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Polar spaces

Now we begin onour secondnajortheme polarspacesThischaptercorresponds
to thefirst half of Chapterl, andgivesthe algebraicdescriptionof polarspaces.
The algebraicbackgroundequiredis more elaboratgvectorspaceswith forms,
ratherthanjust vectorspaces)accountingor theincreasedength. Thefirst sec-
tion, on polaritiesof projectve spacesprovidesmotivationfor theintroductionof
the (Hermitianandquadraticforms.

6.1 Dualities and polarities

Recallthat the dual V* of a finite-dimensionalleft) vector spaceV over a
skew field F canbe regardedasa left vectorspaceof the samedimensionover
the oppositefield F°, andthereis thusan inclusion-reversingbijection between
the projectve space$G(n,F) andPG(n,F°). If it happenshatF andF° areiso-
morphic,thenthereexists a duality of PG(n, F), aninclusion-reversingbijection
of PG(n,F).

Corversely if PG(n,F) admitsa duality (for n > 1), thenF is isomorphicto
F°, asfollows from the FTPG(seeSectionl.3). We will examinethis conclusion
andmalke it moredetailed.

Solet theadualityof PG(n,F), n > 1. Composingtwith thenaturalisomor
phismfrom PG(n,F) to PG(n,F°), we obtainaninclusion-preservingijection
from PG(n,F) to PG(n,F°). Accordingto theFTPG,0 is inducedby asemilinear
transformatiorl fromV = F™1 to its dualspacev/*, associatedvith anisomok
phismo : F — F°, which canbe regardedasbeingan anti-automorphisnof F:
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76 6. Polar spaces

thatis,

(Vi+Vv2)T = viT 4 VoT,
(av)T = a°vT.

Defineafunctionb:V xV — F by therule
b(v,w) = (v)(WT),

thatis, theresultof applyingtheelemenwT of V* tov. Thenb is asesquilinear
form: it is linearasa function of the first amgument,andsemilinearasa function
of thesecond— this meanghat

b(v,w1 +wz) = b(v,w1) 4+ b(v,w>)

and
b(v,aw) = a®b(v,w).

(Theprefix “sesqui-"means‘one-and-a-half) If we needto emphasis¢heanti-
automorphisnwo, we saythatb is o-sesquilinearlf o is theidentity, thentheform
is bilinear.

Theform b is alsonon-dgeneite, in the sensdhat

(VWweV)(bv,w)=0 = v=0

and
(WeV)(bv,w)=0 = w=0.

(The secondconditionassertdhat T is one-to-onesothatif w # 0 thenwT is
a non-zerofunctional. The first assertghat T is onto: only the zerovectoris
annihilatedoy every functionalin thedualspace.)

So,we have:

Theorem 6.1 Anyduality of PG(n,F), for n > 1, isinducedby a non-dgenerate
o-sesquilineaformontheunderlyingvectorspacewhele o is ananti-automorphism
of F. m

Corversely ary non-deyeneratesesquilineaform onV inducesa duality. We
canshort-circuitthe passagé¢o thedualspaceandwrite the duality as

U UL ={veV:b(v,w)=0foralweU}.
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Obviously, aduality appliedtwice is a collineation. The mostimportanttypes
of dualitiesare thosewhosesquareis the identity. A polarity of PG(n,F)is a
duality | whichsatisfiedJ++ = U for all flatsU of PG(n,F).

It is abit difficult to motivatethe detailedstudyof polaritiesat this stage;but
it will turn outthatthey give riseto a classof geometriegthe polar spacesyvith
propertiessimilar to thoseof projective spaces.To putit somavhatvaguely we
are trying to add someextra structureto a projective space;if a duality is not
a polarity, thenits squareis a non-identity collineation,and someof the extra
structurearisesfrom this collineation. Only in the caseof a polarity is the extra
structureprimiti ve”.

A sesquilineaform b is reflexiveif b(v,w) = 0 impliesb(w,v) = 0.

Proposition 6.2 Adualityis a polarity if andonlyif thesesquilineaformdefining
it is reflexive

Proof bisreflexiveif andonly if
ve (W= we (v)t

Hencejf bisreflexive,thenU C U for all subspacels . But by non-dejeneray,
dimU+ = dimV —dimU+ = dimU; andsoU = U1+ for all U. Conversely
given a polarity L, if w € (v)*, thenv € (v)~+ C (w)* (sinceinclusionsare
reversed). m

We now turn to the classificationof reflexive forms. For corvenience from
now on F will alwaysbe assumedo be commutatve. (Note that, if the anti-
automorphisno is anautomorphismandin particularif o is theidentity, thenF
is automaticallycommutatve.)

The form b is saidto be o-Hermitianif b(w,v) = b(v,w)° for all v,w € V.
Thisimpliesthat,for ary v, b(v, V) liesin thefixedfield of o. If o is theidentity,
suchaform (whichis bilinear)is calledsymmetric

A bilinearform b is calledalternatingif b(v,v) = Ofor all v e V. Thisimplies
thatb(w,v) = —b(v,w) for all v,w € V. (Expandb(v +w,v+w) = 0, andnote
thattwo of the four termsare zero.) Hence,if the characteristids 2, thenary
alternatingform is symmetric(but not corversely);but, in characteristidifferent
from 2, only thezeroform is both symmetricandalternating.

