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The Klein quadric and triality

Low-dimensionalhyperbolicquadricspossessa remarkablyrich structure;the
Klein quadricin 5-spaceencodesa projective 3-space,andthetriality quadricin
7-spacepossessesanunexpectedthreefoldsymmetry. Thecontentsof thischapter
canbepredictedfrom thediagramsof thesegeometries,sinceD3 is isomorphicto
A3, andD4 hasanautomorphismof order3.

8.1 The Pfaffian

Thedeterminantof a skew-symmetricmatrix is a square.This canbeseenin
smallcasesby directcalculation:

det

�
0 a12� a12 0 � � a2

12 �
det ���� 0 a12 a13 a14� a12 0 a23 a24� a13

� a23 0 a34� a14
� a24

� a34 0

�
		� � � a12a34
� a13a24 
 a14a23� 2 �

Theorem 8.1 (a) Thedeterminantof a skew-symmetricmatrix of odd sizeis
zero.

(b) Thereis a uniquepolynomialPf � A� in theindeterminatesai j for 1 � i � j �
2n, havingtheproperties

(i) if A is a skew-symmetric2n � 2n matrixwith � i � j � entryai j for 1 � i �
j � 2n, then

det� A� � Pf � A� 2;
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116 8. TheKlein quadricandtriality

(ii) Pf � A� containstheterma12a34 ����� a2n � 1 2n with coefficient 
 1.

Proof We begin by observingthat, if A is a skew-symmetricmatrix, then the
form B definedby

B � x � y� � xAy�
is analternatingbilinear form. Moreover, B is non-degenerateif andonly if A is
non-singular:for xAy� � 0 for all y if andonly if xA � 0. We know that thereis
no non-degeneratealternatingbilinear form on a spaceof odddimension;so (a)
is proved.

We know also that, if A is singular, then det� A� � 0, whereasif A is non-
singular, thenthereexistsaninvertiblematrixP suchthat

PAP� � diag

���
0 1� 1 0 � � ����� � �

0 1� 1 0 ��� �
sothatdet� A� � det� P� � 2. Thus,det� A� is asquarein eithercase.

Now regardai j asbeingindeterminatesoverthefield F ; thatis, let K � F � ai j :
1 � i � j � 2n� bethefield of fractionsof thepolynomialring in n � 2n � 1� vari-
ablesover F. If A is the skew-symmetricmatrix with entriesai j for 1 � i �
j � 2n, thenaswe have seen,det� A� is a squarein K. It is actually the square
of a polynomial. (For the polynomial ring is a uniquefactorisationdomain; if
det� A� ��� f � g� 2, where f andg arepolynomialswith no commonfactor, then
det� A� g2 � f 2, andso f 2 dividesdet� A� ; this impliesthatg is aunit.) Now det� A�
containsa term

a2
12a

2
34 ����� a2

2n � 1 2n

correspondingto thepermutation� 12� � 34������� � 2n � 12n� �
and so by choiceof sign in the squareroot we may assumethat (ii)(b) holds.
ClearlythepolynomialPf � A� is uniquelydetermined.

Theresultfor arbitraryskew-symmetricmatricesis now obtainedby speciali-
sation(thatis, substitutingvaluesfrom F for theindeterminatesai j ).

Exercises

1. A one-factorontheset � 1 � 2 � ����� � 2n � is apartitionF of thissetintonsubsets
of size2. We representeach2-set� i � j � by theorderedpair � i � j � with i � j. The
crossingnumberχ � F � of theone-factorF is thenumberof pairs � � i � j � � � k � l � � of
setsin F for which i � k � j � l .
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(a) Let � n bethesetof one-factorson theset � 1 � 2 � ����� � 2n � . Whatis � � n � ?
(b) Let A �!� ai j � beaskew-symmetricmatrixof order2n. Prove that

Pf � A� � ∑
F "$# n

� � 1� χ % F & ∏% i ' j &(" F

ai j
�

2. Show that, if A is a skew-symmetricmatrix andP any invertible matrix,
then

Pf � PAP� � � det� P�)� Pf � A� �
Hint: Wehavedet� PAP� � � det� P� 2det� A� , andtakingthesquarerootshowsthat
Pf � PAP� � �+* det� P� Pf � A� ; it is enoughto justify thepositivesign. Show that it
sufficesto considerthe‘standard’skew-symmetricmatrix

A � diag

�,�
0 1� 1 0 � � ����� � �

0 1� 1 0 ��� �
In thiscase,show thatthe � 2n � 1 � 2n� entryin PAP� containsthetermp2n � 1 2n � 1p2n 2n,
sothatPf � PAP� � containsthediagonalentryof det� P� with sign 
 1.

3. Show thatany linear transformationof a vectorspacefixing a symplectic
form (anon-degeneratealternatingbilinearform) hasdeterminant1.

8.2 The Klein correspondence

We begin by describingan abstractpolar spacewhich appearsnot to be of
classicaltype. Let F bea skew field, andconsiderthegeometry - definedfrom
PG� 3 � F � asfollows:. thePOINTsof - arethelinesof PG� 3 � F � ;. theLINEs of - aretheplanepencils(incidentpoint-planepairs);. thePLANEsof - areof two types:thepoints,andtheplanes.

A POINT andLINE are incident if the line belongsto the planepencil (i.e., is
incidentwith both the point and the plane). A LINE andPLANE are incident
if the point or planeis oneof the elementsof the incidentpair; and incidence
betweenaPOINTandaPLANE is theusualincidencein PG� 3 � F � .

If a PLANE is a planeΠ, thenthePOINTsandLINEs of this PLANE corre-
spondto thelinesandpointsof Π; sotheresidueof theplaneis isomorphicto the
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dualof Π, namely, PG� 2 � F / � . On theotherhand,if a PLANE is a point p, then
thePOINTsandLINEs of this PLANE arethe linesandplanesthroughp, so its
residueis theresidueof p in PG� 3 � F � , namelyPG� 2 � F � . Thus(PS1)holds.(Note
that,if F is not isomorphicto its opposite,thenthespacecontainsnon-isomorphic
planes,somethingwhich cannothappenin aclassicalpolarspace.)

