
6

Polar spaces

Now webegin onoursecondmajortheme,polarspaces.Thischaptercorresponds
to thefirst half of Chapter1, andgivesthealgebraicdescriptionof polarspaces.
Thealgebraicbackgroundrequiredis moreelaborate(vectorspaceswith forms,
ratherthanjust vectorspaces),accountingfor theincreasedlength.Thefirst sec-
tion, onpolaritiesof projectivespaces,providesmotivationfor theintroductionof
the(Hermitianandquadratic)forms.

6.1 Dualities and polarities

Recall that the dual V
�

of a finite-dimensional(left) vector spaceV over a
skew field F canbe regardedasa left vectorspaceof the samedimensionover
the oppositefield F

�
, andthereis thusan inclusion-reversingbijection between

theprojectivespacesPG
�
n � F � andPG

�
n � F � � . If it happensthatF andF

�
areiso-

morphic,thenthereexistsa duality of PG
�
n � F � , an inclusion-reversingbijection

of PG
�
n � F � .

Conversely, if PG
�
n � F � admitsa duality (for n � 1), thenF is isomorphicto

F
�
, asfollows from theFTPG(seeSection1.3).Wewill examinethisconclusion

andmake it moredetailed.
Solet π beadualityof PG

�
n � F � , n � 1. Composingπ with thenaturalisomor-

phismfrom PG
�
n � F � to PG

�
n � F � � , weobtainaninclusion-preservingbijectionθ

from PG
�
n � F � to PG

�
n � F � � . Accordingto theFTPG,θ is inducedby asemilinear

transformationT from V � Fn� 1 to its dualspaceV
�
, associatedwith anisomor-

phismσ : F � F
�
, which canbe regardedasbeingan anti-automorphismof F:

75



76 6. Polar spaces

thatis, �
v1 	 v2 � T � v1T 	 v2T ��

αv � T � ασvT 

Definea functionb : V � V � F by therule

b
�
v � w ��� � v � � wT �
�

thatis, theresultof applyingtheelementwT of V
�

to v. Thenb is a sesquilinear
form: it is linearasa functionof thefirst argument,andsemilinearasa function
of thesecond— this meansthat

b
�
v � w1 	 w2 ��� b

�
v � w1 � 	 b

�
v � w2 �

and
b
�
v � αw ��� ασb

�
v � w �



(Theprefix “sesqui-”means“one-and-a-half”.) If weneedto emphasisetheanti-
automorphismσ, wesaythatb is σ-sesquilinear. If σ is theidentity, thentheform
is bilinear.

Theform b is alsonon-degenerate, in thesensethat���
w � V � � b � v � w ��� 0 � v � 0

and ���
v � V � � b � v � w ��� 0 � w � 0 


(The secondconditionassertsthat T is one-to-one,so that if w �� 0 thenwT is
a non-zerofunctional. The first assertsthat T is onto: only the zero vector is
annihilatedby every functionalin thedualspace.)

So,wehave:

Theorem 6.1 Anyduality of PG
�
n � F � , for n � 1, is inducedbya non-degenerate

σ-sesquilinearformontheunderlyingvectorspace, whereσ is ananti-automorphism
of F.

Conversely, any non-degeneratesesquilinearform onV inducesaduality. We
canshort-circuitthepassageto thedualspace,andwrite theduality as

U �� U ����� v � V : b
�
v � w ��� 0 for all w � U ��
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Obviously, adualityappliedtwice is acollineation.Themostimportanttypes
of dualitiesare thosewhosesquareis the identity. A polarity of PG

�
n � F � is a

duality � which satisfiesU ��� � U for all flatsU of PG
�
n � F � .

It is a bit difficult to motivatethedetailedstudyof polaritiesat this stage;but
it will turn out that they give rise to a classof geometries(thepolarspaces)with
propertiessimilar to thoseof projective spaces.To put it somewhatvaguely, we
are trying to add someextra structureto a projective space;if a duality is not
a polarity, then its squareis a non-identitycollineation,and someof the extra
structurearisesfrom this collineation. Only in thecaseof a polarity is theextra
structure“primiti ve”.

A sesquilinearform b is reflexive if b
�
v � w ��� 0 impliesb

�
w � v ��� 0.

Proposition 6.2 Adualityis apolarity if andonlyif thesesquilinearformdefining
it is reflexive.

Proof b is reflexive if andonly if

v ��� w  !�"� w ��� v  !�#

Hence,if b is reflexive,thenU $ U ��� for all subspacesU . Butbynon-degeneracy,
dimU �%� � dimV & dimU � � dimU ; andsoU � U �%� for all U . Conversely,
given a polarity � , if w �'� v  � , then v �(� v  �%� $)� w  � (sinceinclusionsare
reversed).