Clearly, analternatingor Hermitianform is reflexive. Corversely we have the
following:
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Theorem 6.3 A non-dgeneate reflexive o-sesquilinearform is either alternat-
ing, or a scalar multiple of a o-Hermitian form. In the latter case if o is the
identity, thenthe scalarcanbetakento be 1.

I will notgive the completeproof of this theorem.The next resultshavs that
02 = 1, andthenthe proof of the theoremis givenin the caseof a bilinear form
(thatis, wheno = 1).

Proposition 6.4 If b is a non-zeo reflexive o-sesquilinearform, then o is the
identity.

Proof Notefirst thataform is o-sesquilineaif andonly if it is additive in each
variableandsatisfies

b(av,w) = ab(v,w), b(v, Bw) = b(v,w)°.

Stepl If bisalternatingtheno = 1. For we canchoosev andw with b(v,w) =
—b(w,Vv) = 1. Thenfor ary a € F, we have

a = ab(v,w)
= b(av,w)
= —b(w,av)

—b(w,v)a®
a‘.

(Note that this stepdoesnot requirenon-deyenerag, merelythatb is not identi-
cally zero.)

Sowe canassumehatthereexistsv with b(v,Vv) # 0. Multiplying b by anon-
zeroscalar(this doesnot affect the hypotheses)ve mayassumehatb(v,v) = 1.

Step2 Assumefor acontradictiorthata? # 1. For ary vectorw, if b(w, V) # 0,
thenwe canreplacew by its productwith anon-zercscalarto assumés(w,v) = 1.
Thenb(w —v,v) =0, andsob(v,w —v) = 0, whenceb(v,w) = 1. We claimthat
b(w,w) = 1.



6.1. Dualitiesandpolarities 79

Proof Supposeahata = b(w,w) # 1. Notefirst thatb(w — av,v) = 0, and
sob(w,w —av) = 0, whencea = a°. Take ary elementA € F with A # 1, and
chooseu € F suchthatp® = (1—A)~%(a — ). Sincea # 1, we have u # 1; and

WO — A =a —A.
Thisimplies, first, thatA = (a — p°) (1 — p°)~1, andsecondhat
b(w—Av,w—pv) =a—A—p+Ap° =0.
Henceb(w — pv,w — Av) = 0, andwe obtain
a—pu—A°+uA° =0.
Applying o to this equatiomandusingthefactthata® = a, we obtain
a—p° — A% +)\02u° =0,

whence ,
A = (@—0)(1-p) Tt =

But A wasan arbitrary elementdifferentfrom 1. Sinceclearly 1° = 1, we have
02 = 1, contraryto assumption.

Step3 LetW =v!. ThenV = (v) ®W, andrk(W) > 1. For ary x € W, we

have b(v,v) = b(v+x,v) = 1, andso by Step2, we have b(v + x,v+ X) = 1.

Thusb(x,x) = —2. Puttingx = 0, we seethatF musthave characteristi@, and
thatb|W is alternating But thenStepl shavsthatb|W is identicallyzero,whence
W is containedn theradicalof b, contraryto theassumeaon-deyeneray.

Proof of Theorem 6.3 We have
b(u,v)b(u,w) —b(u,w)b(u,v) =0
by commutatvity; thatis, usingbilinearity,
b(u,b(u,v)w —b(u,w)v) = 0.

By reflexivity,
b(b(u,v)w —b(u,w)v,u) =0,
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whencebilinearity againgives
b(u,v)b(w,u) = b(u,w)b(v,u). (6.1)

Call avectoru goodif b(u,v) = b(v,u) # 0 for somev. By (6.1),if u is good,
thenb(u,w) = b(w, u) for all w. Also, if uis goodandb(u,Vv) # 0, thenv is good.
But, given ary two non-zerovectorsus, Uz, thereexists v with b(u;,v) # 0 for
i =1,2. (For thereexist v1, vz with b(uj,v;) # 0 for i = 1,2, by non-dgyeneray;
andatleastoneof vq, Vo, V1 + Vo hastherequiredproperty) So,if somevectoris
good,thenevery non-zerovectoris good,andb is symmetric.

But, puttingu = w in (6.1) gives

b(u,u)(b(u,v) —b(v,u)) =0

for all u,v. So,if u is notgood,thenb(u,u) = 0; and,if no vectoris good,thenb
is alternating. =

In the next few sectionswe developthis themefurther.

Exercises

1. Let b beasesquilineaform onV. Definetheleft andright radicalsof b to
bethesubsets
{veV: (VweV)b(v,w)=0}

and
{veV:(VweV)b(w,v)=0}

respectrely. Prove thattheleft andright radicalsaresubspacesf the samerank
(if V hasfinite rank).

(Note: If theleft andright radicalsareequalthis subspaces calledtheradical
of b. Thisholdsif b is reflexive.)

2. Give anexampleof a bilinearform on aninfinite-rankvectorspacewvhose
left radicalis zeroandwhoseright radicalis non-zero.