Axiom (PS2)is clear. Consider(PS3).Supposethat thePLANE in question
is a planeΠ, andthePOINTnot incidentwith it is a line L. ThenL 0 Π is a point
p; thesetof POINTsof Π collinearwith L is theplanepencildefinedby p andΠ
(which is a LINE), andtheunion of the LINEs joining themto L consistsof all
linesthroughp (which is aPLANE), asrequired.Theothercaseis dual.

Finally, if the point p andplaneΠ arenon-incident,thenthe PLANEs they
definearedisjoint,proving (PS4).

Notethatany LINE is incidentwith just two PLANEs,oneof eachtype;so,if
thepolarspaceis classical,it mustbea hyperbolicquadricin PG� 5 � F � . We now
show that, if F is commutative, it is indeedthis quadricin disguise! (For non-
commutative fields, this is oneof theexceptionalrank3 polarspacesmentioned
in Section7.6.)

Theskew-symmetricmatricesof order4 over F form a vectorspaceof rank
6, with x12 � ����� � x34 ascoordinates.ThePfaffian is a quadraticform on this vector
space,which vanishespreciselyon the singularmatrices. So, projectively, the
singularmatricesformaquadric 1 in PG� 5 � F � , theso-calledKleinquadric. From
theform of thePfaffian, we seethat this quadricis hyperbolic— but in fact this
will becomecleargeometrically.

Any skew-symmetricmatrix hasevenrank. In our case,a non-zerosingular
skew-symmetricmatrixA hasrank2, andsocanbewritten in theform

A � X � v � w � : � v � w � w � v

for somevectorsv � w. Replacingthesetwo vectorsby linearcombinationsαv 

βw andγv 
 δw multipliesA by a factorαδ � βγ (which is just thedeterminantof
thetransformation).Sowehaveamapfrom theline of PG� 3 � F � spannedby v and
w to thepoint of theKlein quadricspannedby X � v � w � . This mapis a bijection:
wehaveseenthatit is onto,andthematrixdeterminestheline asits row space.

This bijection hasthe propertiespredictedby our abstracttreatment. Most
important,

two pointsof the Klein quadricareperpendicularif andonly if the
correspondinglinesintersect.
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To prove this, note that two pointsareperpendicularif andonly if the line
joining themlies in 1 . Now, if two lines intersect,we cantake themto be 2 u � v 3
and 2 u � w 3 ; andwehave

α � u � v � v � u �4
 β � u � w � w � u � � u � � αv 
 βw � � � αv 
 βw � � u �
sotheline joining thecorrespondingpointslies in thequadric.Conversely, if two
lines areskew, thenthey are 2 v1 � v2 3 and 2 v3 � v4 3 , where � v1 � ���5� � v4 � is a basis;
thenthematrix

v �1 v2
� v �2 v1 
 v �3 v4

� v �4 v3

hasrank4, andis apointon theline noton 1 .
Hencetheplaneson thequadriccorrespondto maximalfamiliesof pairwise

intersectinglines, of which therearetwo types: all lines througha fixed point;
andall linesin a fixedplane.Moreover, theargumentin theprecedingparagraph
shows thatlineson 1 do indeedcorrespondto planepencilsof linesin PG� 3 � F � .
Thiscompletestheidentification.

Exercise

1. This exercisegivesthepromisedidentificationof PSL� 4 � 2� with thealter-
natinggroupA8.

LetV bethevectorspaceof rank6 overGF� 2� consistingof thebinarywords
of length8 having evenweightmodulothesubspaceZ consistingof theall-zero
andall-1 words.Show thatthefunction

f � v 
 Z � � 1
2wt � v � � mod2�

is well-definedand is a quadraticform of rank 3 on V, whosezerosform the
Klein quadric 1 . Show thatthesymmetricgroupS8 interchangesthetwo families
of planeson 1 , thesubgroupfixing thetwo familiesbeingthealternatinggroup
A8.

Use the Klein correspondenceto show that A8 is embeddedas a subgroup
of PGL� 4 � 2� � PSL� 4 � 2� . By calculatingthe ordersof thesegroups,show that
equalityholds.

Remark TheisomorphismbetweenPSL� 4 � 2� andA8 canbeusedto giveasolu-
tion to Kirkman’sschoolgirl problem. Thisproblemasksfor aschedulefor fifteen
schoolgirlsto walk in fivegroupsof threeeverydayfor sevendays,subjectto the
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requirementthat any two girls walk togetherin a groupexactly onceduring the
week.

The7 � 5 groupsof girls arethustheblocksof a 2- � 15� 3 � 1� design.We will
takethisdesignto consistof thepointsandlinesof PG� 3 � 2� . Theproblemis then
to find a ‘parallelism’ or ‘resolution’, a partitionof the lines into seven ‘parallel
classes’eachconsistingof fivepairwisedisjoint lines.

One way to find a parallel classis to considerthe underlyingvector space
V � 4 � 2� as a vector spaceof rank 2 over GF� 4� . The five ‘points’ or rank 1
subspacesover GF� 4� becomefive pairwisedisjoint lines whenwe restrict the
scalarsto GF� 2� . Scalarmultiplication by a primitive elementof GF� 4� is an
automorphismof order3, fixing all five lines, andcommutingwith a subgroup
SL � 2 � 4�76� A5. Moreover, if two suchautomorphismsoof order3 have a com-
monfixedline, thenthey generatea � 2 � 3 � -group,sincethestabiliserof a line in
GL � 4 � 2� is a � 2 � 3 � -group.

Now, in A8, anelementof order3 commutingwith a subgroupisomorphicto
A5 is necessarilya 3-cycle. Two 3-cyclesgeneratea � 2 � 3 � -groupif andonly if
their supportsintersectin 0 or 2 points.Sowe requirea setof seven3-subsetsof� 1 � ���5� � 8 � , any two of which meetin onepoint. The lines of PG� 2 � 2� (omitting
onepoint)have this property.

8.3 Somedualities

We have interpretedpointsof theKlein quadricin PG� 3 � F � . Whataboutthe
pointsoff thequadric?