We now turn to the classificationof reflexive forms. For convenience,from
now on F will always be assumedto be commutative. (Note that, if the anti-
automorphismσ is anautomorphism,andin particularif σ is theidentity, thenF
is automaticallycommutative.)

The form b is saidto be σ-Hermitian if b
�
w � v �*� b

�
v � w � σ for all v � w � V.

This impliesthat,for any v, b
�
v � v � lies in thefixedfield of σ. If σ is theidentity,

sucha form (which is bilinear)is calledsymmetric.
A bilinearform b is calledalternatingif b

�
v � v �%� 0 for all v � V. This implies

thatb
�
w � v �+�,& b

�
v � w � for all v � w � V. (Expandb

�
v 	 w � v 	 w �-� 0, andnote

that two of the four termsarezero.) Hence,if the characteristicis 2, thenany
alternatingform is symmetric(but not conversely);but, in characteristicdifferent
from 2, only thezeroform is bothsymmetricandalternating.

Clearly, analternatingor Hermitianform is reflexive. Conversely, wehavethe
following:
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Theorem 6.3 A non-degenerate reflexive σ-sesquilinearform is either alternat-
ing, or a scalar multiple of a σ-Hermitian form. In the latter case, if σ is the
identity, thenthescalarcanbetakento be1.

I will not give thecompleteproof of this theorem.Thenext resultshows that
σ2 � 1, andthentheproof of the theoremis givenin thecaseof a bilinear form
(thatis, whenσ � 1).

Proposition6.4 If b is a non-zero reflexive σ-sesquilinearform, thenσ2 is the
identity.

Proof Notefirst thata form is σ-sesquilinearif andonly if it is additive in each
variableandsatisfies

b
�
αv � w ��� αb

�
v � w �.� b

�
v � βw ��� b

�
v � w � βσ 


Step1 If b is alternating,thenσ � 1. For wecanchoosev andw with b
�
v � w �/�& b

�
w � v ��� 1. Thenfor any α � F , we have

α � αb
�
v � w �� b

�
αv � w �� & b
�
w � αv �� & b
�
w � v � ασ� ασ 


(Note that this stepdoesnot requirenon-degeneracy, merelythatb is not identi-
cally zero.)

Sowecanassumethatthereexistsv with b
�
v � v �0�� 0. Multiplying b by anon-

zeroscalar(thisdoesnotaffect thehypotheses),wemayassumethatb
�
v � v ��� 1.

Step2 Assumefor acontradictionthatσ2 �� 1. For any vectorw, if b
�
w � v �1�� 0,

thenwecanreplacew by its productwith anon-zeroscalarto assumeb
�
w � v �/� 1.

Thenb
�
w & v � v ��� 0, andsob

�
v � w & v ��� 0, whenceb

�
v � w ��� 1. We claim that

b
�
w � w ��� 1.
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Proof Supposethatα � b
�
w � w �2�� 1. Notefirst thatb

�
w & αv � v �-� 0, and

sob
�
w � w & αv �+� 0, whenceα � ασ. Take any elementλ � F with λ �� 1, and

chooseµ � F suchthatµσ � � 1 & λ �43 1 � α & λ � . Sinceα �� 1, wehaveµ �� 1; and

µσ & λµσ � α & λ 

This implies,first, thatλ � � α & µσ � � 1 & µσ �43 1, andsecondthat

b
�
w & λv � w & µv ��� α & λ & µσ 	 λµσ � 0 


Henceb
�
w & µv � w & λv ��� 0, andweobtain

α & µ & λσ 	 µλσ � 0 

Applying σ to this equationandusingthefactthatασ � α, weobtain

α & µσ & λσ2 	 λσ2
µσ � 0 �

whence
λσ2 � � α & µσ � � 1 & µσ � 3 1 � λ 


But λ wasan arbitraryelementdifferentfrom 1. Sinceclearly 1σ � 1, we have
σ2 � 1, contraryto assumption.

Step 3 Let W � v � . ThenV �5� v  76 W, andrk
�
W �98 1. For any x � W, we

have b
�
v � v �0� b

�
v 	 x � v �:� 1, andso by Step2, we have b

�
v 	 x � v 	 x �:� 1.

Thusb
�
x � x �+�;& 2. Puttingx � 0, we seethatF musthave characteristic2, and

thatb <W is alternating.But thenStep1 showsthatb <W is identicallyzero,whence
W is containedin theradicalof b, contraryto theassumednon-degeneracy.