3. Let o be a (non-identity)automorphisnof F of order2. Let E be the
subfieldFix(o).

(a) ProvethatF is of degree2 overE, i.e.,arank2 E-vectorspace.

[Seeary textbook on Galoistheory Alternately amgueasfollows: Take A €
F\E. ThenA is quadraticover E, so E(A) hasdegree2 over E. Now E(A)
containsanelementw suchthatw® = —w (if the characteristidgs not 2) or wo =
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w+ 1 (if the characteristigs 2). Now, giventwo suchelementstheir quotientor
differencerespectiely is fixedby o, soliesin E.]
(b) Prove that

{AeF:M°=1}={g/e’ ;e € F}.

[Theleft-handsetclearlycontaingheright. For thereverseinclusion,separate
into casesaccordingasthe characteristiés 2 or not.

If the characteristids not 2, thenwe cantake F = E(w), wherew? =a € E
andw® = —w. If A =1, thentake € = 1; otherwise,if A = a+ bw, take € =
ba + (a—1)w.

If thecharacteristiés 2, shov thatwe cantake F = E(w), wherew? 4+ w+a =
0,a € E, andw® = w+ 1. Again,if A = 1, sete = 1, else,if A = a+ bw, take
e=(a+1)+bw]

4. Usetheresultof Exercise3 to completetheproofof Theoren®.3in general.

[If b(u,u) =0 for all u, theform b is alternatingandbilinear. If not, suppose
thatb(u,u) # 0 andlet b(u,u)® = Ab(u,u). Choosinge asin Exercise2 andre-
normalisingb, shov thatwe mayassumehatA = 1, and(with this choice)thatb
is Hermitian.]

6.2 Hermitian and quadratic forms

We now changegroundslightly from the last section. On the one hand,we
restrictthingsby excludingsomebilinearformsfrom thediscussionpntheother
we introducequadraticforms. Thelossandgainexactly balancef the character
istic is not 2; but, in characteristi€, we make anetgain.

Let o beanautomorphisnof thecommutatvefield F, of orderdividing 2. Let
Fix(o) = {A € F : A° = A} bethefixedfield of o, andTr(o) ={A+A°: A € F}
thetraceof . Sincea? is theidentity, it is clearthatFix(a) D Tr(o). Moreover,
if o istheidentity, thenFix(o) = F, and

0 if F hascharacteristi@
Tr = K !
(0) { F otherwise.

Let b be a o-Hermitianform. We obsenred in the last sectionthat b(v,v) €
Fix(o) for all v € V. We call the form b trace-valuedf b(v,v) € Tr(o) for all
veV.

Proposition 6.5 We haveTr(o) = Fix(o) unlessthe characteristicof F is 2 and
o is theidentity.
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Proof E = Fix(0) is afield,andK = Tr(0) is anE-vectorspacecontainedn E
(Exercisel). So,if K # E, thenK = 0, ando is themapx +— —x. But, sincec is
afield automorphismthisimpliesthatthe characteristiés 2 ando is theidentity.

Thus, in characteristic2, symmetricbilinear forms which are not alternat-
ing arenot trace-walued;but this is the only obstruction.We introducequadratic
formsto repairthis damageBut, of courseguadratidormscanbedefinedin ary
characteristic.However, we note at this point that Proposition6.5 dependsn a
crucial way on the commutatvity of F; this leavesopenthe possibility of addi-
tional typesof polar spaceglefinedby so-calledpseudoquaditic forms These
will bediscussedbriefly in Section7.6.

LetV beavectorspaceoverF. A quadmticformonV isafunctionf :V — F
satisfying

o f(AV)=A2f(v)forallAeF,veV;
e f(v+w)= f(v)+ f(w)+b(v,w), wherebis bilinear

Now, if the characteristiof F is not 2, thenb is a symmetricbilinear form.
Eachof f andb determineshe other by

b(v,w) = f(v+w) — f(v) — f(w)

and
f(v) = 3b(v,v),

the latter equationcoming from the substitutionv = w in the seconddefining
condition.Sonothingnew is obtained.

Ontheotherhand,if thecharacteristiof F is 2, thenbis analternatingoilinear
form, and f cannotberecoveredfrom b. Indeed,mary differentquadraticforms
correspondo the samebilinear form. (Note that the quadraticform doesgive
extra structureto the vectorspace;we’ll seethatthis structureis geometrically
similarto thatprovided by analternatingor Hermitianform.)

We saythatthebilinearform is obtainedby polarisationof f.

Now let b bea symmetricbilinearform over afield of characteristi@, which
is notalternating.Set f (v) = b(v,v). Thenwe have

f(Av) = A2f(v)

and
F(v+w) = f(v)+ f(w),
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sinceb(v,w) +b(w,Vv) = 0. Thusf is “almost” asemilineaform; themap\  A?

is ahomomorphisnof thefield F with kernelO, but it mayfail to beanautomor

phism. But in ary casethekernelof f is asubspacefV, andtherestrictionof

b to this subspaceés an alternatingbilinear form. So again,in the spirit of the
vaguecommenimotivatingthe studyof polaritiesin thelastsection the structure
provided by the form b is not “primitive”. For this reasonwe do not consider
symmetricbilinear formsin characteristi@ at all. However, asindicatedabove,

we will considemuadratidormsin characteristi@.

