Let f be a function on the natural numbers with the properties

- n divides f(n);
- there exists a function g such that g(m) divides n if and only if m divides f(n).

If (u_n) is realizable, then so is $(u_{f(n)})$.

For let (X, T) be a realization of (u_n) . Let $X^* = X$, and construct T^* as follows: replace each cycle of T (of length n, say) by its n/g(n)th power (which has n/g(n)cycles of length g(n)). (Note that g(n) divides n, by assumption.) Now let $x \in X$ be a point lying in an *m*-cycle of T. Then x lies in a g(m)-cycle of T^* , so

$$(T^*)^n$$
 fixes $x \Leftrightarrow g(m)$ divides n
 $\Leftrightarrow m$ divides $f(n)$
 $\Leftrightarrow T^{f(n)}$ fixes x .

Now let $f(n) = n^k$. Define g to be the multiplicative function satisfying

$$g(p^a) = p^{\lceil a/k \rceil}$$

for p prime and $a \ge 0$. Suppose that $n = p_1^{a_1} \cdots p_r^{a_r}$ and $m = p_1^{b_1} \cdots p_r^{b_r}$. Then

m divides $n^k \Leftrightarrow (\forall i) b_i \leq ka_i$,

and

n divides
$$g(m) \Leftrightarrow (\forall i) [b_i/k] \leq a_i$$
;

these conditions are clearly equivalent.