left(3^{1+2}: 2\right)$ contains $\langle d\rangle \times G_{2}(3)$ as a subgroup. Assume that the latter is a proper subgroup. Then, since d belongs to the $3 A$-conjugacy class of H^{\prime}, we have $3 \times G_{2}(3)<C \leq C_{H^{\prime}}(d) \cong 3 \times O_{7}(3)$, hence $C \cong 3 \times O_{7}(3)$, contradicting (Norton, 1997, Table 1). Thus the stabiliser is of type $S_{3} \times G_{2}(3)$, proving row $i=9$ of Table 2 .

At this stage we have just three orbits left to find, and the number of points left is $1680284382192=2^{4} \cdot 3^{8} \cdot 13 \cdot 17 \cdot 23 \cdot 47 \cdot 67$, which implies that at least one of the stabilisers has order divisible by 11. Looking through the list in (Norton, 1997, Table 1) for plausible subgroups of the right size we light on $4^{2}: S_{3}$, having centraliser $2^{10} . M_{11}$ and normaliser $\left(4^{2}: S_{3} \times 2^{10} \cdot M_{11}\right) .2$. Since $2^{10} . M_{11}$ contains elements of the 11A-conjugacy class, $4^{2}: S_{3}$ is a subgroup of the centraliser in \mathbb{M} of the $11 A$-conjugacy class, which is of type $11 \times M_{12}$. Hence indeed $4^{2}: S_{3}$ is generated by a triple as desired, and this is a split case,
proving row $i=10$ of Table 2.
The number of points left is now $1176038989632=2^{6} \cdot 3^{8} \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$ which implies that at least one of the remaining stabilisers has order divisible by 11 , and at least one has order divisible by 7 . It does not take much imagination now to pick $2 \times S_{5}$, having centraliser $2 . M_{22}$ and normaliser $\left(S_{5} \times 2 . M_{22}\right) .2$. Letting the centre $\langle d\rangle$ of order 2 act on points $\{6,7\}$, we may take $a=(1,2)(3,4)(6,7)$ and $b=(1,2)(4,5)(6,7)$ and $c=(2,5)(3,4)(6,7)$, generating $2 \times A_{5}$. Letting again $x=(1,2)$, the same argument as for row $i=5$ shows that this is a nonsplit case. Moreover, the centraliser $C:=C_{\mathbb{M}}\left(\langle d\rangle \times A_{5}\right)$ contains a subgroup 2. $M_{22} .2$. Assume that the latter is a proper subgroup. Then, d belongs to the $2 B$-conjugacy class of H^{\prime}, we have $2 . M_{22} .2<C \leq C_{H^{\prime}}(d) \cong 2^{2} . U_{6}(2) .2$, implying $C \cong\left(2 \times 2 . M_{22}\right) .2$ or $C \cong 2^{2} . U_{6}(2) .2$, both contradicting the fact that we have a non-split case. Thus the stabiliser is of type $\left(2 \times 2 . M_{22}\right) .2$, proving row $i=12$ of Table 2.

Now the number of points left is 23478092 352, hence the last stabiliser has order 174182400 , which strongly hints at $O_{8}^{+}(2)$ as indicated in row $i=6$.

We remark that rows $i=11$ as well as $i=17$ and $i=18$ of Table 2, which have already been found by the random search, also arise as follows: There is a subgroup isomorphic to $L_{2}(7)$, having centraliser $S_{4}(4) .2$ and normaliser $\left(L_{2}(7) \times S_{4}(4) .2\right) .2$. The involutions in $L_{2}(7)$ are 6 -transpositions, since they centralise elements of order 17 , and $L_{2}(7)$ is generated by a triple as desired, being a non-split case. Moreover, there is a subgroup isomorphic to $L_{2}(11)$, having centraliser M_{12} and normaliser $\left(L_{2}(11) \times M_{12}\right) \cdot 2$. Only one of the two conjugacy classes of subgroups of M_{12} isomorphic to $L_{2}(11)$ contains 6 -transpositions, and this $L_{2}(11)$ indeed is generated by two different triples as desired, one being a non-split case and one being a split case.