Now, in characteristidifferentfrom 2, we cantake eitherquadraticforms or
symmetricbilinearforms,sincethestructurakcontents thesame For consisteny,
we will take quadratidormsin this casetoo. This leavesuswith three“types” of
formsto study: alternatingbilinear forms; o-Hermitianforms whereag is notthe
identity; andquadratidforms.

We have to definethe analogueof non-deyenerag for quadraticforms. Of
course,we could requirethat the bilinear form obtainedby polarisationis non-
degenerate;but this is too restrictve. We say that a quadraticform f is non-
singularif

(f(v)=0& (VWweV)b(v,w)=0) = v=0

whereb is theassociatedbilinearform; thatis, if theform f is non-zeroon every
non-zerovectorof theradical.

If thecharacteristics not2, thennon-singularityis equivalentto non-dgyenerag
of the bilinearform.

Now supposeéhatthe characteristigs 2, andlet W betheradical. Thenb is
identicallyzeroonW; sotherestrictionof f to W satisfies

flv+w) = f(v)+f(w),
f(W) = A2f(v).

Asabove, f isverynearlysemilinear Thefield F is calledperfectf everyelement
is asquare.In this case,f is indeedsemilineay andits kernelis a hyperplaneof
W. We conclude:

Theorem 6.6 Let f bea non-singularquadratic form, which polarisesto b, over
afieldF.

(a) If thecharacteristicof F is not 2, thenb is non-dgeneate

(b) If F is a perfectfield of characteristic2, thenthe radical of b hasrank at
most1l.
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Exercises

1. Let o be an automorphisnof a commutatve field F suchthat o? is the
identity.

(a) Prove thatFix (o) is asubfieldof F.

(b) Prove that Tr(0o) is closedunderaddition, and under multiplication by
elementf Fix(0).

2. Let b beanalternatingbilinearform on a vectorspaceV over afield F of
characteristi@. Let (v : i € |) beabasisfor V, andq ary functionfrom | to F.
Shaw thatthereis a uniquequadraticform with the propertiesthat f (vi) = q(i)
for everyi € 1, andf polarisego b.

3. (a) Constructanimperfectfield of characteristi@.

(b) Constructa non-singulaquadraticform with the propertythatthe radical
of theassociatedilinearform hasrankgreaterthan1.

4. Show thatfinite fields of characteristi@ areperfect.(Hint: the multiplica-
tive groupis cyclic of oddorder)

6.3 Classificationof forms

As explainedin the last section,we now considera vectorspaceV of finite
rank equippedwith aform of oneof thefollowing types:a non-deyeneratalter
natingbilinearform b; a non-dgeneratas-Hermitianform b, whereo is not the
identity; or a non-singulaquadraticform f. In thethird casewe let b bethe bi-
linearform obtainedby polarisingf; thenb is alternatingor symmetricaccording
asthecharacteristids or is not 2, but b maybe degenerateln theothertwo cases,
we definea function f : V — F definedby f(v) = b(v,v) — this is identically
zeroif bis alternating.SeeExercisel for the Hermitiancase.

We saythatV is anisotiopicif f(v)# 0for all v# 0. Also, V is ahyperbolic
line if it is spannedy vectorsv andw with f(v) = f(w) = 0 andb(v,w) = 1.
(Thevectorsv andw arelinearlyindependentsoV hasrank?2; so,projectiely, it
isa“line”.)

Theorem 6.7 A spacecarrying a form of oneof theabovetypesis thedirectsum
of a numberr of hyperboliclinesandan anisotiopic spacelJ. Thenumberr and
theisomorphisntypeofU are invariantsof V.

Proof If V is anisotropic,thenthereis nothingto prove. (V cannotcontaina
hyperbolicline.) SosupposéhatV containsavectorv # 0 with f(v) = 0.
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We claim that thereis a vectorw with b(v,w) # 0. In the alternatingand
Hermitiancasesthis follows immediatelyfrom the non-degyenerag of the form.
In thequadraticcasejf no suchvectorexists,thenv is in theradicalof b; butv is
asingularvector contradictingthe non-singularityof f.

Multiplying w by a non-zeroconstantwe mayassumehatb(v,w) = 1.

Now, for ary valueof A, we have b(v,w — Av) = 1. We wish to choose\ so
that f (w —Av) = 0; thenv andw will spanahyperbolicline. Now we distinguish
caseslf bis alternatingthenary valueof A works. If b is Hermitian,we have

f(w—Av) = f(w)—Ab(v,w)—A%b(w,Vv)+ANf(V)
= f(w)—(A+A%);

and, sinceb is trace-alued,thereexists A with Tr(A) = f(w). Finally, if f is
guadraticwe have

f(w—Av) = f(w)—Ab(w,V)+A%f(V)

sowe choose\ = f(w).

Now letW; bethehyperbolicline (v,w—Av), andletV; = W', whereorthog-
onality is definedwith respecto theform b. It is easilychecledthatV = Vi ®W;,
and the restrictionof the form to V; is still non-deyenerateor non-singular as
appropriate Now the existenceof the decompositiorfollows by induction.

