SEMINAR: "Stitching up \mathbb{Z}_{pqr} "

D. A. PREECE

Abstract

Consider the following sequence of the elements of \mathbb{Z}_n where n = 15:

3 9 1 2 4 8 5 0 10 7 11 13 14 6 12.

We take the "difference" between any two consecutive entries x and y to be the value d, satisfying 0 < d < n/2, that is congruent to either x - y or $y - x \pmod{n}$. So the sequence's differences, in order, are

6 7 1 2 4 3 5 5 3 4 2 1 7 6.

Each of $1, 2, \ldots, 7$ occurs here exactly twice, so the original sequence is a "terrace" for \mathbb{Z}_{15} .

How was the terrace obtained? The entries after 0 are the negatives of those before 0, in reverse order. The entries before 0 are

 3^1 3^2 2^0 2^1 2^2 2^3 5^1

modulo 15. So the terrace, up to the entry 0, is obtained by stitching together a segment containing multiples of 3 (a factor of 15), a segment containing units of \mathbb{Z}_{15} , and a segment containing a multiple of 5 (the other factor of 15). The terrace provides just one example of "stitch-up" constructions for terraces for \mathbb{Z}_{pq} where p and q are distinct odd primes.

Producing similar constructions for terraces for \mathbb{Z}_{pqr} is harder, but wow!, there are many possibilities.