It remains to find representatives $x_{i} \in X$, for $i \in\{2, \ldots, 6,8,9,10,12\}$, and to prove row $i=6$ in Table 2. Given generators for the associated stabiliser H_{i}, we compute the subspace $\operatorname{Fix}_{M}\left(H_{i}\right)<M$ consisting of the H_{i}-invariant vectors, and for each $x \in \operatorname{Fix}_{M}\left(H_{i}\right) \backslash\left\{0, x_{1}\right\}$ we proceed as follows: We compute a few elements $y \in x G \subseteq M$, and check whether $y^{\pi} \in M_{4}$ is a point in an H-orbit encountered earlier. If we succeed in proving $y^{\pi} \in X_{j}^{\pi}$, for some j, then Algorithm 2 also yields an element $h \in H$ such that $y^{\pi} h=x_{j}^{\pi}$. It is then checked whether $y h=x_{j}$ holds, which proves that $y \in X$ and hence $x \in X$. It is easy then to compute the associated subgroups \widetilde{H}_{i}, and we remark that it turns out that $X_{i}^{\pi}=\{0\} \subseteq M_{4}$ for $i \in\{3,4\}$.

Hence we are left with actually finding generators for the various H_{i} : Words in the standard generators of H giving generators of the maximal subgroups $H_{3}=$ $S_{8}(2)$, and $H_{4}=2^{11} \cdot M_{23}$, and $H_{5}=S_{12}$ are available in Wilson et al. (2005). Moreover, we have $H_{2}=O_{8}^{+}(3): 2_{2}<O_{8}^{+}(3): S_{3}$, and $H_{8}=2 \times^{2} F_{4}(2)^{\prime}<2 . F i_{22}$,

Table 3
Statistics for H-orbits in X^{π}.

i	\widetilde{k}_{i}	$\|\mathcal{X}\|$	$\widetilde{k}_{i} /\|\mathcal{X}\|$	U_{3}-orbits	$N_{\mathcal{X}}$	$\|\mathcal{X}\| / N_{\mathcal{X}}$
23	283991005089792	281173991454720	0.99	8105	1433928	196086547
22	262954634342400	260326657382400	0.99	6977	1198807	217154769
21	190172548051200	188272393804800	0.99	5271	1263408	149019472
20	133120783635840	131793266626560	0.99	3916	621625	212014102
19	50712679480320	49702192081920	0.98	1899	228710	217315342
18	43028940165120	42170681548800	0.98	1485	438005	96278995
17	21514470082560	21085044664320	0.98	770	198485	106229914
16	12678169870080	12300050810880	0.97	524	138605	88741753
15	7888639030272	7659885219840	0.97	490	78695	97336364
14	2641285389600	2562503731200	0.97	154	69664	36783758
13	1584771233760	1490058823680	0.94	131	96244	15482095
12	1152560897280	1083499683840	0.94	101	20861	51939009
11	1044084577536	1015328563200	0.97	100	18941	53604802
10	252122696280	223859220480	0.88	33	8864	25254875
6	23478092352	21311994512	\#0.90	24	409886	51994
7	11272060800	10158220800	*0.88	8	193554	52482
5	8537488128	7262008320	0.85	11	966	7517606
9	148642560	135080640	*0.90	5	17794	7591
2	412896	366792	*0.88	2	122	3006
8	31671	31416	\#0.90	2	13064	2

as well as $H_{9}=S_{3} \times G_{2}(3)<S_{3} \times O_{7}(3)$, and $H_{10}=2^{10} . M_{11}<2^{11} . M_{23}$, and $H_{12}=\left(2 \times 2 . M_{22}\right) .2<2^{2} . U_{6}(2) .2$, where the overgroups again are maximal subgroups of H, hence generators for these H_{i} are easy to find as well. Note that for $i=9$ there are two conjugacy classes of subgroups of $S_{3} \times O_{7}(3)$ isomorphic to $S_{3} \times G_{2}(3)$ only one of which yields a suitable vector $x_{9} \in X$.