I will omit the proofof uniqueness. =

Thenumberr of hyperboliclinesis calledthe polar rankor Wtt index of V. |
do not know of acommonlyacceptedermfor U; | will call it thegermofV, for
reasonsvhichwill becomeclearshortly.

To completethe classificationof forms over a givenfield, it is necessaryo
determineall the anisotropicspaces.In general,this is not possible;for exam-
ple, the studyof positive definitequadraticforms over therationalnumberdeads
quickly into deepnumbertheoreticwaters. | will considerthe casesof the real
andcomplex numbersandfinite fields.

First,though,thealternatingcaseis trivial:

Proposition 6.8 Theonlyanisotiopicspacecarryinganalternatingbilinear form
isthezelo space m
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In combinationwith Theorem6.7, this shows that a spacecarrying a non-
degeneratalternatingpilinearform is adirectsumof hyperboliclines.

Overtherealnumbers Sylvesters theoremassertghatarny quadraticformin
n variabless equivalentto theform

2 2|2 2
X[+ X =X — - — Xy

for somer, s with r +s < n. If theform is non-singularthenr +s=n. If bothr
ands arenon-zero thereis a non-zerosingularvector(with 1 in positionsl and
r+1, 0 elsavhere).Sowe have:

Proposition 6.9 If V is a real vectorspaceof rank n, thenan anisotopic form
onV is eitherpositivedefiniteor negativedefinite;there is a uniqueform of each
typeupto invertiblelinear transformationpnethe ngyativeof theother m

The realshave no non-identity automorphismsso Hermitian forms do not
arise.

Overthecomple numbersthefollowing factsareeasilyshowvn:

(a) Thereis a unique non-singularquadraticform (up to equvalence)in n
variablesfor any n. A spacecarryingsucha form is anisotropicif andonly if
n<l1.

(b) If o denotescomplex conjugation the situationfor o-Hermitianformsis
the sameasfor quadraticforms over the reals: anisotropicforms are positive or
negative definite,andthereis a uniqueform of eachtype, onethe negative of the
other

For finite fields,the positionis asfollows.

Theorem 6.10 (a) Ananisotopicquadratic formin nvariablesover GF(q) exists
if andonlyif n < 2. Theris a unigqueformfor ead n exceptwhenn=1andqis
odd,in which casethere are two forms,onea non-squae multiple of the other

(b) Let q = r2 and let o be the field automorphism — af. Thenthere is
an anisotiopic o-Hermitianformin n variablesif andonlyif n < 1. Theformis
uniquein ead case

Proof (a)Consideffirstthecasewvherethecharacteristiés not2. Themultiplica-
tive groupof GF(q) is cyclic of evenorderg— 1; sothe squaregorm a subgroup
of index 2, andif ) is afixednon-squarethenevery non-squardastheform na?
for somea. It follows easilythatany quadratidorm in onevariableis equivalent
to eitherx? or nx2.
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Next, considemon-singulaformsin two variables By completingthesquare,
suchaform is equivalentto oneof x2 +y2, X2+ ny2, nx2 + ny2.

Supposedirst thatqg= 1 (mod4). Then—1 is a squaresay —1 = 2. (In
the multiplicative group, —1 hasorder 2, solies in the subgroupof even order
1(q— 1) consistingof squares.Thusx? +y? = (x+ By) (x— By), andthefirstand
third formsarenot anisotropic.Moreover, ary form in 3 or morevariableswhen
corvertedto diagonalform, containsone of thesetwo, andsois not anisotropic
either

Now considerthe othercase,g= —1 (mod4). Then—1 is a non-square
(sincethe groupof squareshasodd order),sothe secondform is (x+Yy)(X—Y),
andis not anisotropic.Moreover, the setof squaress not closedunderaddition
(elseit would bea subgroupof the additive group,but %(q + 1) doesnt divide g);
sothereexist two squaresvhosesumis a non-squareMultiplying by a suitable
squarethereexist B,y with p2+y2 = —1. Then

—(+y?) = (Bx+W)2+ (yx— By)?,

andthe first andthird forms areequivalent. Moreover, a form in threevariables
is certainly not anisotropicunlessit is equivalentto x? + y? + 72, andthis form

vanishestthevector(,y, 1); hencethereis no anisotropidorm in threeor more
variables.

ThecharacteristiQ caseis anexercise(seeExercise3).

(b) Now consideHermitianforms. If ¢ is anautomorphisnof GF(q) of order
2,thenqis asquaresayq = r?, anda® = . We needthefactthatevery element
of Fix(0) = GF(r) hastheform aa® (seeExercisel of Section6.2).

In onevariable,we have f(x) = ux>¥¥ for somenon-zerop € Fix(o); writing
u= aa“ andreplacingx by ax, we canassumehatp = 1.

