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The Klein quadric and triality

Low-dimensionalhyperbolic quadricspossessa remarkablyrich structure;the
Klein quadricin 5-spaceencodesa projectie 3-spaceandthetriality quadricin
7-spacepossessaanunexpectedhreefoldsymmetry Thecontentof this chapter
canbe predictedrom the diagramsf thesegeometriessinceDs is isomorphicto
Az, andD4 hasanautomorphisnof order3.

8.1 The Pfaffian

The determinanbf a skew-symmetricmatrix is a square.This canbe seenin
smallcasedy directcalculation:
0 a2\ _ 2
det(_a12 0) = afy,
0 a2 a3 a4
—a;2 O a3 A 2
det = (a12834— aiza24+ ag4a23)”.
—a;3 —ags O  am (212834 — Q13324+ A14323)
-4 —a4 —az O
Theorem8.1 (a) Thedeterminantof a skew-symmetrianatrix of odd sizeis
zeo.

(b) Theeis auniquepolynomialPf(A) in theindeterminatesyj for 1 <i< j <
2n, havingthe properties

(i) if Ais askew-symmetri@n x 2n matrixwith (i, j) entrya;j for 1 <i <
j <2n,then
det(A) = Pf(A)?;

115
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(i) Pf(A) containsthetermajsaza- - - aon—1 2n With coeficient+-1.

Proof We beagin by observingthat, if A is a skew-symmetricmatrix, thenthe
form B definedby
B(x,y) = xAy"

is an alternatingbilinearform. Moreover, B is non-dgjeneratef andonly if Ais
non-singularfor xAy" = 0 for all y if andonly if xA= 0. We know thatthereis
no non-degeneratelternatingbilinear form on a spaceof odd dimension;so (a)
is proved.

We know alsothat, if A is singular thendet(A) = 0, whereasif A is non-
singular thenthereexistsaninvertible matrix P suchthat

o 0 1 0 1
N L))

sothatdet{A) = det(P)~2. Thus,det(A) is asquaren eithercase.

Now regarda;j asbeingindeterminatesverthefield F; thatis, letK = F (& :
1 <i < j < 2n) bethefield of fractionsof the polynomialring in n(2n— 1) vari-
ablesover F. If A is the skew-symmetricmatrix with entriesaj; for 1 <i <
j < 2n, thenaswe have seen,def(A) is a squarein K. It is actuallythe square
of a polynomial. (For the polynomialring is a uniquefactorisationdomain; if
detA) = (f/g)?, where f andg are polynomialswith no commonfactor then
det(A)g? = f2, andso f2 dividesdet(A); thisimpliesthatg is aunit.) Now det(A)
containsaterm

3%2354' o a%n—l 2n

correspondingo the permutation

(12)(34)---(2n—12n),

and so by choiceof signin the squareroot we may assumethat (ii)(b) holds.
Clearlythe polynomialPf(A) is uniquelydetermined.

Theresultfor arbitraryskew-symmetricmatricesis now obtainedby speciali-
sation(thatis, substitutingvaluesfrom F for theindeterminates;j). =

Exercises

1. A one-factorontheset{1,2,...,2n} isapartitionF of thissetinto n subsets
of size2. We representach2-sefi, j} by the orderedpair (i, j) withi < j. The
crossingnumbery(F) of theone-fictorF is the numberof pairs{(i, j), (k,1)} of
setsin F for whichi <k < j <.
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(a) Let #, bethesetof one-factorsontheset{1,2,...,2n}. Whatis | #,|?

(b) Let A= (&) beaskew-symmetricmatrix of order2n. Prove that

PR = T (1P T ai.

Fefn (i,))eF

2. Show that, if A is a skew-symmetricmatrix andP ary invertible matrix,
then
Pf(PAP") = det(P) - Pf(A).
Hint: We have de PAPT) = det P)?det{A), andtakingthe squareroot shovs that
Pf(PAPT) = det(P) Pf(A); it is enoughto justify the positive sign. Shaw thatit
sufficesto considerthe ‘standard’skew-symmetricmatrix

({5 (5 2)

In thiscaseshaw thatthe (2n—1,2n) entryin PAPT containgheterm pzn_1 2n_1P2zn 2n,
sothatPf(PAP") containghediagonalentryof det P) with sign+1.

3. Shaw thatary linear transformatiorof a vectorspacefixing a symplectic
form (anon-dgeneratalternatingbilinearform) hasdeterminant.

8.2 TheKlein correspondence

We begin by describingan abstractpolar spacewhich appearsot to be of
classicalype. Let F be askew field, andconsiderthe geometryG definedfrom
PG(3,F) asfollows:

e thePOINTsof G arethelinesof PG(3,F);
e theLINEs of G aretheplanepencils(incidentpoint-planepairs);
e thePLANEsof G areof two types:the points,andthe planes.

A POINT andLINE areincidentif the line belongsto the planepencil (i.e., is
incidentwith both the point andthe plane). A LINE and PLANE areincident
if the point or planeis one of the elementsof the incident pair; andincidence
betweera POINT anda PLANE is theusualincidencein PG(3,F).

If aPLANE is aplanell, thenthe POINTsandLINEs of this PLANE corre-
spondto thelinesandpointsof IM; sotheresidueof the planeis isomorphicto the
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dualof I, namely PG(2,F°). Ontheotherhand,if a PLANE is a point p, then
the POINTsandLINEs of this PLANE arethelinesandplanesthroughp, soits
residues theresidueof pin PG(3,F), namelyPG(2,F). Thus(PS1)holds.(Note
that,if F is notisomorphico its oppositethenthe spacecontainsnon-isomorphic
planes somethingvhich cannothappenn aclassicalbpolarspace.)