For the candidate $H_{6}=O_{8}^{+}(2)$ there are three conjugacy classes of maximal subgroups of H containing a subgroup isomorphic to $O_{8}^{+}(2)$, namely $S_{8}(2)$, and $O_{8}^{+}(3): S_{3}$, and 2.Fi i_{22}. Again it is easy to find generators for the relevant subgroups isomorphic to $O_{8}^{+}(2)$. Indeed it turns out that a subgroup $O_{8}^{+}(2)<$ $S_{8}(2)$ yields a suitable vector $x_{6} \in X$, thus proving row $i=6$ of Table 2.

We conclude this section by presenting some numerical data on the enumeration of the H-orbits $X_{i}^{\pi}=x_{i}^{\pi} H \subseteq M_{4}$, for $i \notin\{1,3,4\}$, with respect to the helper subgroup U_{3} and the map $\pi_{3}: M_{4} \rightarrow M_{3}$. This has been done using a slight modification of Algorithm 2, where we have specified $f=1$, but the break condition has been $p=2$, i. e. the generators of U_{3} are never applied to U_{3}-orbit representatives. Moreover, motivated by the analysis at the end of Section 2, for $i \notin\{2,8,9\}$ all points $x \in X_{i}^{\pi}$ such that $\left|\operatorname{Stab}_{U_{3}}\left(x^{\pi_{3}}\right)\right|>10^{5}$ are ignored and their U_{3}-orbits simply are not stored. Thus we enumerate a certain subset $\mathcal{X} \subseteq X_{i}^{\pi}$, which still consists of U_{3}-orbits. For the H-orbits whose percentage is marked with a * we increased the stabiliser limit for storing to $3 \cdot 10^{10}$, and for those marked with a $\#$ we imposed no limit at all.

In Table 3 we have compiled the following data: The H-orbits X_{i}^{π} are sorted according to their size $\widetilde{k}_{i}:=\left|X_{i}^{\pi}\right|=\left[H: \widetilde{H}_{i}\right]$, we give the cardinality $|\mathcal{X}|$ of the subsets $\mathcal{X} \subseteq X_{i}^{\pi}$ actually enumerated, which fraction of whole H-orbit X_{i}^{π} this is, the number of U_{3}-orbits in \mathcal{X}, the number $N_{\mathcal{X}}$ of U_{3}-minimal points in \mathcal{X}, and the "saving factor" $N_{\mathcal{X}} /|\mathcal{X}|$. The fractions $|\mathcal{X}| / \widetilde{k}_{i}$ being very close to 1 shows that indeed the generators of the helper subgroup have to be applied to orbit representatives only at the very end of an orbit enumeration.

To store a point in M_{4} we need $\lceil 782 / 8\rceil=98$ Bytes, thus to store all of $X^{\pi} \subseteq M_{4}$ still needs $99565111869440000 \sim 10^{17}$ Bytes. To enumerate X^{π} applying the strategy described in Section 4 and the slight modification given above, using the ORB package, needs $\sim 1.1 \cdot 10^{9}$ Bytes of memory space, and $\sim 4800 \mathrm{~s} \sim 80 \mathrm{~min}$ of CPU time on a 3.2 GHz Pentium IV processor, where both figures include the time and space required to enumerate and store the appropriate portions of the helper sets M_{3}, M_{2} and M_{1}.

9 The character table

The final task is now to compute the intersection matrix $P_{2}=\left[p_{h, 2, j}\right] \in \mathbb{Z}^{23 \times 23}$ for the smallest non-trivial H-orbit X_{2}, which has size $k_{2}=412896$, and since it is the only H-orbit having this size is self-paired. We have

$$
p_{h, 2, j}=\left|X_{2} g_{h} \cap X_{j}\right| \cdot k_{h} / k_{j},
$$

hence the task is to enumerate all of $X_{2} g_{h}$ explicitly, successively for every $2 \leq h \leq 23$, and to determine which H-orbits X_{j} (where $1 \leq j \leq 23$) the various points $x \in X_{2} g_{h}$ belong to; recall that we are done for $h=1$ anyway.

As we have not enumerated the H-orbits X_{j} directly, but the H-orbits X_{j}^{π} instead, the membership test is done by checking whether $x^{\pi} \in X_{j}^{\pi}$ holds, whenever $j \notin\{1,3,4\}$; the cases $j \in\{3,4\}$ will be commented on below, while $j=1$ only occurs for $i=2$ and checking whether $x=x_{1}$ is easy anyway.