In two variableswe cansimilarly take the form to be xx° +yy°. Now —1 €
Fix(0), so—1 = AA%; thentheform vanishesat (1,A). It follows thatthereis no
anisotropicdorm in ary largernumberof variableseither m

Exercises

1. Letb beao-Hermitianform onavectorspaceV overF, whereo is notthe
identity. Setf(v) = b(v,v). Let E = Fix(o), andlet V' beV regardedasan E-
vectorspaceby restrictingscalars.Prove that f is a quadraticform onV’, which
polarisesto the bilinearform Tr(b) definedby Tr(b)(v,w) = b(v,w) + b(v,w)°.
Shaw furtherthatTr(b) is non-degyeneratéf andonly if bis.
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2. Prove thatthereis, up to equivalence a uniquenon-degeneratalternating
bilinearform on a vectorspaceof countablyinfinite dimension(a direct sumof
countablymary isotropiclines).

3. Let F beafinite field of characteristi@.

(a) Prove thatevery elementof F hasa uniquesquareoot.

(b) By consideringthe bilinear form obtainedby polarisation,prove that a
non-singularform in 2 or 3 variablesover F is equivalentto axZ + xy-+ By? or
ax?+xy+ By? +yz° respectiely. Provethatformsof thefirst shapgwith o, B # 0)
areall equivalent,while thoseof the secondshapecannotbe anisotropic.

6.4 Classicalpolar spaces

Polarspaceslescribehegeometryof vectorspacesarryingareflexive sesquilin-
earform or aquadraticform in muchthe sameway asprojectve spaceslescribe
the geometryof vectorspacesWe now embarkon the studyof thesegeometries;
thethreeprecedingsectionscontainthe prerequisitealgebra.

First, someterminology The polar spacesassociatedavith the threetypesof
forms (alternatingbilinear, Hermitian,andquadratic)arereferredto by the same
namesasthe groupsassociatedvith them: symplecti¢ unitary, and orthogonal
respectrely. Of whatdo thesespacegonsist?

LetV beavectorspacecarryinga form of oneof ourthreetypes.Recallthat
aswell asasesquilineaform b in two variableswe have aform f in onevariable
— either f is definedby f(v) = b(v,v), or b is obtainedby polarising f — and
we make useof bothforms. A subspacefVV onwhich b vanishesdenticallyis
calledatotally isotropic subspacéor t.i. subspacg while asubspacenwhich f
vanishesdenticallyis calleda totally singularsubspacéor t.s.subspacg Every
t.s.subspacest.i., butthecorverseis false.In thecaseof alternatingorms,every
subspacés t.s.! | frequentlyusethe expressiort.i. or t.s. subspacgto meanat.i.
subspacéin the symplecticor unitary case)or at.s. subspac€in the orthogonal
case).

Theclassicalpolar spaceg(or simply the polar spacé associateavith avector
spacecarryingaform is the geometrywhoseflatsarethet.i. or t.s. subspaceg@n
theabore sense)(Concerningheterminology:theterm“polar space’is normally
resenedfor ageometrysatisfyingthe axiomsof Tits, whichwe will meetshortly.
But every classicalpolar spaceis a polar space so the terminologyhereshould
causeno confusion.)Notethat, if the form is anisotropicthenthe only member
of thepolarspaceas thezerosubspaceThepolar rankof aclassicapolarspacas
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thelargestvectorspaceankof any t.i. ort.s.subspacei is zeroif andonly if the
form is anisotropic.Wherethereis no confusion polarrankwill be calledsimply
rank (Wewill soonseethatthereis no conflictwith ourearlierdefinitionof polar
rankasthenumberof hyperboliclinesin thedecompositiorof thespace.We use
thetermspoint, line, planeg etc.,justasfor projectve spaces.

We now proceedo derive somepropertiesof polarspaceslet G beaclassical
polarspaceof polarrankr.

First, we identify the two definitionsof polarspacerank. We usethe expres-
sion for V asthe direct sumof r hyperboliclines and an anisotropicsubspace
givenby Theorem6.7. Any t.i. or t.s. subspaceneetseachhyperbolicline in at
mosta point, and meetsthe anisotropicgermin the zerospace;soits rankis at
mostr. But thespanof r t.i. or t.s. points,onechoserfrom eachhyperbolicline,
isat.i. ort.s.subspacef rankr.

(P1) Any flat, togethemwith theflatsit contains,s a projective spaceof dimen-
sionatmostr — 1.

Thisis clearsincea subspacef at.i. or t.s. subspacés itself t.i. or t.s. The next
propertyis alsocleat

(P2) Theintersectiorof ary family of flatsis aflat.

(P3)If U isaflatof dimensiorr — 1 andp apointnotin U, thentheunionof the
linesjoining p to pointsof U is aflatW of dimensiornr — 1; andU NW is a
hyperplanen bothU andWw.

Proof Letp= (w). Thefunctionv — b(v,w) onthevectorspacdJ is linear;let
K beits kernel,a hyperplanen U. Thentheline (of the projectie space)oining
ptoapointq€ U ist.i. ort.s.if andonlyif g € K; andtheunionof all sucht.i. or
t.s.linesis at.i. ort.s.spacaV = (K, v), suchthatWnU = K, asrequired.

(P4) Thereexist two disjointflats of dimensionr — 1.

Proof Usethehyperbolic-anisotropidecompositioragain.If L1,...,L, arethe
hyperboliclines, andv;,w; arethe distinguishedspanningvectorsin L;, thenthe
requiredflatsare(vi,...,vy) and(wi,...,w;).