Axiom (PS2)is clear Consider(PS3). Supposdahatthe PLANE in question
is aplanerll, andthe POINT notincidentwith it is aline L. ThenLNT1 is apoint
p; thesetof POINTsof I collinearwith L is the planepencildefinedby p andl
(which is a LINE), andthe union of the LINES joining themto L consistsof all
linesthroughp (whichis aPLANE), asrequired.The othercaseis dual.

Finally, if the point p andplanell are non-incident,thenthe PLANES they
definearedisjoint, proving (PS4).

Notethatary LINE is incidentwith justtwo PLANES,oneof eachtype;so, if
the polar spaces classicaljt mustbea hyperbolicquadricin PG(5,F). We now
show that, if F is commutatve, it is indeedthis quadricin disguise! (For non-
commutatve fields, this is one of the exceptionalrank 3 polar spacesnentioned
in Section7.6.)

The skew-symmetricmatricesof order4 over F form a vectorspaceof rank
6, with X12,...,X34 ascoordinatesThe Pfaffian is a quadraticform on this vector
space,which vanishespreciselyon the singularmatrices. So, projectiely, the
singulamatricesorm aquadricQ in PG5, F), theso-calleKlein quadric. From
the form of the Pfaffian, we seethatthis quadricis hyperbolic— but in factthis
will becomecleargeometrically

Any skew-symmetricmatrix hasevenrank. In our case,a non-zerosingular
skew-symmetricmatrix A hasrank 2, andso canbewrittenin theform

A=X(v,w):=viw—w'v

for somevectorsv,w. Replacingthesetwo vectorsby linear combinationsav +
Bw andyv + dw multiplies A by afactorad — By (whichis justthe determinanbf
thetransformation) Sowe have amapfrom theline of PG(3, F) spannedby v and
w to the point of the Klein quadricspannedy X(v,w). This mapis a bijection:
we have seerthatit is onto,andthe matrix determinegheline asits row space.

This bijection hasthe propertiespredictedby our abstracttreatment. Most
important,

two pointsof the Klein quadricare perpendiculaif andonly if the
correspondindinesintersect.
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To prove this, note that two points are perpendiculaif andonly if the line
joining themliesin Q. Now, if two linesintersectwe cantake themto be (u, v)
and(u,w); andwe have

a(u'v—vTu)+Bu'w—w"u)=u' (av+pw) — (av+pw) u,

sotheline joining the correspondingointsliesin the quadric.Corversely if two
lines are skew, thenthey are (v1,v2) and(vs,va), where{vi,...,v4} is a basis;
thenthe matrix

Vi V2 —VaVi+VEva—V]V3

hasrank4, andis a pointontheline noton Q.

Hencethe planeson the quadriccorrespondo maximalfamiliesof pairwise
intersectinglines, of which therearetwo types: all lines througha fixed point;
andall linesin afixedplane.Moreover, theamgumentin the precedingoaragraph
shownsthatlineson Q doindeedcorrespondo planepencilsof linesin PG(3,F).
This completegheidentification.

Exercise

1. This exercisegivesthe promisedidentificationof PSL(4,2) with the alter
natinggroupAs.

LetV bethevectorspaceof rank6 over GF(2) consistingof the binarywords
of length8 having evenweightmodulothe subspacé& consistingof the all-zero
andall-1 words. Shaow thatthe function

f(v+2Z)=3wt(v) (mod2)

is well-definedandis a quadraticform of rank 3 on V, whosezerosform the
Klein quadricQ. Show thatthesymmetricgroupSg interchangeghetwo families
of planeson Q, the subgrougfixing the two familiesbeingthe alternatinggroup
As.
Usethe Klein correspondencen show that Ag is embeddedas a subgroup
of PGL(4,2) = PSL(4,2). By calculatingthe ordersof thesegroups,shav that
equalityholds.

Remark TheisomorphisnbetweerPSL(4,2) andAg canbeusedo giveasolu-
tion to Kirkman’s schoolgirl problem This problemasksfor ascheduldor fifteen
schoolgirlsto walk in five groupsof threeevery dayfor sevendays,subjectto the
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requirementhatary two girls walk togetherin a group exactly onceduring the
week.

The 7 x 5 groupsof girls arethusthe blocksof a 2-(15,3,1) design.We will
take this designto consistof thepointsandlinesof PG(3,2). The problemis then
to find a ‘parallelism’ or ‘resolution’, a partition of the linesinto seven ‘parallel
classeseachconsistingof five pairwisedisjointlines.

One way to find a parallel classis to considerthe underlyingvector space
V(4,2) as a vector spaceof rank 2 over GK4). The five ‘points’ or rank 1
subspacesver GF(4) becomefive pairwisedisjoint lines whenwe restrictthe
scalarsto GF(2). Scalarmultiplication by a primitive elementof GF(4) is an
automorphisnof order 3, fixing all five lines, and commutingwith a subgroup
SL(2,4) = As. Moreover, if two suchautomorphismof order3 have a com-
monfixedline, thenthey generate {2, 3}-group,sincethe stabiliserof aline in
GL(4,2) isa{2,3}-group.

Now, in Ag, anelementof order3 commutingwith a subgroupgsomorphicto
As is necessarilya 3-cycle. Two 3-cyclesgeneratea {2, 3}-groupif andonly if
their supportantersectn 0 or 2 points. Sowe requirea setof seven 3-subset®f
{1,...,8}, ary two of which meetin onepoint. Thelinesof PG(2,2) (omitting
onepoint) have this property

8.3 Somedualities

We have interpretedpointsof the Klein quadricin PG(3,F). Whataboutthe
pointsoff thequadric?