Table 4
Intersection matrix P_{2}.

i	k_{i}	1	2	3	4	5	6	7	8	9	10
1	1	.	1	-	
2	412896	412896	2	136	.	.	1	4	.	.	
3	86316516		28431	.	.	462	1		.		
4	195747435	135		.	.	
5	8537488128	.		45696	.		.	3888			1056
6	23478092352		56862	272	16192	.	136			.	
7	33816182400		327600	.		15400	.	8		364	
8	113778447552		3200	1134	
9	160533964800	.	.	.	-	.		1728	1600	728	
10	504245392560	62370	.				
11	1044084577536	12096		.		
12	1152560897280	.			129536	.					1760
13	1584771233760	.		275400	8096		16335	78732			33440
14	5282570779200	16200	.	.	2106	
15	7888639030272	.		91392	.	924	79296	23328			37312
16	12678169870080	.	.	.		178200	.			37908	
17	21514470082560	.	.	.	-	.		139968	12480		101376
18	43028940165120	.	.	.	-	.			24960	58968	
19	50712679480320	.	-		259072	124740		-			2112
20	133120783635840		226800	157464			135168
21	190172548051200	.	.	-	-		16200		280800	75816	10560
22	262954634342400	.	.	.	-	30800	33600	7776		235872	
23	283991005089792	.	.	.	-		12096	.	89856		90112

In turn, as we have enumerated only parts of the X_{j}^{π} explicitly, we have to check a few points in $x^{\pi} H$ for membership. Still, this only allows to prove membership, but not to disprove it. Hence we let j vary, and in a first run we test a very few points in $x^{\pi} H$, at most 5 say, for membership in X_{j}^{π}. If x^{π} cannot be proven to belong to a particular H-orbit, we start a second run where we test some more points in $x^{\pi} H$, at most 1000 say. Now this is done for all $x \in X_{2} g_{h}$, and it turns out that after the second run only a very few points have not been proven to belong to a particular H-orbit, in particular including those which belong to X_{3} or X_{4}.

Hence we have found lower bounds for the matrix entries $p_{h, 2, j} \in \mathbb{N}_{0}$. Now we have $\sum_{j=1}^{23} p_{h, 2, j} k_{j}=k_{2} k_{h}$, and moreover $p_{h, 2, j}=p_{j, 2, h} \cdot k_{j} / k_{h}$, which is an integrality condition, and in particular implies that $p_{h, 2, j}=0$ if and only if $p_{h, 2, i}=0$. It turns out that these conditions are sufficient to find all the matrix entries $p_{h, 2, j}$. The resulting intersection matrix P_{2} is shown in Tables $4-5$.

Finally, it turns out that all the row eigenspaces of the matrix $P_{2}^{\mathrm{tr}} \in \mathbb{Q}^{23 \times 23}$ are already 1-dimensional, hence normalising the eigenvectors to have 1 as their first entry yields the character table Φ_{E}, which together with the degrees of

Table 5
Intersection matrix P_{2}, continued.

i	11	12	13	14	15	16	17	18	19	20	21	22	23
1				
2		.	-				.						
3	.		15		1		
4	.	22	1	.		.	.		1				
5					1	120	.	.	21	.	.	1	
6	272	.	242	72	236	.	.		.	40	2	3	1
7	.	.	1680		100		220	.	.	40	.	1	
8	.	.	-	.	.	.	66	66	.		168		36
9	.	.	.	64		480		220	.		64	144	
10	.	770	10640		2385		2376		21	512	28		160
11	1360	1232	.	.	36	112	.	1980	700	.	672	486	176
12	1360	.		4320	1575	1400			211	496	128	567	600
13	.	-	30	2376		9632	.	396	3420	40	30	945	175
14	.	19800	7920	128	1350		6270	990	2370	2560	844	1512	3300
15	272	10780	-	2016	626	15120	792	3696	12866	480	1008	4596	2546
16	1360	15400	77056	.	24300	240	29700	396	420	13056	3088	1350	5400
17	.	.		25536	2160	50400	440	6996	28560	1792	3136	13824	6360
18	81600	.	10752	8064	20160	1344	13992	21032	3360	24064	30016	11232	14760
19	34000	9284	109440	22752	82710	1680	67320	3960	5542	41664	16016	9828	24110
20	.	57288	3360	64512	8100	137088	11088	74448	109368	23672	38976	76707	45600
21	122400	21120	3600	30384	24300	46320	27720	132660	60060	55680	108608	81972	64800
22	122400	129360	156800	75264	153200	28000	168960	68640	50960	151520	113344	81640	118600
23	47872	147840	31360	177408	91656	120960	83952	97416	135016	97280	96768	128088	126272