Next, we specialiseto the caser = 2. (A polar spaceof rank 1 is just an
unstructuredollectionof points.) A polarspaceof rank 2 consistsof pointsand
lines,andhasthefollowing properties(Thefirst two areimmediateconsequences
of (P2)and(P3)respectiely.)
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(Q1) Two pointslie onatmostoneline.

(Q2) If L is aline, and p a point not on L, thenthereis a unique point of L
collinearwith p.

(Q3) No pointis collinearwith all others.

For, by (P4),thereexist disjoint lines; and,givenary point p, at leastone of
theselines doesnot containp, and p fails to be collinearwith somepoint of this
line.

A geometrysatisfying(Q1), (Q2) and(Q3) is calleda genemlisedquadman-
gle. Suchgeometriegplay muchthe samerdle in the theory of polar spacesas
projective planesdo in the theory of projectve spaces.We will returnto them
later.

Notethat(Q1) holdsin a polarspaceof arbitraryrank.

Anotherpropertyof polar spaceswhich is proved by almostthe sameargu-
mentas(P3),is thefollowing extensionof (Q2):

(BS) If L is aline, and p a point noton L, thenp is collinearwith oneor all
pointsof L.

In a polarspaceG, for ary setS of points,we let S- denotethe setof points
which are perpendiculato (thatis, collinearwith) every point of S. It follows
from (BS) that,for ary setS, thesetS* is a (linear) subspacef G (thatis, if two
pointsof St arecollineat thentheline joining themlieswholly in St). Moreover,
for any point x, x- is a hyperplaneof G (thatis, a subspacavhich meetsevery
line).

Polarspacesave goodinductive properties Let G be a classicalpolarspace.
Therearetwo naturalwaysof producinga “smaller” polarspacerom G:

(a) Take a point x of G, andconsiderthe quotientspacex* /x, the spacewhose
points,lines,... arethelines,planes, .. of G containingx.

(b) Take two non-perpendiculgpointsx andy, andconsider{x,y}*.

In eachcase,the spaceconstructeds a classicalpolar space having the same
germas G but with polar rank one lessthanthat of G. (Note that, in (b), the
spanof x andy in the vectorspaces a hyperbolicline.) Therearemoregeneral
versions.For example,if Sis aflat of dimensiond — 1, thenS*/Sis apolarspace
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of rankr — d with the samegermasG. We will seebelov andin thenext section
how this inductive procesanbe usedto obtaininformationaboutpolarspaces.

We investigatgust onetypein moredetail, the so-calledhyperbolicquadric
or hyperbolicorthogonal space the orthogonalspacewhich is a direct sum of
hyperboliclines (thatis, having germ0). The quadraticform definingthis space
canbetakento bexixo +X3Xqg + ... + Xor—1Xor .

Theorem 6.11 The maximalflats of a hyperbolicquadric fall into two classes,
with thepropertiesghattheintersectionof two maximalflatshasevencodimension
in eadh if andonlyif they belongto the sameclass.

Proof First,notethattheresultholdswhenr = 1, sincethenthequadratidormis
X1X2 andtherearejusttwo singularpoints,{(1,0)) and{(0,1)). By theinductive
principle, it follows that ary flat of dimensionr — 2 is containedin exactly two
maximalflats.

Wetakethe (r — 1)-flatsand(r — 2)-flatsastheverticesandedgeof agraphr,
thatis, wejoin two (r — 1)-flatsif theirintersectioris an(r — 2)-flat. Thetheorem
will follow if we shaw thatT" is connectedand bipartite, and that the distance
betweentwo verticesof I is the codimensionof their intersection. Clearly the
codimensiorof the intersectionincreasesy at mostonewith every stepin the
graph,soit is at mostequalto thedistance We prove equalityby induction.

LetU bea (r — 1)-flat andK a (r — 2)-flat. We claim thatthe two (r — 1)-
spacedV;, W, containingK have differentdistancedrom U. Factoringout the
t.s. subspacé&J NK andusinginduction,we may assumeahatU NK = 0. Then
U NK+ is apoint p, which liesin onebut notthe otherof Wy, Ws; sayp € Wy. By
induction,the distancefrom U toW; isr — 1; sothedistancefrom U to W5 is at
mostr, henceequalto r by theremarkin the precedingparagraph.

This establisheshe claim aboutthe distance.Thefactthatl™ is bipartitealso
follows, sincein any non-bipartitegraphthereexists an edgeboth of whosever
ticeshavethesameadistancdrom somethird vertex, andtheargumentgivenshavs
thatthisdoesnt happenn ™. =

In particular the rank 2 hyperbolicquadricconsistsof two families of lines
formingagrid, asshovnin Fig. 6.1. Thisis theso-calledruled quadric”,familiar
from modelssuchaswastepapebaslets.

Exercises

1. Prove (BS).
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Figure6.1: A grid

2. Provethe assertionsbove aboutx /x and{x,y}*.

3. Show that Theorem6.11 canbe proved usingonly propertiegP1)—(P4)of
polarspacedogethemwith thefactthatan(r — 1)-flat liesin exactly two maximal
flats.