Theorem 8.2 Theris a bijectionfromthesetof pointsp outsidetheKlein quadric
Q to symplecticstructureson PG(3, F), with the propertythat a point of Q per

pendicularto p translatesunderthe Klein correspondencéo a totally isotropic
line for the symplectiggeometry

Proof A pointp ¢ Q is representedby a skew-symmetricmatrix A which has
non-zeroPfaffian (and henceis invertible), up to a scalarmultiple. The matrix
definesa symplecticform b, by therule

b(v,w) =VvAw .

We mustshaow thataline is t.i. with respecto this form if andonly if the corre-
spondingpointof Q is perpendiculato p.
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Let A beanon-singulaskew-symmetric4 x 4 matrix overafield F. By direct
calculation,we show thatthe following assertionsreequvalent,for any vectors
v,w € F4:

(@) X(v,w) =v'w—w'v is orthogonako A, with respecto the bilinearform
obtainedby polarisingthe quadratidorm Q(X) = Pf(X);

(b) v andw areorthogonalwith respecto the symplecticform with matrix AT,
thatis, vATw™ = 0.

HerethematricesA andA' aregivenby

0 a2 a1z Ay 0 ags —a4 A3
A | T2 0 a3z A At | —as4 0 a4 —a3
—a13 —apz 0 azs |’ apg —as O a2
—a14 —ap —ag O —a3 a3 -—apz O

Notethat,if A is thematrix of the standardsymplecticform, thensois A'. In
generalthe maptaking the point outsidethe quadricspannedy A to the sym-
plecticform with matrix AT is the oneassertedn thetheorem. m

Let G1 bethe symplecticGQ over F, and G, the orthogonalGQ associated
with the quadricv N Q, whereQ is the Klein quadricand(v) ¢ Q. (Notethat
arny non-singularquadraticform of rank 2 in 5 variablesis equvalentto ax%-i—
X1X2 + X3X4 for somea # 0; so ary two suchforms are equialentup to scalar
multiple, anddefinethe sameGQ.) We have defineda mapfrom pointsof G to
linesof G1. Givenary point p of Gi, thelinesof Gy containingp form a plane
pencilin PG(3,F), andsotranslatento aline of G,. Thuswe have shown:

Theorem 8.3 For anyfield F, thesymplectidGQin PG(3, F) andtheorthogonal
GQin PG(4,F) aredual. =

Now let F be a field which hasa Galois extensionK of degree2 ando the
Galoisautomorphisnof K over F. With theextensionK /F we canassociatéwo
GQs:

G1: theunitaryGQin PG(3,K), definedby the Hermitianform

X1y5 +X2y§ +Xayq +xay3;

Gy: theorthogonalGQ in PG(5,F) definedby the quadraticform

X1X2 + XaXa + 00E + BXsXs + Y&,
whereax? + Bx+ v is anirreduciblequadraticover F which splitsin K.
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Theorem 8.4 Thetwo GQs G; and G} definedaboveare dual.

Proof Thisis provedby “twisting theKlein correspondence’ln outline,we take
theKlein correspondencever K, andchangecoordinateson the quadricso that
restrictionof scalarsto F givesthe geometryG;, ratherthanthe Klein quadric
over F; thenshow thatthe correspondingetof linesin PG(3,K) arethosewhich
aretotally isotropicwith respecto aHermitianform. =

Exercises

1. Prove the assertioraboutA andA' in the proof of Theorem8.2.

Let Q beahyperbolicquadricof rankn. If vis anon-singulavector thenthe
quadricvt N Q = S hasthe property

¢ S meetsavery maximalsubspac& of Q in ahyperplaneof E.

We call a set$ satisfyingthis conditionspecial The point of the next threeex-
erciseds to investigatewhetherspecialsetsare necessarilyguadricsof the form
vinQ.

2. Considerthe casen = 2. Let the rank 4 vector spacebe the spaceof all
2 x 2 matricesover F, andlet thequadratidorm bethedeterminant.

(a) Show thatthemap
(X) = (Ker(X),Im(X))

inducesa bijectionbetweerthepoint setof thequadricQ andP x P, where
P is theprojectveline overF.

(b) If Aiis anon-singulamatrix, show that
At = {(X) e Q:KerX)-A=Im(X)},
which correspondsinderthis bijectionto theset{(p, p-A) : p € P}.

(c) Show that,if Ttis any permutatiorof P, then{(p,T(p)) : p € P} is aspecial
set;andall specialsetshave this form.

(d) Deducethatevery specialsetis a quadricif andonly if |F| < 3.
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3. Considerthe casen = 3. Take Q. to betheKlein quadric. Showv thatthe
Klein correspondencmapsthe specialsetS to a setS of linesof PG(3,F) with
the propertythat the setof lines of Sthroughany point of p, or the setof lines
of Sin ary planerl, is a planepencil. Shav thatthe correspondence +— I of
PG(3,F), wherethe setof lines of S containingp andthe setcontainedn I are
equal,is a symlecticpolarity with Sasits setof absolutdines. DeducethatSis
the setof linesof asymplecticGQin PG(3,F), andhencethat.s is aquadric.

4. Prove by inductionon n that,for n > 3, ary specialsetis a quadric. (See
CamerorandKantor[12] for acrib.)

8.4 Dualities of symplecticquadrangles

A field of characteristi@ is saidto be perfectif every elementis a square.
A finite field of characteristi@ is perfect,sincethe multiplicative grouphasodd
ordet

If F hascharacteristi@, thenthe mapx — x? is ahomomorphismsince

(x+y)? = X+y’,
(xy)? = X,

andis one-to-oneHencekF is perfectif andonly if this mapis anautomorphism.

Theorem 8.5 LetF bea perfectfield of characteristic2. Thenthereis anisomor
phismbetweerthe symplecticpolar spaceof rank n over F, and the orthogonal
polar spaceof rankn definedby a quadratic formin 2n+ 1 variables.