Proof of Theorem 6.3Wehave

b
�
u � v � b � u � w �/& b

�
u � w � b � u � v �%� 0

by commutativity; thatis, usingbilinearity,

b
�
u � b � u � v � w & b

�
u � w � v ��� 0 


By reflexivity,
b
�
b
�
u � v � w & b

�
u � w � v � u ��� 0 �
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whencebilinearityagaingives

b
�
u � v � b � w � u ��� b

�
u � w � b � v � u �

 (6.1)

Call avectoru goodif b
�
u � v ��� b

�
v � u �1�� 0 for somev. By (6.1),if u is good,

thenb
�
u � w �%� b

�
w � u � for all w. Also, if u is goodandb

�
u � v �:�� 0, thenv is good.

But, given any two non-zerovectorsu1 � u2, thereexists v with b
�
ui � v �=�� 0 for

i � 1 � 2. (For thereexist v1 � v2 with b
�
ui � vi �2�� 0 for i � 1 � 2, by non-degeneracy;

andat leastoneof v1 � v2 � v1 	 v2 hastherequiredproperty.) So,if somevectoris
good,theneverynon-zerovectoris good,andb is symmetric.

But, puttingu � w in (6.1)gives

b
�
u � u � � b � u � v �/& b

�
v � u �!��� 0

for all u � v. So,if u is notgood,thenb
�
u � u ��� 0; and,if no vectoris good,thenb

is alternating.

In thenext few sections,wedevelopthis themefurther.

Exercises

1. Let b bea sesquilinearform onV. Definethe left andright radicalsof b to
bethesubsets � v � V :

�>�
w � V � b � v � w ��� 0 �

and � v � V :
�>�

w � V � b � w � v ��� 0 �
respectively. Prove thattheleft andright radicalsaresubspacesof thesamerank
(if V hasfinite rank).

(Note: If theleft andright radicalsareequal,thissubspaceis calledtheradical
of b. Thisholdsif b is reflexive.)

2. Give anexampleof a bilinearform on aninfinite-rankvectorspacewhose
left radicalis zeroandwhoseright radicalis non-zero.

3. Let σ be a (non-identity)automorphismof F of order 2. Let E be the
subfieldFix

�
σ � .

(a) Prove thatF is of degree2 overE, i.e.,a rank2 E-vectorspace.
[Seeany textbookon Galoistheory. Alternately, argueasfollows: Take λ �

F ? E. Then λ is quadraticover E, so E
�
λ � hasdegree2 over E. Now E

�
λ �

containsanelementω suchthatωσ �;& ω (if thecharacteristicis not 2) or ωσ �
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ω 	 1 (if thecharacteristicis 2). Now, giventwo suchelements,their quotientor
differencerespectively is fixedby σ, solies in E.]

(b) Prove that � λ � F : λλσ � 1 �@��� ε A εσ : ε � F ��

[Theleft-handsetclearlycontainstheright. For thereverseinclusion,separate

into casesaccordingasthecharacteristicis 2 or not.
If thecharacteristicis not 2, thenwe cantake F � E

�
ω � , whereω2 � α � E

and ωσ �B& ω. If λ � 1, then take ε � 1; otherwise,if λ � a 	 bω, take ε �
bα 	 � a & 1� ω.

If thecharacteristicis 2,show thatwecantakeF � E
�
ω � , whereω2 	 ω 	 α �

0, α � E, andωσ � ω 	 1. Again, if λ � 1, setε � 1; else,if λ � a 	 bω, take
ε � � a 	 1� 	 bω.]

4. Usetheresultof Exercise3 to completetheproofof Theorem6.3in general.
[If b

�
u � u �C� 0 for all u, theform b is alternatingandbilinear. If not, suppose

thatb
�
u � u �D�� 0 andlet b

�
u � u � σ � λb

�
u � u � . Choosingε asin Exercise2 andre-

normalisingb, show thatwe mayassumethatλ � 1, and(with this choice)thatb
is Hermitian.]

6.2 Hermitian and quadratic forms

We now changegroundslightly from the last section. On the onehand,we
restrictthingsby excludingsomebilinearformsfrom thediscussion;on theother,
we introducequadraticforms. Thelossandgainexactly balanceif thecharacter-
istic is not 2; but, in characteristic2, wemakeanetgain.

Let σ beanautomorphismof thecommutativefield F , of orderdividing 2. Let
Fix
�
σ �+�E� λ � F : λσ � λ � bethefixedfield of σ, andTr

�
σ �C�E� λ 	 λσ : λ � F �

the traceof σ. Sinceσ2 is theidentity, it is clearthatFix
�
σ �*F Tr

�
σ � . Moreover,

if σ is theidentity, thenFix
�
σ ��� F, and

Tr
�
σ ���HG 0 if F hascharacteristic2,

F otherwise.