Theorem 8.2 Thereis abijectionfromthesetofpointspoutsidetheKleinquadric1 to symplecticstructureson PG� 3 � F � , with thepropertythat a point of 1 per-
pendicularto p translatesunderthe Klein correspondenceto a totally isotropic
line for thesymplecticgeometry.

Proof A point p 89 1 is representedby a skew-symmetricmatrix A which has
non-zeroPfaffian (andhenceis invertible), up to a scalarmultiple. The matrix
definesasymplecticform b, by therule

b � v � w � � vAw � �
We mustshow thata line is t.i. with respectto this form if andonly if thecorre-
spondingpoint of 1 is perpendicularto p.
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Let A beanon-singularskew-symmetric4 � 4 matrixoverafield F . By direct
calculation,we show thatthefollowing assertionsareequivalent,for any vectors
v � w 9 F4:

(a) X � v � w � � v � w � w � v is orthogonalto A, with respectto thebilinearform
obtainedby polarisingthequadraticform Q � X � � Pf � X � ;

(b) v andw areorthogonalwith respectto thesymplecticform with matrix A†,
thatis, vA†w � � 0.

HerethematricesA andA† aregivenby

A � ���� 0 a12 a13 a14� a12 0 a23 a24� a13
� a23 0 a34� a14
� a24

� a34 0

�
		� � A† � ���� 0 a34
� a24 a23� a34 0 a14

� a13

a24
� a14 0 a12� a23 a13

� a12 0

�
		� �
Notethat,if A is thematrix of thestandardsymplecticform, thensois A†. In

general,the maptaking the point outsidethe quadricspannedby A to the sym-
plecticform with matrixA† is theoneassertedin thetheorem.

Let - 1 be the symplecticGQ over F , and - 2 the orthogonalGQ associated
with thequadricv :;0<1 , where 1 is theKlein quadricand 2 v 3�89 1 . (Note that
any non-singularquadraticform of rank 2 in 5 variablesis equivalentto αx2

0 

x1x2 
 x3x4 for someα 8� 0; so any two suchforms areequivalentup to scalar
multiple, anddefinethesameGQ.) We have defineda mapfrom pointsof - 2 to
lines of - 1. Givenany point p of - 1, the lines of - 1 containingp form a plane
pencil in PG� 3 � F � , andsotranslateinto a line of - 2. Thuswehaveshown:

Theorem 8.3 For anyfieldF, thesymplecticGQin PG� 3 � F � andtheorthogonal
GQ in PG� 4 � F � aredual.

Now let F be a field which hasa GaloisextensionK of degree2 andσ the
Galoisautomorphismof K overF. With theextensionK � F wecanassociatetwo
GQs:->=1: theunitaryGQin PG� 3 � K � , definedby theHermitianform

x1yσ
2 
 x2yσ

1 
 x3yσ
4 
 x4yσ

3;->=2: theorthogonalGQ in PG� 5 � F � definedby thequadraticform

x1x2 
 x3x4 
 αx2
5 
 βx5x6 
 γx2

6 �
whereαx2 
 βx 
 γ is anirreduciblequadraticoverF whichsplitsin K.
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Theorem 8.4 Thetwo GQs ->=1 and ->=2 definedabovearedual.

Proof Thisis provedby “twisting theKlein correspondence”.In outline,wetake
theKlein correspondenceover K, andchangecoordinateson thequadricso that
restrictionof scalarsto F givesthe geometry - =2, ratherthan the Klein quadric
overF; thenshow thatthecorrespondingsetof linesin PG� 3 � K � arethosewhich
aretotally isotropicwith respectto aHermitianform.

Exercises

1. Prove theassertionaboutA andA† in theproof of Theorem8.2.

Let 1 beahyperbolicquadricof rankn. If v is anon-singularvector, thenthe
quadricv: 0?1 �A@ hastheproperty. @ meetseverymaximalsubspaceE of 1 in ahyperplaneof E.

We call a set @ satisfyingthis conditionspecial. Thepoint of thenext threeex-
ercisesis to investigatewhetherspecialsetsarenecessarilyquadricsof the form
v: 0?1 .

2. Considerthe casen � 2. Let the rank 4 vectorspacebe the spaceof all
2 � 2 matricesoverF, andlet thequadraticform bethedeterminant.

(a)Show thatthemap 2 X 3CBD � Ker� X � � Im � X ���
inducesabijectionbetweenthepointsetof thequadric 1 andP � P, where
P is theprojective line overF.

(b) If A is anon-singularmatrix,show that

A: � �42 X 3 9 1 : Ker� X �)� A � Im � X � � �
whichcorrespondsunderthis bijectionto theset � � p � p � A� : p 9 P � .

(c) Show that,if π is any permutationof P, then � � p � π � p�5� : p 9 P � is a special
set;andall specialsetshave this form.

(d) Deducethateveryspecialsetis aquadricif andonly if � F �$� 3.
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3. Considerthe casen � 3. Take 1 to be the Klein quadric. Show that the
Klein correspondencemapsthespecialset @ to a setSof linesof PG� 3 � F � with
the propertythat the setof lines of S throughany point of p, or the setof lines
of S in any planeΠ, is a planepencil. Show that thecorrespondencep BD Π of
PG� 3 � F � , wherethesetof linesof Scontainingp andthesetcontainedin Π are
equal,is a symlecticpolarity with Sasits setof absolutelines. DeducethatS is
thesetof linesof asymplecticGQ in PG� 3 � F � , andhencethat @ is a quadric.

4. Prove by inductionon n that, for n E 3, any specialsetis a quadric. (See
CameronandKantor[12] for acrib.)

8.4 Dualities of symplecticquadrangles

A field of characteristic2 is said to be perfectif every elementis a square.
A finite field of characteristic2 is perfect,sincethemultiplicativegrouphasodd
order.

If F hascharacteristic2, thenthemapx BD x2 is ahomomorphism,since� x 
 y� 2 � x2 
 y2 �� xy� 2 � x2y2 �
andis one-to-one.HenceF is perfectif andonly if this mapis anautomorphism.