Proof LetV beavectorspaceof rank2n+ 1 carryinga non-singulamuadratic
form f of rankn. By polarising f, we getan alternatingbilinear form b, which
cannotbe non-dgenerateits radicalR = V= is of rank 1, andtherestrictionof f
toit isthegermof f.

Let Wp be a totally singularsubspaceof V. ThenW = Wy + R is a totally
isotropic subspacef the non-dgieneratesymplecticspaceV /R. Sowe have an
incidence-preservingnjection 8 : Wp — (Wp + R) /R from the orthogonalpolar
spaceto the symplectic.We have to show that6 is onto.

SoletW/Rbet.i. ThismeanghatW itselfis t.i. for theform b; butRC W, so
W is nott.s.for f. However, onW, we have

f(Wl—I—Wz) = f(Wl)—l—f(Wz),
flaw) = a?f(w),
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sof issemilinearonW. Thus,thekernelof f is ahyperplan&\p of W. Thespace
Wp is t.s.,andWp + R =W, soWp mapsontoW/Runderf. =

Now considethecasen = 2. We have anisomorphisnbetweerthesymplectic
andorthogonalguadrangles)y Theorem8.5,anda duality, by Theorem8.3. So:

Theorem 8.6 Thesymplectigenerlisedquadrngleover a perfectfield of char-
acteristic2 is self-dual. =

Whenis therea polarity?

Theorem 8.7 LetF bea perfectfield of characteristic2. ThenthesymplecticGQ
over F hasa polarity if andonlyif F hasanautomorphisno satisfying

0% =2,
wheee 2 denoteghe automorphisnx — x2.

Proof For this, we cannotavoid usingcoordinatesM/e take the vectorspaceF#
with the standardsymplecticform

b((X1,X2,%3,%4), (Y1,¥2,Y3,Ya)) = X1Y2 + X2Y1 + X3Ya + XaY3.

(Remembethatthe characteristigs 2.) TheKlein correspondenceakestheline
spannedy (X1, X2, X3, X4) and(y1,Y2, Y3, ya) to thepointwith coordinates;j, 1 <
i < j <4,wherez; = Xyj+ X;y; this pointlies on the quadricwith equation

212734+ 213204+ 214723 = 0,

and (if theline is t.i.) alsoon the hyperplanez;» + z34 = 0. If we factorout
the subspacespannedy the pointwith z;o = 734 = 1, zj = 0 otherwiseanduse
coordinatesz 3, Z»4, 214, 223), We obtaina point of the symplecticspacethe map
0 from linesto pointsis the duality previously defined.

To computetheimageof apoint p = (a1, a2, as, a4) undertheduality, take two
t.i. linesthroughthis point andcalculatetheirimages.If a; anday arenon-zero,
we canusethelinesjoining p to the points(ay, az,0,0) and(0, a4, a1,0); theim-
agesare(ajag, apau, ajau, aag) and(a%, aﬁ, 0,a1a2 +azas). Now theimageof the
line joining thesepointsis foundto bethepoint (a2, a3, a3, a2). Thesameformula
is foundin all cases S0d? is the collineationinducedby thefield automorphism
X — X2, or 2 aswe have calledit.
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Supposehat thereis a field automorphisno with 62 = 2, andlet 8 = o~ 1;
then(80)? is theidentity, S0 38 is a polarity.

Corversely supposehatthereis apolarity. By Theorem7.14,ary collineation
g is inducedby the productof alineartransformatioranda uniquelydefinedfield
automorphisnB(g). Now ary duality hasthe form &g for somecollineationg;
and

6((39)%) = 26(g)*
So,if &g is a polarity, then28(g)? = 1, whenceo = 6(g) ! satisfiess? =2. =

In the casewhereF is afinite field GF(2™), the automorphisngroupof F is
cyclic of orderm, generatedby 2; andsothereis asolutionof 2 = 2 if andonly if
mis odd. We concludethatthe symplecticquadranglever GF(2™) hasa polarity
if andonly if mis odd.

We now examinethe setof absolutepointsandlines(i.e., thoseincidentwith
theirimage).A spreadis asetSof linessuchthatevery pointliesonauniqueline
of S. Dually, anovoidin a GQ is a setO of pointswith the propertythatary line
containsa uniquepoint of O. Notethatthis is quite differentfrom the definition
of anovoid in PG(3,F) givenin Section4.4; but thereis a connectionaswe will
see.

Proposition 8.8 Thesetof absolutepointsof a polarity of a GQ is an ovoid, and
the setof absolutdinesis a spread.

Proof Let d bea polarity. No two absolutepointsarecollinear For, if x andy
areabsolutepointslying ontheline L, thenx,y andLd would form atriangle.
Supposdhattheline L containsno absolutepoint. ThenL is notabsoluteso
Ld & L. Thus,thereis auniqueline M containingLd andmeetingL. ThenMd € L,
soMd is notabsolute But L meetsM, soLd andM¥d arecollinear;hencelLd, Md
andLNM form atriangle.
Thesecondstatemenis dual. =

Theorem 8.9 The set of absolutepoints of a polarity of a symplecticGQ in
PG(3,F) isanovoidin PG(3,F).

Proof Let o bethe polarity of the GQ G, and L the polarity of the projective
spacedefiningthe GQ. By the last result, the set O of absolutepointsof o is
anovoid in G. This meansthatthet.i. linesaretangentdo O, andthet.i. lines
througha point of O form a planepencil. Sowe have to prove thatarny otherline
of the projective spacameetsO in 0 or 2 points.
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Let X beahyperbolicline, p apointof XN O, andp® = L. ThenL meetsthe
hyperbolicline L+ in apointq. Let g° = M. Sinceq € L, we have p € M; soM
alsomeetsX+, in apointr. LetN =r°. Theng & N, soN meetsX. Also, N meets
O in apoints. Theline s° containssandN° =r. Sosis ontwo lines meeting
X+, whencese X. So,if [XNO| >1,then|XN 0| > 2.