Let b be a σ-Hermitianform. We observed in the last sectionthat b
�
v � v �1�

Fix
�
σ � for all v � V. We call the form b trace-valuedif b

�
v � v �1� Tr

�
σ � for all

v � V.

Proposition 6.5 We haveTr
�
σ �+� Fix

�
σ � unlessthecharacteristicof F is 2 and

σ is theidentity.
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Proof E � Fix
�
σ � is a field, andK � Tr

�
σ � is anE-vectorspacecontainedin E

(Exercise1). So,if K �� E, thenK � 0, andσ is themapx �� & x. But, sinceσ is
afield automorphism,this impliesthatthecharacteristicis 2 andσ is theidentity.

Thus, in characteristic2, symmetricbilinear forms which are not alternat-
ing arenot trace-valued;but this is theonly obstruction.We introducequadratic
formsto repairthisdamage.But, of course,quadraticformscanbedefinedin any
characteristic.However, we noteat this point that Proposition6.5 dependsin a
crucial way on the commutativity of F ; this leavesopenthe possibility of addi-
tional typesof polar spacesdefinedby so-calledpseudoquadratic forms. These
will bediscussedbriefly in Section7.6.

LetV beavectorspaceoverF. A quadratic formonV is afunction f : V � F
satisfyingI

f
�
λv ��� λ2 f

�
v � for all λ � F, v � V;I

f
�
v 	 w ��� f

�
v � 	 f

�
w � 	 b

�
v � w � , whereb is bilinear.

Now, if the characteristicof F is not 2, thenb is a symmetricbilinear form.
Eachof f andb determinestheother, by

b
�
v � w ��� f

�
v 	 w �/& f

�
v �/& f

�
w �

and
f
�
v ��� 1

2b
�
v � v �.�

the latter equationcoming from the substitutionv � w in the seconddefining
condition.Sonothingnew is obtained.

Ontheotherhand,if thecharacteristicof F is 2, thenb isanalternatingbilinear
form, and f cannotberecoveredfrom b. Indeed,many differentquadraticforms
correspondto the samebilinear form. (Note that the quadraticform doesgive
extra structureto the vectorspace;we’ll seethat this structureis geometrically
similar to thatprovidedby analternatingor Hermitianform.)

Wesaythatthebilinearform is obtainedby polarisationof f .
Now let b bea symmetricbilinearform overa field of characteristic2, which

is notalternating.Set f
�
v ��� b

�
v � v � . Thenwehave

f
�
λv ��� λ2 f

�
v �

and
f
�
v 	 w ��� f

�
v � 	 f

�
w �.�
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sinceb
�
v � w � 	 b

�
w � v �J� 0. Thus f is “almost” asemilinearform; themapλ �� λ2

is a homomorphismof thefield F with kernel0, but it mayfail to beanautomor-
phism. But in any case,thekernelof f is a subspaceof V, andtherestrictionof
b to this subspaceis an alternatingbilinear form. So again,in the spirit of the
vaguecommentmotivatingthestudyof polaritiesin thelastsection,thestructure
provided by the form b is not “primiti ve”. For this reason,we do not consider
symmetricbilinear forms in characteristic2 at all. However, asindicatedabove,
wewill considerquadraticformsin characteristic2.

Now, in characteristicdifferentfrom 2, we cantake eitherquadraticformsor
symmetricbilinearforms,sincethestructuralcontentis thesame.Forconsistency,
wewill takequadraticformsin this casetoo. This leavesuswith three“types” of
formsto study: alternatingbilinear forms;σ-Hermitianformswhereσ is not the
identity; andquadraticforms.

We have to definethe analogueof non-degeneracy for quadraticforms. Of
course,we could requirethat the bilinear form obtainedby polarisationis non-
degenerate;but this is too restrictive. We say that a quadraticform f is non-
singular if �

f
�
v ��� 0 &

���
w � V � b � v � w ��� 0� � v � 0

whereb is theassociatedbilinearform; thatis, if theform f is non-zeroon every
non-zerovectorof theradical.

If thecharacteristicis not2, thennon-singularityis equivalenttonon-degeneracy
of thebilinearform.

Now supposethat thecharacteristicis 2, andlet W be the radical. Thenb is
identicallyzeroonW; sotherestrictionof f to W satisfies

f
�
v 	 w �K� f

�
v � 	 f

�
w �
�

f
�
λv �L� λ2 f

�
v �.