the Fitting correspondents is shown in Tables 6-9.

References

E. Bannai and T. Ito, Algebraic combinatorics I: Association schemes, Benjamin, 1984; MR0882540 (87m:05001).
D. Benson, Representations and cohomology I, Cambridge Studies in Advanced Mathematics 30, Cambridge Univ. Press, 1998; MR1644252 (99f:20001a).
T. Breuer and K. Lux, The multiplicity-free permutation characters of the sporadic simple groups and their automorphism groups, Comm. Algebra 24, 1996, 2293-2316; MR1390375 (97c:20020).
T. Breuer and J. Müller, A database of character tables of endomorphism rings of multiplicity-free permutation modules, 2006, in preparation.
T. Breuer and J. Müller, Character tables of endomorphism rings of multi-plicity-free permutation modules of the sporadic simple groups and their cyclic and bicyclic extensions, 2005, (http://www.math.rwth-aachen.de/ ~Juergen. Mueller/mferctbl/mferctbl.html).

Table 6
The character table.

i	$\chi_{\lambda}(1)$	1	2	3	4			
1	1	1	412896	86316516	195747435	8537488128	23478092352	33816182400
2	4371	1	-137632	18115812	-10472085	-1159411968	1449264960	3757353600
3	96255	1	82016	8890596	5701995	457037568	327742272	1297296000
4	9458750	1	41888	3232548	-43605	123026688	57841344	314160000
5	63532485	1	-32032	2275812	414315	-77223168	-2312640	179625600
6	347643114	1	10208	704484	1589355	10679040	46398528	-9609600
7	356054375	1	-17248	900900	-1508949	-20097792	43902144	32672640
8	4221380670	1	-3232	324324	103275	-2453760	15121728	-12297600
9	4275362520	1	14816	725796	-43605	16743168	-7316928	31920000
10	9287037474	1	6896	132516	699435	736128	11096352	4502400
11	13508418144	1	-11632	475812	111915	-9283968	-491040	17673600
12	108348770530	1	7328	246564	-43605	3421440	1729728	4502400
13	309720864375	1	-1120	89892	-181845	-172800	3172032	-3638400
14	635966233056	1	3408	69284	147755	295040	2450528	-169600
15	1095935366250	1	-4576	126756	2475	-1324800	-949824	1061760
16	6145833622500	1	2864	51876	-26325	316800	-507744	309120
17	6619124890560	1	1088	39204	25515	138240	-300672	-1065600
18	12927978301875	1	-2128	19620	-40149	67968	706464	186240
19	38348970335820	1	-1232	15524	37675	19840	-69472	-233600
20	89626740328125	1	944	1188	15147	-79488	61344	63360
21	211069033500000	1	560	1188	-12501	-51840	12960	-68736
22	284415522641250	1	-16	-5724	8235	17280	50976	78720
23	364635285437500	1	-400	-1116	-5589	26496	-71136	-7296