Theorem 8.5 LetF bea perfectfieldof characteristic2. Thenthereis anisomor-
phismbetweenthe symplecticpolar spaceof rankn over F, and theorthogonal
polar spaceof rankn definedbya quadratic form in 2n 
 1 variables.

Proof Let V bea vectorspaceof rank2n 
 1 carryinga non-singularquadratic
form f of rank n. By polarising f , we get analternatingbilinear form b, which
cannotbenon-degenerate;its radicalR � V : is of rank1, andtherestrictionof f
to it is thegermof f .

Let W0 be a totally singularsubspaceof V. ThenW � W0 
 R is a totally
isotropicsubspaceof thenon-degeneratesymplecticspaceV � R. So we have an
incidence-preservinginjection θ : W0 BD � W0 
 R� � R from the orthogonalpolar
spaceto thesymplectic.Wehave to show thatθ is onto.

SoletW � Rbet.i. ThismeansthatW itself is t.i. for theform b; but R F W, so
W is not t.s.for f . However, onW, wehave

f � w1 
 w2 � � f � w1 �4
 f � w2 � �
f � αw � � α2 f � w � �
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so f is semilinearonW. Thus,thekernelof f is ahyperplaneW0 of W. Thespace
W0 is t.s.,andW0 
 R � W; soW0 mapsontoW � Runderθ.

Now considerthecasen � 2. Wehaveanisomorphismbetweenthesymplectic
andorthogonalquadrangles,by Theorem8.5,anda duality, by Theorem8.3.So:

Theorem 8.6 Thesymplecticgeneralisedquadrangleovera perfectfieldof char-
acteristic2 is self-dual.

Whenis thereapolarity?

Theorem 8.7 LetF bea perfectfieldof characteristic2. ThenthesymplecticGQ
overF hasa polarity if andonly if F hasan automorphismσ satisfying

σ2 � 2 �
where2 denotestheautomorphismx BD x2.

Proof For this,we cannotavoid usingcoordinates!We take thevectorspaceF4

with thestandardsymplecticform

b ��� x1 � x2 � x3 � x4 � � � y1 � y2 � y3 � y4 ��� � x1y2 
 x2y1 
 x3y4 
 x4y3
�

(Rememberthat thecharacteristicis 2.) TheKlein correspondencetakestheline
spannedby � x1 � x2 � x3 � x4 � and � y1 � y2 � y3 � y4 � to thepoint with coordinateszi j , 1 �
i � j � 4, wherezi j � xiy j 
 x jyi ; thispoint lieson thequadricwith equation

z12z34 
 z13z24 
 z14z23 � 0 �
and (if the line is t.i.) also on the hyperplanez12 
 z34 � 0. If we factor out
thesubspacespannedby thepoint with z12 � z34 � 1, zi j � 0 otherwise,anduse
coordinates� z13 � z24 � z14 � z23� , we obtaina point of thesymplecticspace;themap
δ from linesto pointsis theduality previouslydefined.

To computetheimageof apoint p �G� a1 � a2 � a3 � a4 � undertheduality, taketwo
t.i. linesthroughthis point andcalculatetheir images.If a1 anda4 arenon-zero,
we canusethelinesjoining p to thepoints � a1 � a2 � 0 � 0� and � 0 � a4 � a1 � 0� ; theim-
agesare � a1a3 � a2a4 � a1a4 � a2a3 � and � a2

1 � a2
4 � 0 � a1a2 
 a3a4 � . Now theimageof the

line joining thesepointsis foundto bethepoint � a2
1 � a2

2 � a2
3 � a2

4 � . Thesameformula
is foundin all cases.Soδ2 is thecollineationinducedby thefield automorphism
x BD x2, or 2 aswehavecalledit.
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Supposethat thereis a field automorphismσ with σ2 � 2, andlet θ � σ � 1;
then � δθ � 2 is theidentity, soδθ is apolarity.

Conversely, supposethatthereis apolarity. By Theorem7.14,any collineation
g is inducedby theproductof a lineartransformationandauniquelydefinedfield
automorphismθ � g� . Now any duality hasthe form δg for somecollineationg;
and

θ ��� δg� 2 � � 2θ � g� 2 �
So,if δg is apolarity, then2θ � g� 2 � 1, whenceσ � θ � g� � 1 satisfiesσ2 � 2.

In thecasewhereF is a finite field GF� 2m� , theautomorphismgroupof F is
cyclic of orderm, generatedby 2; andsothereis asolutionof σ2 � 2 if andonly if
m is odd.WeconcludethatthesymplecticquadrangleoverGF� 2m� hasapolarity
if andonly if m is odd.

We now examinethesetof absolutepointsandlines(i.e., thoseincidentwith
their image).A spreadis asetSof linessuchthateverypoint liesonauniqueline
of S. Dually, anovoid in a GQ is a setO of pointswith thepropertythatany line
containsa uniquepoint of O. Note that this is quitedifferentfrom thedefinition
of anovoid in PG� 3 � F � givenin Section4.4;but thereis a connection,aswewill
see.

Proposition 8.8 Thesetof absolutepointsof a polarity of a GQ is an ovoid,and
thesetof absolutelinesis a spread.

Proof Let δ bea polarity. No two absolutepointsarecollinear. For, if x andy
areabsolutepointslying on theline L, thenx � y andLδ would form a triangle.

Supposethattheline L containsno absolutepoint. ThenL is not absolute,so
Lδ 89 L. Thus,thereis auniqueline M containingLδ andmeetingL. ThenMδ 9 L,
soMδ is not absolute.But L meetsM, soLδ andMδ arecollinear;henceLδ � Mδ
andL 0 M form a triangle.

Thesecondstatementis dual.

Theorem 8.9 The set of absolutepoints of a polarity of a symplecticGQ in
PG� 3 � F � is anovoid in PG� 3 � F � .
Proof Let σ be the polarity of the GQ - , and H the polarity of the projective
spacedefining the GQ. By the last result, the set I of absolutepoints of σ is
an ovoid in - . This meansthat the t.i. lines aretangentsto I , andthe t.i. lines
througha point of I form a planepencil. Sowe have to prove thatany otherline
of theprojectivespacemeetsI in 0 or 2 points.
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Let X bea hyperbolicline, p a point of X 0?I , andpσ � L. ThenL meetsthe
hyperbolicline L : in a point q. Let qσ � M. Sinceq 9 L, we have p 9 M; soM
alsomeetsX : , in apoint r. Let N � rσ. Thenq 9 N, soN meetsX. Also,N meetsI in a point s. The line sσ containss andNσ � r. So s is on two lines meeting
X : , whences 9 X. So,if � X 0?I,�$E 1, then � X 0?I,�$E 2.