As above, f is verynearlysemilinear. Thefield F is calledperfectif everyelement
is a square.In this case,f is indeedsemilinear, andits kernelis a hyperplaneof
W. Weconclude:

Theorem 6.6 Let f bea non-singularquadratic form,which polarisesto b, over
a fieldF.

(a) If thecharacteristicof F is not2, thenb is non-degenerate.

(b) If F is a perfectfield of characteristic2, thenthe radical of b hasrank at
most1.
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Exercises

1. Let σ be an automorphismof a commutative field F suchthat σ2 is the
identity.

(a) Prove thatFix
�
σ � is asubfieldof F.

(b) Prove that Tr
�
σ � is closedunderaddition, and undermultiplication by

elementsof Fix
�
σ � .

2. Let b beanalternatingbilinear form on a vectorspaceV over a field F of
characteristic2. Let

�
vi : i � I � bea basisfor V, andq any functionfrom I to F .

Show that thereis a uniquequadraticform with the propertiesthat f
�
vi �#� q

�
i �

for every i � I , and f polarisesto b.
3. (a)Constructanimperfectfield of characteristic2.
(b) Constructa non-singularquadraticform with thepropertythat theradical

of theassociatedbilinearform hasrankgreaterthan1.
4. Show thatfinite fieldsof characteristic2 areperfect.(Hint: themultiplica-

tivegroupis cyclic of oddorder.)

6.3 Classificationof forms

As explainedin the last section,we now considera vectorspaceV of finite
rankequippedwith a form of oneof thefollowing types:a non-degeneratealter-
natingbilinear form b; a non-degenerateσ-Hermitianform b, whereσ is not the
identity; or a non-singularquadraticform f . In thethird case,we let b bethebi-
linearform obtainedby polarising f ; thenb is alternatingor symmetricaccording
asthecharacteristicis or is not2, but b maybedegenerate.In theothertwo cases,
we definea function f : V � F definedby f

�
v �0� b

�
v � v � — this is identically

zeroif b is alternating.SeeExercise1 for theHermitiancase.
We saythatV is anisotropic if f

�
v �M�� 0 for all v �� 0. Also,V is a hyperbolic

line if it is spannedby vectorsv andw with f
�
v �#� f

�
w �#� 0 andb

�
v � w �-� 1.

(Thevectorsv andw arelinearly independent,soV hasrank2; so,projectively, it
is a “line”.)

Theorem 6.7 A spacecarryinga formof oneof theabovetypesis thedirectsum
of a numberr of hyperboliclinesandan anisotropicspaceU. Thenumberr and
theisomorphismtypeof U are invariantsof V.

Proof If V is anisotropic,then thereis nothing to prove. (V cannotcontaina
hyperbolicline.) SosupposethatV containsa vectorv �� 0 with f

�
v ��� 0.
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We claim that thereis a vectorw with b
�
v � w �N�� 0. In the alternatingand

Hermitiancases,this follows immediatelyfrom thenon-degeneracy of theform.
In thequadraticcase,if nosuchvectorexists,thenv is in theradicalof b; but v is
asingularvector, contradictingthenon-singularityof f .

Multiplying w by anon-zeroconstant,wemayassumethatb
�
v � w ��� 1.

Now, for any valueof λ, we have b
�
v � w & λv ��� 1. We wish to chooseλ so

that f
�
w & λv ��� 0; thenv andw will spanahyperbolicline. Now wedistinguish

cases.If b is alternating,thenany valueof λ works. If b is Hermitian,wehave

f
�
w & λv �L� f

�
w �O& λb

�
v � w �O& λσb

�
w � v � 	 λλσ f

�
v �� f

�
w �O& � λ 	 λσ � ;

and, sinceb is trace-valued,thereexists λ with Tr
�
λ �0� f

�
w � . Finally, if f is

quadratic,wehave

f
�
w & λv �L� f

�
w �O& λb

�
w � v � 	 λ2 f

�
v �� f

�
w �O& λ �

sowechooseλ � f
�
w � .

Now letW1 bethehyperbolicline � v � w & λv  , andletV1 � W �1 , whereorthog-
onality is definedwith respectto theform b. It is easilycheckedthatV � V1 6 W1,
and the restrictionof the form to V1 is still non-degenerateor non-singular, as
appropriate.Now theexistenceof thedecompositionfollowsby induction.

I will omit theproofof uniqueness.

Thenumberr of hyperboliclinesis calledthepolar rankor Witt index of V. I
do not know of a commonlyacceptedtermfor U ; I will call it thegermof V, for
reasonswhichwill becomeclearshortly.