Now let p’ be anothermpoint of XN O, anddefinel’ andd asbefore. Let K
betheline pq. Thenp € K, so p° = L containsx = K°. Also, K meetsL’, so
x is collinearwith p’. But the only point of L collinearwith p’ is q. Sox = q,
independenof p’. This meanshatthereis only onepoint p’ # p in XN O, and
this sethascardinality2. m

Remark Over finite fields, any ovoid in a symplecticGQ is an ovoid in the
ambientprojective 3-space.This is falsefor infinite fields. (SeeExercises2 and
3)

Hence,if F is a perfectfield of characteristic2 in which 2 = 2 for some
automorphisno, thenPG(3,F) possessesymplecticovoidsandspreadsThese
giveriseto inversie planesandto translatiorplanes asdescribedn Sectionst.1
and4.4. For finite fields F, thesearethe only known ovoids otherthanelliptic
quadrics.

Exercises

1. Supposehatthe pointsandlinesof a GQ areall the pointsandsomeof the
linesof PG(3,F). Prove thatthelinesthroughary pointform a planepencil,and
deducehatthe GQ is symplectic.

2. Prove thatan ovoid O in a symplecticGQ over the finite field GF(q) is
anovoid in PG(3,q). [Hint: asin Theorem8.3.5,it sufficesto prove that ary
hyperbolicline meetsO in 0 or 2 points. Now, if X is a hyperbolicline with
XN O #0, thenX' N O = 0, soat mosthalf of the g?(g2 + 1) hyperboliclines
meetO. Takeary N = 20?(q?+ 1) hyperbolicinesincludingall thosemeetingO,
andlet n; of thechoserlinesmeetO in i points.Provethaty nj =N, Y inj = 2N,
Si(i—1)n=2N]

3. Prove that, for ary infinite field F, thereis an ovoid of the symplectic
quadranglever F whichis notanovoid of theembeddingrojective space.
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8.5 Reguliand spreads

We metin Sectiond.1theconcept®f aregulusin PG(3, F) (thesetof common
trans\ersalsto threepairwiseskew lines), a spread(a setof pairwiseskew lines
coveringall the points),abispreada spreadcontainingaline of eachplane),and
a regular spread(a spreadcontainingthe regulusthroughary threeof its lines).
We now translatetheseconceptdo the Klein quadric.

Theorem 8.10 UndertheKlein correspondence

(a) a reguluscorrespondgo a conic, the intersectionif Q with a non-singular
planel, andthe oppositeregulusto theintersectionof Q with M-+;

(b) a bispread correspondgo an ovoid, a set of pairwise non-perpendicular
pointsmeetingeveryplaneon Q;

(c) aregular spreadcorrespondso theovoid Q "W+, wheeW is a line disjoint
fromQ.

Proof (a) Takethreepairwiseskew lines. They translatento threepairwisenon-
perpendiculapointsof Q, which spana non-singulamplanell (sothatQ NI is
aconicC). Now M+ is alsoa non-singulaplane,and Q N M+ is aconicC/, con-
sistingof all pointsperpendiculato the threegiven points. Translatingback,C’
correspondso the setof commontrans\ersalgo thethreegivenlines. This setis
aregulus,andis oppositeto theregulusspannedy thegivenlines(corresponding
to C).

(b) This is straightforvard translation.Note, incidentally thata spread(or a
cospreadgorrespondso whatmightbecalleda“semi-ovoid”, wereit notthatthis
termis usedfor a differentconcept:thatis, a setof pairwisenon-perpendicular
pointsmeetingevery planein onefamily on Q.

(c) A regularspreads “generated’by arny four linesnotcontainedn aregulus,
in the sensehatit is obtainedby repeatedlyadjoiningall the linesin a regulus
throughthreeof its lines. On Q, thefour givenlinestranslatanto four points,and
the operationof generatioreavesus within the 3-spacehey span. This 3-space
hasthe form W+ for someline W; andno point of Q can be perpendiculato
every point of sucha 3-space. =

Notethata line disjoint from Q is anisotropic;suchlinesexist if andonly if
thereis anirreduciblequadraticover F, thatis, F is not quadraticallyclosed.(We
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saw earlierthe constructiorof regularspreadsif K is aquadraticextensionof F,
take therank 1 subspacesf arank 2 vectorspaceover K, andrestrictscalarso
F.)

Thusa bispreads regularif andonly if the correspondingvoid is contained
in a 3-spacesectionof Q. A bispreadwhoseovoid lies in a 4-spacesectionof
Q is calledsymplecti¢ sinceits lines aretotally isotropic with respectto some
symplecticform (by the resultsof Section8.3). An openproblemis to find a
simplestructuraltestfor symplecticbispreadgresemblinghe characterisationf
regularspreadsn termsof reguli).

We alsosaw in Section4.1 that spreadsf linesin projective spacegive rise
to translationplanes;andregular spreadgjive Desaguesian(or Pappian)planes.
Anotheropenproblemis to characteris¢he translationplanesarisingfrom sym-
plecticspreadr bispreads.

8.6 Triality

Now we increaseherankby 1, andlet Q beahyperbolicquadricin PG(7,F),
definedby aquadratidorm of rank4. Themaximalt.s.subspacebBave dimension
3, andarecalledsolids asusual,they fall into two families M; and M>, sothat
two solidsin the samefamily meetin a line or aredisjoint, while two solidsin
differentfamiliesmeetin a planeor a point. Any t.s. planeliesin a uniquesolid
of eachtype. Let P and L bethesetsof pointsandlines.

Considerthegeometrydefinedasfollows.

o ThePOINTsaretheelementof M.

e TheLINEs aretheelementf L.

e ThePLANEsareincidentpairs(p,M), pe P, M € M.
e TheSOLIDsaretheelementf P U Mo.