Now let p= be anotherpoint of X 0JI , anddefineL = andq= asbefore. Let K
be the line pq= . Then p 9 K, so pσ � L containsx � Kσ. Also, K meetsL = , so
x is collinearwith p= . But the only point of L collinearwith p= is q. So x � q,
independentof p= . This meansthat thereis only onepoint p=K8� p in X 0<I , and
this sethascardinality2.

Remark Over finite fields, any ovoid in a symplecticGQ is an ovoid in the
ambientprojective 3-space.This is falsefor infinite fields. (SeeExercises2 and
3.)

Hence,if F is a perfectfield of characteristic2 in which σ2 � 2 for some
automorphismσ, thenPG� 3 � F � possessessymplecticovoidsandspreads.These
giveriseto inversiveplanesandto translationplanes,asdescribedin Sections4.1
and4.4. For finite fields F, thesearethe only known ovoids otherthanelliptic
quadrics.

Exercises

1. Supposethatthepointsandlinesof aGQareall thepointsandsomeof the
linesof PG� 3 � F � . Prove thatthelinesthroughany point form a planepencil,and
deducethattheGQ is symplectic.

2. Prove that an ovoid I in a symplecticGQ over the finite field GF� q� is
an ovoid in PG� 3 � q� . [Hint: as in Theorem8.3.5, it suffices to prove that any
hyperbolicline meets I in 0 or 2 points. Now, if X is a hyperbolicline with
X 0LIG8� /0, thenX : 0LI � /0, so at mosthalf of the q2 � q2 
 1� hyperboliclines
meet I . Takeany N � 1

2q2 � q2 
 1� hyperboliclinesincludingall thosemeetingI ,
andlet ni of thechosenlinesmeet I in i points.Prove that∑ni � N, ∑ ini � 2N,
∑ i � i � 1� ni � 2N.]

3. Prove that, for any infinite field F, there is an ovoid of the symplectic
quadrangleoverF which is notanovoid of theembeddingprojectivespace.
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8.5 Reguli and spreads

Wemetin Section4.1theconceptsof aregulusin PG� 3 � F � (thesetof common
transversalsto threepairwiseskew lines),a spread(a setof pairwiseskew lines
coveringall thepoints),abispread(aspreadcontaininga line of eachplane),and
a regular spread(a spreadcontainingthe regulusthroughany threeof its lines).
Wenow translatetheseconceptsto theKlein quadric.

Theorem 8.10 UndertheKlein correspondence,

(a) a reguluscorrespondsto a conic, the intersectionif 1 with a non-singular
planeΠ, andtheoppositeregulusto theintersectionof 1 with Π : ;

(b) a bispread correspondsto an ovoid, a set of pairwise non-perpendicular
pointsmeetingeveryplaneon 1 ;

(c) a regular spreadcorrespondsto theovoid 1L0 W : , whereW is a line disjoint
from 1 .

Proof (a)Takethreepairwiseskew lines.They translateinto threepairwisenon-
perpendicularpointsof 1 , which spana non-singularplaneΠ (so that 1M0 Π is
a conicC). Now Π : is alsoa non-singularplane,and 1N0 Π : is a conicC= , con-
sistingof all pointsperpendicularto the threegivenpoints. Translatingback,C=
correspondsto thesetof commontransversalsto thethreegivenlines.Thissetis
aregulus,andis oppositeto theregulusspannedby thegivenlines(corresponding
to C).

(b) This is straightforward translation.Note, incidentally, thata spread(or a
cospread)correspondsto whatmightbecalleda“semi-ovoid”, wereit notthatthis
term is usedfor a differentconcept:that is, a setof pairwisenon-perpendicular
pointsmeetingeveryplanein onefamily on 1 .

(c) A regularspreadis “generated”by any four linesnotcontainedin aregulus,
in the sensethat it is obtainedby repeatedlyadjoiningall the lines in a regulus
throughthreeof its lines.On 1 , thefour givenlinestranslateinto four points,and
theoperationof generationleavesuswithin the3-spacethey span.This 3-space
hasthe form W : for someline W; andno point of 1 canbe perpendicularto
everypoint of sucha 3-space.

Note thata line disjoint from 1 is anisotropic;suchlinesexist if andonly if
thereis anirreduciblequadraticoverF, thatis, F is notquadraticallyclosed.(We



128 8. TheKlein quadricandtriality

saw earliertheconstructionof regularspreads:if K is aquadraticextensionof F ,
take therank1 subspacesof a rank2 vectorspaceover K, andrestrictscalarsto
F.)

Thusa bispreadis regular if andonly if thecorrespondingovoid is contained
in a 3-spacesectionof 1 . A bispreadwhoseovoid lies in a 4-spacesectionof1 is calledsymplectic, sinceits lines are totally isotropicwith respectto some
symplecticform (by the resultsof Section8.3). An openproblemis to find a
simplestructuraltestfor symplecticbispreads(resemblingthecharacterisationof
regularspreadsin termsof reguli).

We alsosaw in Section4.1 that spreadsof lines in projective spacegive rise
to translationplanes;andregularspreadsgive Desarguesian(or Pappian)planes.
Anotheropenproblemis to characterisethetranslationplanesarisingfrom sym-
plecticspreadsor bispreads.

8.6 Triality

Now weincreasetherankby 1, andlet 1 beahyperbolicquadricin PG� 7 � F � ,
definedby aquadraticform of rank4. Themaximalt.s.subspaceshavedimension
3, andarecalledsolids; asusual,they fall into two families O 1 and O 2, so that
two solids in the samefamily meetin a line or aredisjoint, while two solids in
differentfamiliesmeetin a planeor a point. Any t.s.planelies in a uniquesolid
of eachtype.Let P andQ bethesetsof pointsandlines.