To completethe classificationof forms over a given field, it is necessaryto
determineall the anisotropicspaces.In general,this is not possible;for exam-
ple, thestudyof positivedefinitequadraticformsover therationalnumbersleads
quickly into deepnumber-theoreticwaters. I will considerthe casesof the real
andcomplex numbersandfinite fields.

First, though,thealternatingcaseis trivial:

Proposition 6.8 Theonlyanisotropicspacecarryinganalternatingbilinear form
is thezero space.
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In combinationwith Theorem6.7, this shows that a spacecarrying a non-
degeneratealternatingbilinearform is adirectsumof hyperboliclines.

Over therealnumbers,Sylvester’s theoremassertsthatany quadraticform in
n variablesis equivalentto theform

x2
1 	 
P
P
 	 x2

r & x2
r � 1 &�
P
P
4& x2

r � s �
for somer � s with r 	 s Q n. If the form is non-singular, thenr 	 s � n. If both r
ands arenon-zero,thereis a non-zerosingularvector(with 1 in positions1 and
r 	 1, 0 elsewhere).Sowehave:

Proposition6.9 If V is a real vectorspaceof rank n, thenan anisotropic form
onV is eitherpositivedefiniteor negativedefinite;there is a uniqueformof each
typeup to invertiblelinear transformation,onethenegativeof theother.

The realshave no non-identityautomorphisms,so Hermitian forms do not
arise.

Over thecomplex numbers,thefollowing factsareeasilyshown:
(a) Thereis a uniquenon-singularquadraticform (up to equivalence)in n

variablesfor any n. A spacecarryingsucha form is anisotropicif andonly if
n Q 1.

(b) If σ denotescomplex conjugation,thesituationfor σ-Hermitianforms is
thesameasfor quadraticforms over the reals: anisotropicforms arepositive or
negativedefinite,andthereis a uniqueform of eachtype,onethenegativeof the
other.

For finite fields,thepositionis asfollows.

Theorem 6.10 (a) Ananisotropicquadratic formin n variablesoverGF
�
q� exists

if andonly if n Q 2. There is a uniqueform for each n exceptwhenn � 1 andq is
odd,in which casethereare two forms,onea non-squaremultipleof theother.

(b) Let q � r2 and let σ be the field automorphismα �� αr . Thenthere is
an anisotropic σ-Hermitian form in n variablesif andonly if n Q 1. Theform is
uniquein each case.

Proof (a)Considerfirst thecasewherethecharacteristicis not2. Themultiplica-
tivegroupof GF

�
q� is cyclic of evenorderq & 1; sothesquaresform a subgroup

of index 2, andif η is afixednon-square,theneverynon-squarehastheform ηα2

for someα. It followseasilythatany quadraticform in onevariableis equivalent
to eitherx2 or ηx2.
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Next, considernon-singularformsin two variables.By completingthesquare,
sucha form is equivalentto oneof x2 	 y2, x2 	 ηy2, ηx2 	 ηy2.

Supposefirst that q R 1
�
mod4� . Then & 1 is a square,say & 1 � β2. (In

the multiplicative group, & 1 hasorder2, so lies in the subgroupof even order
1
2

�
q & 1� consistingof squares.)Thusx2 	 y2 � � x 	 βy� � x & βy� , andthefirst and

third formsarenot anisotropic.Moreover, any form in 3 or morevariables,when
convertedto diagonalform, containsoneof thesetwo, andso is not anisotropic
either.

Now considerthe other case,q RB& 1
�
mod4� . Then & 1 is a non-square

(sincethegroupof squareshasoddorder),so thesecondform is
�
x 	 y� � x & y� ,

andis not anisotropic.Moreover, thesetof squaresis not closedunderaddition
(elseit wouldbeasubgroupof theadditivegroup,but 1

2

�
q 	 1� doesn’t divideq);

so thereexist two squareswhosesumis a non-square.Multiplying by a suitable
square,thereexist β � γ with β2 	 γ2 �S& 1. Then

& � x2 	 y2 �+� � βx 	 γy� 2 	 � γx & βy� 2 �
andthe first andthird forms areequivalent. Moreover, a form in threevariables
is certainlynot anisotropicunlessit is equivalentto x2 	 y2 	 z2, andthis form
vanishesat thevector

�
β � γ � 1� ; hencethereis noanisotropicform in threeor more

variables.
Thecharacteristic2 caseis anexercise(seeExercise3).
(b) Now considerHermitianforms.If σ is anautomorphismof GF

�
q� of order

2, thenq is asquare,sayq � r2, andασ � αr . Weneedthefactthateveryelement
of Fix

�
σ ��� GF

�
r � hastheform αασ (seeExercise1 of Section6.2).