Incidenceis definedasfollows. BetweenPOINTs,LINEs andSOLIDs, it is as
in the quadric,with the additionalrule that the POINT M1 and SOLID M, are
incidentif they intersectn aplane.The PLANE (p, M) is incidentwith all those
varietiesincidentwith both p andM.

Proposition 8.11 Thegeometnjustdescribeds anabstractpolar spacan which
anyPLANE s incidentwith justtwo SOLIDs.
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Proof We considertheaxiomsin turn.

(P1): Consideyfor example,the SOLID M € M>. The POINTsincidentwith
M arebijective with the planesof M; the LINEs arethelinesof M; the PLANES
arepairs(p,M) with p € M, andsoarebijective with thepointsof M. Incidenceis
definedsoasto make thesubspacesontainedn M a projective spacasomorphic
to thedualof M.

For the SOLID p € P, the agumentis a little more delicate. The geometry
pt/pis ahyperbolicquadricin PG5, F), thatis, theKlein quadric;the POINTS,
LINEs andPLANEs incidentwith p arebijective with onefamily of planesthe
lines, and the other family of planeson the quadric; and hence(by the Klein
correspondencayith the points,linesandplanesof PG(3,F).

Theothercasesareeasier

(P2)is trivial, (P3)routine,and(P4)is proved by observingthatif p € P and
M € M, arenotincident,thenno POINT canbeincidentwith both.

Finally, the SOLIDs containingthe PLANE (p,M) arepandM only. =

Sothenew geometrywe constructeds itself ahyperbolicquadricin PG(7,F),
andhenceisomorphicto the original one. This implies the existenceof a mapt
which carries”L toitselfand? — M; — M> — P. This mapis calledatriality of
thequadric,by analogywith dualitiesof projective spaces.

It is moredifficult to describerialities in coordinatesAn algebraicapproach
mustwait until Chapterl0.

Exercise

1. Prove the Buekenhout-Shulpropertyfor the geometryconstructedn this
section. Thatis, let M € M1, L € £, andsupposehatL is notincidentwith M;
prove thateitherall membersf 94 containingL meetM in a plane,or just one
does,dependingon whetherL is disjointfrom M or not.

8.7 An example

In this sectionwe applytriality to thesolutionof acombinatorialproblemfirst
posedandsettledby Breachand Street[2]. Our approachollows Cameronand
Prager[13].

Considerthe setof planesof AG(3,2). They form a3-(8,4,1) design thatis,
acollectionof fourteend-subsetsf an8-set,any threepointscontainedn exactly
oneof them. Thereare (§) = 70 4-subsetsltogethercanthey bepartitionedinto
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five copiesof AG(3,2)? Theansweis “no”, ashasbeenknown sincethetime of
Cayley. (In fact,therecannotbe morethantwo disjoint copiesof AG(3,2) onan
8-set;a constructionwill begivenin the next chapter) Breachand Streetasled:
whatif we take a 9-set? This has (?1) = 126 4-subsetsand canconcevably be
partitionedinto nine copiesof AG(3,2), eachomitting onepoint. They proved:

Theorem 8.12 Thee are exactly two non-isomorphicwaysto partition the 4-
subsetof a 9-setinto nine copiesof AG(3,2). Both admit 2-transitivegroups.

Proof Firstwe constructhetwo examples.

1. Rggardthe9-setastheprojectiveline over GK(8). If ary pointis designated
asthe point at infinity, the remainingpointsform an affine line over GF(8), and
hence(by restrictingscalarsyanaffine 3-spaceover GF(2). We take the fourteen
planesof this affine 3-spaceasone of our designs,and performthe samecon-
structionfor eachpoint to obtainthe desiredpartition. This partitionis invariant
underthe groupPl'L(2,8), of order9-8-7-3 = 1512. The automorphisngroup
is the stabiliserof the objectin the symmetricgroup; sothe numberof partitions
isomorphicto this oneis theindex of this groupin S, whichis 9!/1512= 240.

2. Alternatively, thenine pointscarrythe structureof affine planeover GF(3).
Identifying one point as the origin, the structureis a rank 2 vector spaceover
GHK(3). Puta symplecticform b on the vectorspace. Now thereare six 4-sets
which aresymmetricdifferenceof two linesthroughthe origin, andeight4-sets
of the form {v}uU{w : b(v,w) = 1} for non-zerov. It is readily checled that
thesefourteensetsform a 3-design. Performthis constructionwith eachpoint
designatedas the origin to obtain a partition. This one s invariantunderthe
groupASL(2,3) generatedy the translationsand Sp(2, 3) = SL(2,3), of order
9-8-3=216,andthereare9! /216= 1680partitionsisomorphicto this one.

Now we shaw thatthereareno others.We usethe terminologyof codingthe-
ory. Note thatthe fourteenwordsof weight4 supportingplanesof AG(3, 2), to-
getherwith theall-0 andall-1 words,form the extendedHammingcodeof length
8 (the codewe metin Section3.2, extendedby anoverall parity check);it is the
only doubly-evenself-dualcodeof length8 (thatis, the only codeC = Ct with
all weightsdivisible by 4).

Let V be the vector spaceof all words of length9 and even weight. The
function f(v) = %wt(v) (mod2) is a quadraticform on V, which polarisesto
the usualdot product. Thus maximalt.s. subspacesor f arejust doubly even
self-dualcodes,and their existenceshows that f hasrank 4 andsois the split
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form definingthetriality quadric.(ThequadricQ consistof thewordsof weight
4 and8.)

Supposewne have a partition of the 4-setsinto nine affine spaces.An easy
countingargumentshaws thatevery pointis excludedby just oneof the designs.
Soif we associatevith eachdesignthe word of weight 8 whosesupportis its
point set,we obtaina solid on the quadric,andindeeda spreador partition of the
quadricinto solids.