Considerthegeometrydefinedasfollows.. ThePOINTsaretheelementsof O 1.. TheLINEs aretheelementsof Q .. ThePLANEsareincidentpairs � p � M � , p 9 P , M 9 O 2.. TheSOLIDsaretheelementsof PSRTO 2.

Incidenceis definedasfollows. BetweenPOINTs,LINEs andSOLIDs, it is as
in the quadric,with the additionalrule that the POINT M1 andSOLID M2 are
incidentif they intersectin a plane.ThePLANE � p � M � is incidentwith all those
varietiesincidentwith both p andM.

Proposition8.11 Thegeometryjustdescribedis anabstractpolar spacein which
anyPLANEis incidentwith just twoSOLIDs.
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Proof Weconsidertheaxiomsin turn.
(P1): Consider, for example,theSOLID M 9 O 2. ThePOINTsincidentwith

M arebijectivewith theplanesof M; theLINEs arethelinesof M; thePLANEs
arepairs � p � M � with p 9 M, andsoarebijectivewith thepointsof M. Incidenceis
definedsoasto makethesubspacescontainedin M aprojectivespaceisomorphic
to thedualof M.

For the SOLID p 9 P , the argumentis a little moredelicate. The geometry
p:U� p is ahyperbolicquadricin PG� 5 � F � , thatis, theKlein quadric;thePOINTs,
LINEs andPLANEs incidentwith p arebijective with onefamily of planes,the
lines, and the other family of planeson the quadric; and hence(by the Klein
correspondence)with thepoints,linesandplanesof PG� 3 � F � .

Theothercasesareeasier.
(P2) is trivial, (P3)routine,and(P4)is provedby observingthat if p 9 P and

M 9 O 2 arenot incident,thenno POINTcanbeincidentwith both.
Finally, theSOLIDscontainingthePLANE � p � M � arep andM only.

Sothenew geometryweconstructedis itself ahyperbolicquadricin PG� 7 � F � ,
andhenceisomorphicto theoriginal one. This implies theexistenceof a mapτ
whichcarriesQ to itself and PVDWO 1 DWO 2 DXP . Thismapis calleda triality of
thequadric,by analogywith dualitiesof projectivespaces.

It is moredifficult to describetrialities in coordinates.An algebraicapproach
mustwait until Chapter10.

Exercise

1. Prove theBuekenhout-Shultpropertyfor thegeometryconstructedin this
section.That is, let M 9 O 1, L 9 Q , andsupposethatL is not incidentwith M;
prove thateitherall membersof O 1 containingL meetM in a plane,or just one
does,dependingonwhetherL is disjoint from M or not.

8.7 An example

In thissectionweapplytriality to thesolutionof acombinatorialproblemfirst
posedandsettledby BreachandStreet[2]. Our approachfollows Cameronand
Praeger[13].

Considerthesetof planesof AG � 3 � 2� . They form a 3- � 8 � 4 � 1� design,that is,
acollectionof fourteen4-subsetsof an8-set,any threepointscontainedin exactly
oneof them.Thereare Y 8

4Z � 704-subsetsaltogether;canthey bepartitionedinto
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fivecopiesof AG � 3 � 2� ? Theansweris “no”, ashasbeenknown sincethetimeof
Cayley. (In fact,therecannotbemorethantwo disjoint copiesof AG � 3 � 2� on an
8-set;a constructionwill begivenin thenext chapter.) BreachandStreetasked:
what if we take a 9-set? This has Y 94Z � 126 4-subsets,andcanconceivably be
partitionedinto ninecopiesof AG � 3 � 2� , eachomittingonepoint. They proved:

Theorem 8.12 There are exactly two non-isomorphicways to partition the 4-
subsetsof a 9-set into nine copiesof AG � 3 � 2� . Both admit 2-transitivegroups.

Proof Firstweconstructthetwo examples.
1. Regardthe9-setastheprojectiveline overGF� 8� . If any point is designated

asthepoint at infinity, the remainingpointsform anaffine line over GF� 8� , and
hence(by restrictingscalars)anaffine 3-spaceover GF� 2� . We take thefourteen
planesof this affine 3-spaceasoneof our designs,andperformthe samecon-
structionfor eachpoint to obtainthedesiredpartition. This partition is invariant
underthegroupPΓL � 2 � 8� , of order9 � 8 � 7 � 3 � 1512. Theautomorphismgroup
is thestabiliserof theobjectin thesymmetricgroup;sothenumberof partitions
isomorphicto this oneis theindex of this groupin S9, which is 9! � 1512 � 240.

2. Alternatively, theninepointscarrythestructureof affineplaneoverGF� 3� .
Identifying one point as the origin, the structureis a rank 2 vector spaceover
GF� 3� . Put a symplecticform b on the vectorspace.Now therearesix 4-sets
which aresymmetricdifferencesof two linesthroughtheorigin, andeight4-sets
of the form � v �[R?� w : b � v � w � � 1 � for non-zerov. It is readily checked that
thesefourteensetsform a 3-design. Performthis constructionwith eachpoint
designatedas the origin to obtain a partition. This one is invariant under the
groupASL � 2 � 3� generatedby the translationsandSp� 2 � 3� � SL � 2 � 3� , of order
9 � 8 � 3 � 216,andthereare9! � 216 � 1680partitionsisomorphicto this one.

Now we show thattherearenoothers.We usetheterminologyof codingthe-
ory. Note that the fourteenwordsof weight4 supportingplanesof AG � 3 � 2� , to-
getherwith theall-0 andall-1 words,form theextendedHammingcodeof length
8 (thecodewe met in Section3.2,extendedby anoverall parity check);it is the
only doubly-evenself-dualcodeof length8 (that is, theonly codeC � C : with
all weightsdivisibleby 4).

Let V be the vector spaceof all words of length 9 and even weight. The
function f � v � � 1

2 wt � v � � mod2� is a quadraticform on V, which polarisesto
the usualdot product. Thusmaximal t.s. subspacesfor f are just doubly even
self-dualcodes,and their existenceshows that f hasrank 4 andso is the split
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form definingthetriality quadric.(Thequadric 1 consistsof thewordsof weight
4 and8.)