In onevariable,we have f
�
x�-� µxxσ for somenon-zeroµ � Fix

�
σ � ; writing

µ � αασ andreplacingx by αx, wecanassumethatµ � 1.
In two variables,we cansimilarly take the form to bexxσ 	 yyσ. Now & 1 �

Fix
�
σ � , so & 1 � λλσ; thentheform vanishesat

�
1 � λ � . It follows that thereis no

anisotropicform in any largernumberof variableseither.

Exercises

1. Let b beaσ-Hermitianform onavectorspaceV overF , whereσ is not the
identity. Set f

�
v �*� b

�
v � v � . Let E � Fix

�
σ � , andlet V T beV regardedasan E-

vectorspaceby restrictingscalars.Prove that f is a quadraticform onV T , which
polarisesto thebilinear form Tr

�
b� definedby Tr

�
b� � v � w ��� b

�
v � w � 	 b

�
v � w � σ.

Show furtherthatTr
�
b� is non-degenerateif andonly if b is.
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2. Prove that thereis, up to equivalence,a uniquenon-degeneratealternating
bilinear form on a vectorspaceof countablyinfinite dimension(a direct sumof
countablymany isotropiclines).

3. Let F bea finite field of characteristic2.
(a) Prove thateveryelementof F hasauniquesquareroot.
(b) By consideringthe bilinear form obtainedby polarisation,prove that a

non-singularform in 2 or 3 variablesover F is equivalentto αx2 	 xy 	 βy2 or
αx2 	 xy 	 βy2 	 γz2 respectively. Provethatformsof thefirst shape(with α � β �� 0)
areall equivalent,while thoseof thesecondshapecannotbeanisotropic.

6.4 Classicalpolar spaces

Polarspacesdescribethegeometryof vectorspacescarryingareflexivesesquilin-
earform or a quadraticform in muchthesameway asprojectivespacesdescribe
thegeometryof vectorspaces.Wenow embarkon thestudyof thesegeometries;
thethreeprecedingsectionscontaintheprerequisitealgebra.

First, someterminology. Thepolarspacesassociatedwith the threetypesof
forms(alternatingbilinear, Hermitian,andquadratic)arereferredto by thesame
namesasthe groupsassociatedwith them: symplectic, unitary, andorthogonal
respectively. Of whatdo thesespacesconsist?

Let V bea vectorspacecarryinga form of oneof our threetypes.Recallthat
aswell asasesquilinearform b in two variables,wehavea form f in onevariable
— either f is definedby f

�
v �C� b

�
v � v � , or b is obtainedby polarising f — and

we make useof both forms. A subspaceof V on which b vanishesidentically is
calleda totally isotropicsubspace(or t.i. subspace), while asubspaceonwhich f
vanishesidenticallyis calleda totally singularsubspace(or t.s.subspace). Every
t.s.subspaceis t.i., but theconverseis false.In thecaseof alternatingforms,every
subspaceis t.s.! I frequentlyusetheexpressiont.i. or t.s.subspace, to meana t.i.
subspace(in thesymplecticor unitarycase)or a t.s.subspace(in theorthogonal
case).

Theclassicalpolar space(or simply thepolar space) associatedwith avector
spacecarryinga form is thegeometrywhoseflatsarethet.i. or t.s.subspaces(in
theabovesense).(Concerningtheterminology:theterm“polarspace”is normally
reservedfor ageometrysatisfyingtheaxiomsof Tits, whichwewill meetshortly.
But every classicalpolar spaceis a polar space,so the terminologyhereshould
causeno confusion.)Note that, if the form is anisotropic,thentheonly member
of thepolarspaceis thezerosubspace.Thepolar rankof aclassicalpolarspaceis
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thelargestvectorspacerankof any t.i. or t.s.subspace;it is zeroif andonly if the
form is anisotropic.Wherethereis noconfusion,polarrankwill becalledsimply
rank. (Wewill soonseethatthereis noconflictwith ourearlierdefinitionof polar
rankasthenumberof hyperboliclinesin thedecompositionof thespace.)Weuse
thetermspoint, line, plane, etc.,just asfor projectivespaces.

Wenow proceedto derivesomepropertiesof polarspaces.Let G beaclassical
polarspaceof polarrankr.

First, we identify thetwo definitionsof polarspacerank. We usetheexpres-
sion for V as the direct sumof r hyperboliclines and an anisotropicsubspace
givenby Theorem6.7. Any t.i. or t.s. subspacemeetseachhyperbolicline in at
mosta point, andmeetsthe anisotropicgermin the zerospace;so its rank is at
mostr. But thespanof r t.i. or t.s.points,onechosenfrom eachhyperbolicline,
is a t.i. or t.s.subspaceof rankr.