6.5 Finite polar spaces

Theclassificatiorof finite classicapolarspacesvasachiezedby Theorenb.7.
We subdvide thesespacesdnto six families accordingto their germ, viz., one
symplectic,two unitary, and three orthogonal. (Forms which differ only by a
scalarfactorobviously definethe samepolar space.) The following table gives
someinformation aboutthem. In the table, r denotesthe polar spacerank, n
the vectorspacerank. The significanceof the parameteg will emege shortly.
This number dependingonly on the germ, carriesnumericalinformation about
all spacesn thefamily. Notethat,in the unitary case the orderof thefinite field



6.5. Finite polar spaces 93

mustbeasquare.
Type n
Symplectic| 2r
Unitary 2r

Unitary | 2r+1
Orthogonal| 2r
Orthogonal| 2r +1
Orthogonal| 2r +2

| |
= O l_\I\JIHI\)'HO ™

Table6.1: Finite classicalpolarspaces

Theorem 6.12 Thenumberof pointsin a finite polar spaceof rank1 is g*+¢ + 1,
whee € is givenin Table6.1.

Proof LetV be a vectorspacecarryinga form of rank 1 over GF(q). ThenV
is the orthogonaldirect sumof a hyperbolicline L andananisotropicgermU of
dimensiork (say).Let ng bethe numberof points.

Supposehatk > 0. If pis apointof thepolarspacethenp liesonthehyper
planep™; ary otherhyperplanecontainingp is non-dgieneratavith polarrank 1
andhaving germof dimensionk — 1. Considera parallelclassof hyperplanesn
the affine spacewhosehyperplaneat infinity is p*. Eachsuchhyperplanecon-
tainsng_1 — 1 points,andthe hyperplanetinfinity containgustone,viz., p. So
we have

nk—1=q(hk-1—1),
from whichit followsthatn, = 1+ (np — 1)q". Soit is enoughto prove theresult
for thecasek = 0, thatis, for a hyperbolicline.

In thesymplecticcase gachof theq+ 1 projective pointsonaline is isotropic.

Considerthe unitary case We cantake the form to be

b((X1,Y1), (X2,¥2)) = X1Y2 + Y1%2,

wherex = x% = X', r2 = g. So the isotropic points satisfy xy + yx = 0, thatis,
Tr(xy) = 0. How mary pairs(x,y) satisfythis? If y =0, thenx is arbitrary If
y # 0, thenafixedmultiple of x is in thekernelof thetracemap,a setof sizeq'/2
(sinceTr is GF(q/?)-linear). Sothereare

q+(q-1)g¥2 =1+ (q—1)(g?+1)
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vectorsj.e., /2 + 1 projective points.
Finally, considerthe orthogonalcase.The quadraticform is equivalentto xy;,
andhastwo singularpoints,((1,0)) and{(1,0)). =

Theorem 6.13 In afinite polar spaceof rankr, thereare (" — 1)(q"*¢+1)/(q—
1) points,of which g ~1+¢ are not perpendicularto a givenpoint.

Proof We let F(r) be the numberof points,and G(r) the numbernot perpen-
dicularto a givenpoint. (We do not assumehat G(r) is constantthis constang

follows from the inductionthat provesthe theorem.) We usethe two inductive

principlesdescribedat theendof thelastsection.

Stepl G(r) = ?G(r — 1).

Take apointx, andcountpairs(y, z), wherey € x*, z¢ x*+, andz € y*+. Choos-
ing zfirst, thereareG(r) choicesthen(x, z) is ahyperbolicline, andy is a pointin
(x,2)*, sothereareF (r — 1) choicedfor y. Ontheotherhand,choosingy first, the
linesthroughy arethe pointsof therankr — 1 polarspacex* /x, andsothereare
F (r — 1) of them,with g pointsdifferentfrom x oneach giving gF(r — 1) choices
for y, then(x,y) and(y,z) arenon-perpendiculainesin y*, i.e., pointsof y* /y,
sothereareG(r — 1) choicesfor (y,z), andsoqG(r — 1) choicesfor y. thus

G(r)-F(r—1)=qF(r—1)-qG(r - 1),

from which theresultfollows.
SinceG(1) = g**¢, it follows immediatelythatG(r) = g? ~1+¢, asrequired.

Step2 F(r)=1+qgF(r—1)+G(r).

For this, simply obsene (asabove) that pointsperpendiculato x lie on lines
of x+/x.

Now it is justamatterof calculationthatthefunction (g — 1)(q "¢ +1)/(q—
1) satisfiesthe recurrenceof Step2 andcorrectlyreduceso g'*¢ + 1 whenr =
1 =

Theorem 6.14 Thenumberof maximalflatsin a finite polar spaceof rankr is
r

_D(l+ qi—&—S).
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Proof LetH(r) bethis number Countpairs(x,U), whereU is a maximalflat
andx € U. We find that

F(r)-H(r=1)=H(r)-(d' -1)/(a-1),

Sso
H(r)=Q+q)H(r-1).

Now theresultisimmediate. =

It shouldnow beclearthatany reasonableountingquestionaboultfinite polar
spacesanbeansweredn termsof q,r, €.