All thesesolidsbelongto thesamefamily, sincethey arepairwisedisjoint. So
we canapply thetriality mapandobtaina setof nine pointswhich are pairwise
non-collineaythatis, anovoid. Corversely ary ovoid givesa spread.In fact,an
ovoid givesa spreadof solidsof eachfamily, by applyingtriality andits inverse.
Sothetotal numberof spreadss twice the numberof ovoids.

The nine words of weight 8 form an ovoid. Any ovoid is equialentto this
one. (Considerthe Grammatrix of inner productsof the vectorsof anovoid; this
musthave zeroson the diagonalandoneselsavhere.) The stabiliserof this ovoid
is the symmetricgroup S. So the numberof ovoids is the index of & in the
orthogonalgroup,which turnsoutto be 960. Thus,thetotal numberof spreadss
1920= 240+ 1680,andwe havethemall! =

8.8 Generalisedpolygons

Projectve andpolarspacesreimportantmembersf alargerclassof geome-
tries calledbuildings. Much of theimportanceof thesederivesfrom the factthat
they arethe“natural” geometriesor arbitrarygroupsof Lie type,justasprojective
spacesarefor lineargroupsandpolarspacedor classicalgroups. The groupsof
Lie typeinclude,in particular all the non-abeliarfinite simplegroupsexceptfor
the alternatinggroupsandthe twenty-sixsporadicgroups.| do not intendto dis-
cusshuildingshere— for this, seethelecturenotesof Tits [S] or therecentbooks
by Brown [C] andRonan[P] — but will considerthe rank 2 buildings, or gener
alisedpolygonsasthey arecommonlyknown. Theseincludethe 2-dimensional
projectve and polar spaceqthat is, projectve planesand generalisedjuadran-
gles).

Recallthat a rank 2 geometryhastwo typesof varieties,with a symmetric
incidencerelation;it canbethoughtof asabipartitegraph.We usegraph-theoretic
terminologyin thefollowing definition. A rank2 geometryis agenerlisedn-gon
(wheren > 2) if

(GP1)it is connectedvith diametem andgirth 2n;
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(GP2)for ary varietyx, thereis avarietyy at distancen from x.

It is left to the readerto checkthat, for n = 2,3, 4, this definition coincides
with that of a digon, generalisedrojective planeor generalisedjuadranglee-
spectvely.

Let G be a generalisedh-gon. The flag geometryof G hasasPOINTsthe
varietiesof G (of both types),and as LINEs the flags of G, with the obvious
incidencebetweenPOINTsandLINEs. It is easilychecledto be a generalised
2n-gonin which every line hastwo points;andary generalise@n-gonwith two
pointsperline is the flag geometryof a generalisedh-gon. In future, we usually
assumethat our polygonsare thick, thatis, have at leastthreevarietiesof one
type incidentwith eachvariety of the othertype. It is alsoeasyto show thata
thick generalisegolygonhasorders, thatis, the numberof pointsperline and
the numberof lines per point are both constant;and,if n is odd, thenthesetwo
constantareequal. [Hint: in general,if varietiesx andy have distancen, then
eachvarietyincidentwith x hasdistancen — 2 from auniquevarietyincidentwith
y, andviceversa]

We let s+ 1 andt + 1 denotethe numbersof pointsperline or linesperpoint,
respectrely, with the provisothateitheror bothmaybeinfinite. (If botharefinite,
thenthegeometryis finite.) Thegeometryisthickif andonlyif s,t > 1. Themajor
theoremaboutfinite generalisegolygonsis the Feit-Higmantheorem (Feit and
Higman[17]:

Theorem 8.13 A thick genemlisedn-goncanexistonlyforn=2,3,4,60r8. m

In the courseof the proof, FeitandHigmanderive additionalinformation:
e if n=6,thenst isasquare;
e if n=8,then24 is asquare.

Subsequentiffurther numericalrestrictionshave beendiscovered;for exam-
ple:

e if n=40rn=8,thent < £ ands< t?
e if n=6,thent < s® ands< t3.

In contrastto the situationfor n = 3 andn = 4, the only known finite thick
generalised-gonsand 8-gonsarisefrom groupsof Lie type. Thereare6-gons
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with s=t = g andwith s= g, t = ¢° for ary prime power g; and 8-gonswith
s=q,t = ¢, whereq is anoddpower of 2. In thenext sectionwe discussaclass
of 6-gonsincludingthefirst-mentionedinite examples.

Thereis no hopeof classifyinginfinite generalisecdh-gons,which exist for all
n (Exercise?). However, assumingasymmetrycondition,the Moufangcondition
which generaliseshe existenceof centralcollineationsin projectve planes,and
is also equivalentto a generalisatiorof Desagues’theorem,Tits [35, 36] and
Weiss[39] derivedthe sameconclusionasFeit andHigman,namely thatn = 2,
3,4,60r8.

As for quadranglesthe questionof the existenceof thick generalisedh-gons
(for n > 3) with s finite andt infinite is completelyopen. Of course,n mustbe
evenin suchageometry!

Exercises

1. Prove theassertionglaimedto be“easy”in thetext.
2. Construcinfinite “free” generalised-gonsfor any n > 3.

8.9 Somegeneralisedhexagons

In this sectionwe usetriality to constructageneralisedhexagoncalledGy(F)
over ary field F. The constructionis dueto Tits. The namearisesfrom the fact
thattheautomorphisngroupsof thesehexagonsarethe Chevalley groupsof type
Gg, asconstructedy Chevalley from thesimpleLie algebraG, overthecomple
numbers.