Supposewe have a partition of the 4-setsinto nine affine spaces.An easy
countingargumentshows thatevery point is excludedby just oneof thedesigns.
So if we associatewith eachdesignthe word of weight 8 whosesupportis its
point set,weobtaina solid on thequadric,andindeeda spreador partitionof the
quadricinto solids.

All thesesolidsbelongto thesamefamily, sincethey arepairwisedisjoint. So
we canapply the triality mapandobtaina setof ninepointswhich arepairwise
non-collinear, that is, anovoid. Conversely, any ovoid givesa spread.In fact,an
ovoid givesa spreadof solidsof eachfamily, by applyingtriality andits inverse.
Sothetotal numberof spreadsis twice thenumberof ovoids.

The nine wordsof weight 8 form an ovoid. Any ovoid is equivalentto this
one.(ConsidertheGrammatrix of innerproductsof thevectorsof anovoid; this
musthave zeroson thediagonalandoneselsewhere.)Thestabiliserof this ovoid
is the symmetricgroup S9. So the numberof ovoids is the index of S9 in the
orthogonalgroup,which turnsout to be960.Thus,thetotal numberof spreadsis
1920 � 240 
 1680,andwe have themall!

8.8 Generalisedpolygons

Projectiveandpolarspacesareimportantmembersof a largerclassof geome-
triescalledbuildings. Much of theimportanceof thesederivesfrom thefact that
they arethe“natural” geometriesfor arbitrarygroupsof Lie type,justasprojective
spacesarefor lineargroupsandpolarspacesfor classicalgroups.Thegroupsof
Lie typeinclude,in particular, all thenon-abelianfinite simplegroupsexceptfor
thealternatinggroupsandthetwenty-sixsporadicgroups.I do not intendto dis-
cussbuildingshere— for this,seethelecturenotesof Tits [S] or therecentbooks
by Brown [C] andRonan[P] — but will considertherank2 buildings,or gener-
alisedpolygonsasthey arecommonlyknown. Theseincludethe2-dimensional
projective andpolar spaces(that is, projective planesandgeneralisedquadran-
gles).

Recall that a rank 2 geometryhastwo typesof varieties,with a symmetric
incidencerelation;it canbethoughtof asabipartitegraph.Weusegraph-theoretic
terminologyin thefollowing definition.A rank2 geometryis ageneralisedn-gon
(wheren E 2) if

(GP1)it is connectedwith diametern andgirth 2n;
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(GP2)for any varietyx, thereis avarietyy at distancen from x.

It is left to the readerto checkthat, for n � 2 � 3 � 4, this definition coincides
with that of a digon, generalisedprojective planeor generalisedquadranglere-
spectively.

Let - be a generalisedn-gon. The flag geometryof - hasasPOINTs the
varietiesof - (of both types),and as LINEs the flags of - , with the obvious
incidencebetweenPOINTsandLINEs. It is easilychecked to be a generalised
2n-gonin which every line hastwo points;andany generalised2n-gonwith two
pointsper line is theflag geometryof a generalisedn-gon. In future,we usually
assumethat our polygonsare thick, that is, have at leastthreevarietiesof one
type incidentwith eachvariety of the other type. It is alsoeasyto show that a
thick generalisedpolygonhasorders, that is, the numberof pointsper line and
the numberof lines per point areboth constant;and,if n is odd, thenthesetwo
constantsareequal. [Hint: in general,if varietiesx andy have distancen, then
eachvarietyincidentwith x hasdistancen � 2 from auniquevarietyincidentwith
y, andviceversa.]

We let s 
 1 andt 
 1 denotethenumbersof pointsperline or linesperpoint,
respectively, with theprovisothateitheror bothmaybeinfinite. (If botharefinite,
thenthegeometryis finite.) Thegeometryis thick if andonly if s� t \ 1. Themajor
theoremaboutfinite generalisedpolygonsis theFeit–Higmantheorem(Feit and
Higman[17]:

Theorem 8.13 A thick generalisedn-goncanexist only for n � 2 � 3 � 4 � 6 or 8.

In thecourseof theproof,Feit andHigmanderiveadditionalinformation:. if n � 6, thenst is asquare;. if n � 8, then2st is asquare.

Subsequently, furthernumericalrestrictionshave beendiscovered;for exam-
ple:. if n � 4 or n � 8, thent � s2 ands � t2;. if n � 6, thent � s3 ands � t3.

In contrastto the situationfor n � 3 andn � 4, the only known finite thick
generalised6-gonsand8-gonsarisefrom groupsof Lie type. Thereare6-gons
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with s � t � q andwith s � q, t � q3 for any prime power q; and8-gonswith
s � q, t � q2, whereq is anoddpowerof 2. In thenext section,wediscussaclass
of 6-gonsincludingthefirst-mentionedfinite examples.

Thereis no hopeof classifyinginfinite generalisedn-gons,which exist for all
n (Exercise2). However, assumingasymmetrycondition,theMoufangcondition,
which generalisestheexistenceof centralcollineationsin projective planes,and
is also equivalent to a generalisationof Desargues’ theorem,Tits [35, 36] and
Weiss[39] derivedthesameconclusionasFeit andHigman,namely, thatn � 2,
3, 4, 6 or 8.

As for quadrangles,thequestionof theexistenceof thick generalisedn-gons
(for n E 3) with s finite andt infinite is completelyopen. Of course,n mustbe
evenin suchageometry!

Exercises

1. Prove theassertionsclaimedto be“easy” in thetext.
2. Constructinfinite “free” generalisedn-gonsfor any n E 3.

8.9 Somegeneralisedhexagons

In thissection,weusetriality to constructageneralisedhexagoncalledG2 � F �
over any field F. Theconstructionis dueto Tits. Thenamearisesfrom the fact
thattheautomorphismgroupsof thesehexagonsaretheChevalley groupsof type
G2, asconstructedby Chevalley from thesimpleLie algebraG2 overthecomplex
numbers.

