SEMINAR: "Stitching up $\mathbb{Z}_{p q r}$ "

D. A. PREECE

Abstract

Consider the following sequence of the elements of \mathbb{Z}_{n} where $n=15$:

$$
\begin{array}{lllllllllllllll}
3 & 9 & 1 & 2 & 4 & 8 & 5 & 0 & 10 & 7 & 11 & 13 & 14 & 6 & 12 .
\end{array}
$$

We take the "difference" between any two consecutive entries x and y to be the value d, satisfying $0<d<n / 2$, that is congruent to either $x-y$ or $y-x(\bmod n)$. So the sequence's differences, in order, are

$\begin{array}{lllllllllllllll}6 & 7 & 1 & 2 & 4 & 3 & 5 & 5 & 3 & 4 & 2 & 1 & 7 & 6\end{array}$.

Each of $1,2, \ldots, 7$ occurs here exactly twice, so the original sequence is a "terrace" for \mathbb{Z}_{15}.

How was the terrace obtained? The entries after 0 are the negatives of those before 0 , in reverse order. The entries before 0 are

$$
\begin{array}{lllllll}
3^{1} & 3^{2} & 2^{0} & 2^{1} & 2^{2} & 2^{3} & 5^{1}
\end{array}
$$

modulo 15 . So the terrace, up to the entry 0 , is obtained by stitching together a segment containing multiples of 3 (a factor of 15), a segment containing units of \mathbb{Z}_{15}, and a segment containing a multiple of 5 (the other factor of 15). The terrace provides just one example of "stitch-up" constructions for terraces for $\mathbb{Z}_{p q}$ where p and q are distinct odd primes.

Producing similar constructions for terraces for $\mathbb{Z}_{p q r}$ is harder, but wow!, there are many possibilities.