A. Brouwer and A. Cohen and A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 18, Springer, 1989; MR1002568 (90e:05001).
J. Conway and R. Curtis and S. Norton and R. Parker and R. Wilson, Atlas of finite groups, Oxford Univ. Press, 1985; MR0827219 (88g:20025).
G. Davidoff and P. Sarnak and A. Valette, Elementary number theory, group theory, and Ramanujan graphs, London Mathematical Society Student Texts 55, Cambridge Univ. Press, 2003; MR1989434 (2004f:11001).
W. Feit, The representation theory of finite groups, North-Holland Mathematical Library 25, North-Holland, 1982; MR0661045 (83g:20001).
The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4, 2005, (http://www.gap-system.org).
D. Higman, A monomial character of Fischer's baby monster, in Proc. of the Conference on Finite Groups, Utah, 1975, 277-283, Academic Press, 1976; MR0409627 (53 \#13379).
A. Ivanov and S. Linton and K. Lux and J. Saxl and L. Soicher, Distancetransitive representations of the sporadic groups, Comm. Algebra 23, 1995, 3379-3427; MR1335306 (96g:20019).
C. Jansen, The minimal degrees of faithful representations of the sporadic

Table 7
The character table, continued.

i	8	9	10	11	12	
1	113778447552	160533964800	504245392560	1044084577536	1152560897280	1584771233760
2	1404672192	-5945702400	39426594480	-21483221760	-4743048960	-110868769440
3	-1788671808	-511948800	12027702960	-9527341824	6966984960	30484602720
4	183218112	258508800	1991288880	1252323072	-1021697280	4906012320
5	-32332608	35481600	1084693680	550851840	-432034560	-2400567840
6	57081024	-167270400	224426160	533820672	271607040	-9741600
7	-21155904	63866880	185985072	-186810624	778242816	-259829856
8	-15494976	74188800	87499440	-219034368	-142145280	29121120
9	14841792	4147200	110118960	-61012224	62588160	198033120
10	-38864448	20044800	-21727440	115105536	171953280	32315760
11	7584192	-18662400	32946480	-61205760	-22584960	-74323440
12	-11866176	-6912000	5609520	-1790208	-28857600	-1265760
13	6934464	-6912000	12798000	19554048	-7568640	3745440
14	6681024	5913600	-1900240	-8656128	8992640	-2385200
15	-254016	1935360	-841680	6983424	3168000	10755360
16	1197504	691200	-2857680	2467584	-777600	-4879440
17	-1498176	-460800	2430000	-1928448	3732480	-3810240
18	-627264	-414720	-2332368	-1292544	-307584	-943056
19	-576	76800	-292560	472832	-1668480	588720
20	36288	-709632	-452304	-850176	134784	854064
21	-129600	248832	73008	200448	-335232	518832
22	-46656	138240	114480	532224	-293760	-481680
23	119232	-82944	86832	-352512	508032	-42768

simple groups and their covering groups, LMS J. Comput. Math. 8, 2005, 122-144; MR2153793.
D. Johnson, Presentations of groups, London Mathematical Society Student Texts 15, Cambridge Univ. Press, 1997; MR1472735 (98e:20001).
P. Landrock, Finite group algebras and their modules, London Mathematical Society Lecture Note Series 84, Cambridge Univ. Press, 1983; MR0737910 (85h:20002).
F. Lübeck and M. Neunhöffer, Enumerating large orbits and direct condensation, Experiment. Math. 10 (2), 2001, 197-205; MR1837671 (2002m:20028).
K. Lux, Algorithmic methods in modular representation theory, Habilitationsschrift, RWTH Aachen, 1997.
K. Lux and J. Müller and M. Ringe, Peakword condensation and submodule lattices: an application of the MeatAxe, J. Symbolic Comput. 17 (6), 1994, 529-544; MR1300352 (95h:68091).
J. Müller, On endomorphism rings and character tables, Habilitationsschrift, RWTH Aachen, 2003.
J. Müller and M. Neunhöffer and F. Noeske, GAP-4 package ORB, 2006, (http://www.math.rwth-aachen.de/~Max.Neunhoeffer/

Table 8
The character table, continued.