We begin with the triality quadric 1 . Let v be a non-singularvector. Then
v : 0?1 is a rank3 quadric.Its maximalt.s.subspacesareplanes,andeachlies in
auniquesolidof eachfamily on 1 . Conversely, asolidon 1 meetsv : in aplane.
Thus,fixing v, thereis arebijectionsbetweenthe two familiesof solidsandthe
setof planeson 1 = � 1A0 v : . On thisset,wehave thestructureof thedualpolar
spaceinducedby the quadric 1 = ; in otherwords,thePOINTsaretheplaneson
this quadric,the LINES arethe lines, andincidenceis reversedinclusion. Call
this geometry- .

Applying triality, we obtain a representationof - using all the points and
someof thelinesof 1 .

Now we take a non-singularvector, which may aswell be the sameas the
vectorv alreadyused. (Sincewe have appliedtriality, thereis no connection.)
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Thegeometry] consistsof thosepointsandlinesof - which lie in v : . Thus,it
consistsof all thepoints,andsomeof thelines,of thequadric 1^= .
Theorem 8.14 ] is a generalisedhexagon.

Proof First we observe somepropertiesof the geometry - , whosepointsand
linescorrespondto planesandlineson thequadric 1_= . Thedistancebetweentwo
pointsis equalto thecodimensionof their intersection.If two planesof 1 = meet
non-trivially, thenthe correspondingsolidsof 1 (in the samefamily) meetin a
line, andso(applyingtriality) thepointsareperpendicular. Hence:

(a)Pointsof - lie at distance1 or 2 if andonly if they areperpendicular.

Let x � y� z� w befour pointsof - forming a 4-cycle. Thesepointsarepairwise
perpendicular(by (a)),andsothey spana t.s.solidS. Weprove:

(b) ThegeometryinducedonSby - is asymplecticGQ.

Keepin mind thefollowing transformations:

solid SD point p (by triality)D quadric ¯1 in p: � p (residueof p)D PG� 3 � F � (Klein correspondence).

Now pointsof Sbecomesolidsof onefamily containingp, thenplanesof one
family in ¯1 , thenpointsin PG� 3 � F � ; sowecanidentify thetwo endsof thischain.

Linesof - in Sbecomelines throughp perpendicularto v, thenpointsof ¯1
perpendicularto 2 v̄ 3 � 2 v � p3�� p, thent.i. linesof a symplecticGQ, by thecorre-
spondencedescribedin Section8.3.Thus(b) is proved.

A propertyof - establishedin Proposition7.9 is:

(c) If x is apoint andL a line, thenthereis auniquepoint of L nearestto x.

Wenow turn ourattentionto ] , andobservefirst:

(d) Distancesin ] arethesameasin - .

For clearlydistancesin ] areat leastasgreatasthosein - , andtwo pointsof ]
at distance1 (i.e.,collinear)in - arecollinearin ] .

Supposethat x � y 9 ] lie at distance2 in - . They arejoined by morethan
onepathof length2 there,hencelie in a solid S carryinga symplecticGQ, as
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in (b). The pointsof ] in S arethoseof S 0 v : , a planeon which the induced
substructureis a planepencilof linesof ] . Hencex andy lie at distance2 in ] .

Finally, let x � y 9 ] lie atdistance3 in - . Takea line L of ] throughy; there
is a point z of - (andhenceof ] ) on L at distance2 from x (by (c)). Sox andy
lie at distance3 in ] .

In particular, property(c) holdsalsoin ] .

(e)For any point x of ] , thelinesof ] throughx form aplanepencil.

For, by (a), theunionof theselineslies in at.s.subspace,hencethey arecoplanar;
thereareno triangles(by (c)), sothisplanecontainstwo pointsatdistance2; now
theargumentfor (d) applies.

Finally:

(f) ] is ageneralisedhexagon.

Weknow it hasdiameter3, and(GP2)is clearlytrue.A circuit of lengthlessthan
6 would be containedin a t.s. subspace,leadingto a contradictionasin (d) and
(e). (In fact,by (c), it is enoughto excludequadrangles.)

CameronandKantor[12] giveamoreelementaryconstructionof thishexagon.
Their construction,while producingtheembeddingin 1^= , dependsonly on prop-
ertiesof thegroupPSL� 3 � F � . However, theproof thatit worksusesbothcounting
argumentsandargumentsaboutfinite groups;it is not obvious that it works in
general,althoughtheresultremainstrue.

If F is aperfectfield of characteristic2 then,byTheorem8.5, 1`= is isomorphic
to thesymplecticpolar spaceof rank 3; so ] is embeddedasall thepointsand
someof thelinesof PG� 5 � F � .

Two furtherresultswill bementionedwithoutproof. First,if thefield F hasan
automorphismof order3, thentheconstructionof ] canbe“twisted”, muchas
canbedoneto theKlein correspondenceto obtainthedualitybetweenorthogonal
and unitary quadrangles(mentionedin Section8.3), to produceanothergener-
alisedhexagon,called3D4 � F � . In thefinite case,3D4 � q3 � hasparameterss � q3,
t � q.

Second,thereis a constructionsimilar to thatof Section8.4. Thegeneralised
hexagonG2 � F � is self-dualif F is a perfectfield of characteristic3, andis self-
polarif F hasanautomorphismσ satisfyingσ2 � 3. In thiscase,thesetof absolute
pointsof thepolarity is an ovoid, a setof pairwisenon-collinearpointsmeeting
every line of ] , andthegroupof collineationscommutingwith thepolarity has
asa normalsubgrouptheReegroup2G2 � F � , acting2-transitively on thepointsof
theovoid.
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Exercise

1. Show that thehexagon] hastwo disjoint planesE andF, eachof which
consistsof pairwisenon-collinear(butperpendicular)points.Show thateachpoint
of E is collinear(in ] ) to thepointsof a line of F , anddually, so thatE andF
are naturally dual. Show that the points of E R F, and the lines of ] joining
their points,form a non-thickgeneralisedhexagonwhich is theflag geometryof
PG� 2 � F � . (This is the startingpoint in the constructionof CameronandKantor
referredto in thetext.)


