Let f be a function on the natural numbers with the properties

- n divides $f(n)$;
- there exists a function g such that $g(m)$ divides n if and only if m divides $f(n)$.

If $\left(u_{n}\right)$ is realizable, then so is $\left(u_{f(n)}\right)$.
For let (X, T) be a realization of $\left(u_{n}\right)$. Let $X^{*}=X$, and construct T^{*} as follows: replace each cycle of T (of length n, say) by its $n / g(n)$ th power (which has $n / g(n)$ cycles of length $g(n)$). (Note that $g(n)$ divides n, by assumption.) Now let $x \in X$ be a point lying in an m-cycle of T. Then x lies in a $g(m)$-cycle of T^{*}, so

$$
\begin{aligned}
\left(T^{*}\right)^{n} \text { fixes } x & \Leftrightarrow g(m) \text { divides } n \\
& \Leftrightarrow m \text { divides } f(n) \\
& \Leftrightarrow T^{f(n)} \text { fixes } x .
\end{aligned}
$$

Now let $f(n)=n^{k}$. Define g to be the multiplicative function satisfying

$$
g\left(p^{a}\right)=p^{\lceil a / k\rceil}
$$

for p prime and $a \geq 0$. Suppose that $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ and $m=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}$. Then

$$
m \text { divides } n^{k} \Leftrightarrow(\forall i) b_{i} \leq k a_{i},
$$

and

$$
n \text { divides } g(m) \Leftrightarrow(\forall i)\left\lceil b_{i} / k\right\rceil \leq a_{i} ;
$$

these conditions are clearly equivalent.

