Cycling with mirrors, modulo n

Donald Preece

For an integer n, we wish to dispose the $n-1$ non-zero elements of \mathbb{Z}_{n} in a circular arrangement $\left[a_{1}, a_{2}, \ldots, a_{n-1}\right]$ (with $a_{n}=a_{1}$) so that the set of differences $a_{i+1}-a_{i}($ for $i=1,2, \ldots, n-1)$ is itself $\mathbb{Z}_{n} \backslash\{0\}$. A basic recipe for doing this for any odd n was given in 1978 by Friedlander, Gordon and Miller. Variants of this recipe are available for $n \equiv 1(\bmod 2 i)$, with $i=2,3,4, \ldots$. Entirely different procedures have been published by the speaker for prime values of n. Now procedures have been found specifically for values $n=p q$ where p and q are distinct odd primes. Many of these new procedures produce arrangements in which any element x and its negative $-x(\bmod n)$ are $(n-1) / 2$ positions apart (in either direction).

The talk will pay little heed to possible applications. However, for small values of n, the arrangements give us neighbour designs, as in statistical design theory.