We beggin with the triality quadricQ. Let v be a non-singularvector Then
vt N Q is arank3 quadric.lts maximalt.s. subspaceareplanesandeachliesin
auniquesolid of eachfamily on Q. Corversely asolidon Q meetsv in aplane.
Thus, fixing v, thereis arebijectionsbetweernthe two familiesof solidsandthe
setof planeson Q’ = Q Nv+. Onthis set,we have the structureof thedual polar
spaceinducedby the quadricQ’; in otherwords,the POINTsarethe planeson
this quadric,the LINES arethe lines, andincidenceis reversedinclusion. Call
this geometryg.

Applying triality, we obtain a representatiorof G usingall the points and
someof thelinesof Q.

Now we take a non-singularvector which may aswell be the sameasthe
vectorv alreadyused. (Sincewe have appliedtriality, thereis no connection.)
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Thegeometry# consistof thosepointsandlinesof G whichlie in vt. Thus,it
consistf all the points,andsomeof thelines, of thequadricQ’.

Theorem 8.14 # is a genemlisedhexagon.

Proof First we obsene somepropertiesof the geometryG, whosepoints and
linescorrespondo planesandlinesonthequadricQ’. Thedistancebetweertwo
pointsis equalto the codimensiorof their intersection If two planesof Q/ meet
non-trivially, thenthe correspondingsolidsof Q (in the samefamily) meetin a
line, andso (applyingtriality) the pointsareperpendicularHence:

(a) Pointsof G lie atdistancel or 2 if andonly if they areperpendicular

Let X, y,z w befour pointsof G forming a 4-cycle. Thesepointsarepairwise
perpendiculatby (a)),andsothey spanat.s.solid S. We prove:

(b) Thegeometryinducedon Sby G is asymplecticGQ.
Keepin mind thefollowing transformations:

solidS

— point p (by triality)

— quadricQ in p*/p (residueof p)
— PG(3,F) (Klein correspondence).

Now pointsof Sbecomesolidsof onefamily containingp, thenplanesof one
family in Q, thenpointsin PG(3, F); sowe canidentify thetwo endsof this chain.

Linesof G in Sbecomdinesthroughp perpendiculato v, thenpointsof Q
perpendiculato (v) = (v, p)/p, thent.i. lines of a symplecticGQ, by the corre-
spondencelescribedn Section8.3. Thus(b) is proved.

A propertyof G establishedn Proposition7.9is:

(c) If xisapointandL aline, thenthereis a uniquepoint of L nearesto x.
We now turn our attentionto 4/, andobsenre first:
(d) Distancesn H arethesameasin G.

For clearlydistancesn # areatleastasgreatasthosein G, andtwo pointsof #
atdistancel (i.e., collinear)in G arecollinearin #.

Supposéhatx,y € # lie atdistance2 in G. They arejoined by morethan
one path of length 2 there,hencelie in a solid S carryinga symplecticGQ, as
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in (b). The pointsof # in Sarethoseof SNv+, a planeon which the induced
substructurés a planepencilof linesof #/. Hencex andy lie atdistance2 in 4.
Finally, letx,y € H lie atdistance3in G. Takealine L of A throughy; there
is apointz of G (andhenceof #) on L atdistance2 from x (by (c)). Sox andy
lie atdistance3 in #.
In particular property(c) holdsalsoin #.

(e) For ary pointx of #, thelinesof # throughx form a planepencil.

For, by (a), theunionof thesdinesliesin at.s.subspacehjencethey arecoplanar;
therearenotriangles(by (c)), sothis planecontaingwo pointsatdistance2; now
theargumentfor (d) applies.

Finally:

(f) H is ageneralisedhexagon.

We know it hasdiameter3, and(GP2)is clearlytrue. A circuit of lengthlessthan
6 would be containedn at.s. subspaceleadingto a contradictionasin (d) and
(e). (In fact,by (c), it is enoughto excludequadrangles.) m

CamerorandKantor[12] giveamoreelementarygonstructiorof thishexagon.
Their constructionwhile producingthe embeddingn Q’, depend®nly on prop-
ertiesof thegroupPSL(3, F). However, theproofthatit worksuseshothcounting
argumentsand algumentsaboutfinite groups;it is not obvious that it works in
general althoughtheresultremainsrue.

If F is aperfectfield of characteristi@ then,by TheorenB.5,Q’ isisomorphic
to the symplecticpolar spaceof rank 3; so # is embeddedsall the pointsand
someof thelinesof PG(5,F).

Two furtherresultswill bementionedvithoutproof. First,if thefield F hasan
automorphisnof order3, thenthe constructionof # canbe “twisted”, muchas
canbedoneto theKlein correspondenci® obtainthe duality betweerorthogonal
and unitary quadranglegmentionedin Section8.3), to produceanothergener
alisedhexagon,calledD4(F). In thefinite case,D4(g) hasparameters = @2,
t=q.

Secondthereis a constructiorsimilar to thatof Section8.4. The generalised
hexagonGy(F) is self-dualif F is a perfectfield of characteristic3, andis self-
polarif F hasanautomorphisno satisfyingo? = 3. In thiscasethesetof absolute
pointsof the polarity is an ovoid, a setof pairwisenon-collinearpointsmeeting
every line of 4, andthe groupof collineationscommutingwith the polarity has
asa normalsubgroupthe Reegroup 3, (F), acting2-transitiely on the pointsof
theovoid.
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Exercise

1. Shaw thatthe hexagon# hastwo disjoint planesE andF, eachof which
consistof pairwisenon-collinear(but perpendicularpoints. Shav thateachpoint
of E is collinear(in #/) to the pointsof aline of F, anddually, sothatE andF
are naturally dual. Shov that the points of E U F, andthe lines of # joining
their points,form a non-thickgeneralisedexagonwhich is the flag geometryof
PG(2,F). (Thisis the startingpoint in the constructionof Cameronand Kantor
referredto in thetext.)