i	14	15				
1	5282570779200	7888639030272	12678169870080	21514470082560	43028940165120	
2	65216923200	-292171815936	573908924160	-796832225280	531221483520	
3	28447848000	58091185152	118446831360	158430504960	-222361251840	
4	-3514104000	3727696896	12802648320	10166446080	20332892160	
5	1235995200	-300174336	4718165760	-4534548480	-8511713280	
6	916660800	2067158016	-1656357120	-679311360	1892782080	
7	-2109032640	-1909619712	-643458816	1675634688	1177473024	
8	499867200	-274627584	-544631040	-5806080	592220160	
9	197640000	-366363648	5218560	-75479040	-452874240	
10	217339200	-118153728	122446080	-322237440	661893120	
11	-10756800	200600064	-34179840	269982720	836075520	
12	-80222400	35030016	-96802560	-145152000	-11612160	
13	-43200	-48356352	-17729280	18524160	-16035840	
14	-15211200	36246016	7220480	-39797760	-41656320	
15	2721600	1741824	-31921920	-5806080	-58060800	
16	5417280	-5515776	518400	14515200	11612160	
17	648000	5308416	933120	14100480	-9953280	
18	2928960	787968	6269184	7216128	-6967296	
19	-1924800	-2025984	4348160	-1582080	5468160	
20	938304	-1866240	518400	-746496	-1658880	
21	-720576	898560	1237248	-1410048	995328	
22	25920	-262656	-1416960	2903040	-1658880	
23	191808	290304	-311040	-1741824	995328	
					1	

Computer/Software/Gap/orb.html).
J. Müller and M. Neunhöffer and F. Röhr and R. Wilson, Completing the Brauer trees for the sporadic simple Lyons group, LMS J. Comput. Math. 5, 2002, 18-33; MR1916920 (2003e:20015).
S. Norton, Anatomy of the Monster I, in The Atlas of finite groups: ten years on, Birmingham, 1995, London Math. Soc. Lecture Note Ser. 249, 198-214, Cambridge Univ. Press, 1998; MR1647423 (99i:20021).
S. Norton, The uniqueness of the Fischer-Griess Monster, in Finite groups - coming of age, Montreal, 1982, Contemp. Math. 45, 271-285, 1985; MR0822242 (87b:20025).
M. Ringe, The C-MeatAxe 2.4, RWTH Aachen, 2003.
I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen, Sitzungsberichte der Preußischen Akademie der Wissenschaften, 1933, 598-623.
R. Wilson, Standard generators for sporadic simple groups, J. Algebra 184, 1996, 505-515; MR1409225 (98e:20025).
R. Wilson, A new construction of the Baby Monster and its applications, Bull. London Math. Soc. 25 (1993), no. 5, 431-437; MR1233405 (94k:20027).
R. Wilson and R. Parker and S. Nickerson and J. Bray, Atlas of finite group

Table 9
The character table, continued.

i	19		20	21		22
1	50712679480320	133120783635840	190172548051200	262954634342400	283991005089792	
2	1460859079680	-2739110774400	-782603078400	3246353510400	-1168687263744	
3	239651343360	190079809920	-857327328000	28598169600	218194808832	
4	7936220160	8210885760	47791814400	-25333862400	-90188550144	
5	-1053803520	12753417600	10828857600	-17953689600	3908653056	
6	3994721280	-5895711360	1568160000	-10005811200	6838013952	
7	3238050816	-155675520	-44478720	-6826659840	4981616640	
8	722856960	813214080	-13996800	-1025740800	-578285568	
9	-1233239040	-1778474880	666144000	148377600	2518290432	
10	-489991680	959091840	-1020988800	174182400	-479582208	
11	-664312320	-183254400	-1004918400	593510400	125024256	
12	83082240	268168320	-170553600	212889600	-59609088	
13	-61793280	98133120	-116640000	190771200	-74649600	
14	-22725120	16717440	9264000	80076800	-41576448	
15	36449280	-18264960	41644800	94187520	-83349504	
16	15137280	9797760	-15085440	-21934080	-10450944	
17	-9953280	-18195840	27993600	27648000	-35831808	
18	-2225664	-16744320	22654080	-8663040	-276480	
19	-919040	-1537920	-7036800	-17100800	23365632	
20	2198016	3825792	6065280	-4534272	-3815424	
21	-1893888	-4053888	-1316736	-2764800	8570880	
22	-69120	-3058560	51840	6082560	-2709504	
23	705024	4572288	-1026432	-700416	-3151872	

representations, 2005, (http://brauer.maths.qmul.ac.uk/Atlas/).
P. Zieschang, An algebraic approach to association schemes, Lecture Notes in Mathematics 1628, Springer, 1996; MR1439253 (98h:05185).