(P1)Any flat, togetherwith theflats it contains,is a projective spaceof dimen-
sionat mostr & 1.

This is clearsincea subspaceof a t.i. or t.s.subspaceis itself t.i. or t.s. Thenext
propertyis alsoclear.

(P2)Theintersectionof any family of flatsis a flat.

(P3)If U is aflat of dimensionr & 1 andp apointnot in U , thentheunionof the
linesjoining p to pointsof U is aflat W of dimensionr & 1; andU U W is a
hyperplanein bothU andW.

Proof Let p �V� w  . Thefunctionv �� b
�
v � w � onthevectorspaceU is linear;let

K beits kernel,a hyperplanein U . Thentheline (of theprojectivespace)joining
p to apointq � U is t.i. or t.s.if andonly if q � K; andtheunionof all sucht.i. or
t.s.linesis a t.i. or t.s.spaceW �E� K � v  , suchthatW U U � K, asrequired.

(P4)Thereexist two disjoint flatsof dimensionr & 1.

Proof Usethehyperbolic-anisotropicdecompositionagain.If L1 �P
P
P
W� Lr arethe
hyperboliclines,andvi � wi arethedistinguishedspanningvectorsin Li , thenthe
requiredflatsare � v1 �P
P
P
W� vr  and � w1 �!
P
P
!� wr  .

Next, we specialiseto the caser � 2. (A polar spaceof rank 1 is just an
unstructuredcollectionof points.)A polarspaceof rank2 consistsof pointsand
lines,andhasthefollowing properties.(Thefirst two areimmediateconsequences
of (P2)and(P3)respectively.)
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(Q1)Two pointslie on atmostoneline.

(Q2) If L is a line, and p a point not on L, then thereis a uniquepoint of L
collinearwith p.

(Q3)No point is collinearwith all others.

For, by (P4), thereexist disjoint lines; and,givenany point p, at leastoneof
theselinesdoesnot containp, andp fails to becollinearwith somepoint of this
line.

A geometrysatisfying(Q1), (Q2) and(Q3) is calleda generalisedquadran-
gle. Suchgeometriesplay muchthe samerôle in the theoryof polar spacesas
projective planesdo in the theoryof projective spaces.We will return to them
later.

Notethat(Q1)holdsin apolarspaceof arbitraryrank.
Anotherpropertyof polar spaces,which is provedby almostthe sameargu-

mentas(P3),is thefollowing extensionof (Q2):

(BS) If L is a line, and p a point not on L, then p is collinearwith oneor all
pointsof L.

In a polarspaceG, for any setSof points,we let S� denotethesetof points
which areperpendicularto (that is, collinearwith) every point of S. It follows
from (BS) that,for any setS, thesetS� is a (linear)subspaceof G (thatis, if two
pointsof S� arecollinear, thentheline joining themlieswholly in S� ). Moreover,
for any point x, x� is a hyperplaneof G (that is, a subspacewhich meetsevery
line).

Polarspaceshavegoodinductiveproperties.Let G bea classicalpolarspace.
Therearetwo naturalwaysof producinga “smaller” polarspacefrom G:

(a) Take a point x of G, andconsiderthequotientspacex� A x, thespacewhose
points,lines,. . . arethelines,planes,. . . of G containingx.

(b) Take two non-perpendicularpointsx andy, andconsider� x � y � � .

In eachcase,the spaceconstructedis a classicalpolar space,having the same
germ as G but with polar rank one lessthan that of G. (Note that, in (b), the
spanof x andy in thevectorspaceis a hyperbolicline.) Therearemoregeneral
versions.For example,if S is aflat of dimensiond & 1, thenS� A Sis apolarspace
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of rankr & d with thesamegermasG. Wewill seebelow andin thenext section
how this inductiveprocesscanbeusedto obtaininformationaboutpolarspaces.

We investigatejust onetype in moredetail, theso-calledhyperbolicquadric
or hyperbolicorthogonal space, the orthogonalspacewhich is a direct sumof
hyperboliclines(that is, having germ0). Thequadraticform definingthis space
canbetakento bex1x2 	 x3x4 	 
P
P
 	 x2r 3 1x2r .

Theorem 6.11 Themaximalflats of a hyperbolicquadric fall into two classes,
with thepropertiesthattheintersectionof twomaximalflatshasevencodimension
in each if andonly if they belongto thesameclass.

Proof First,notethattheresultholdswhenr � 1,sincethenthequadraticform is
x1x2 andtherearejust two singularpoints, � � 1 � 0�P and � � 0 � 1�! . By theinductive
principle, it follows that any flat of dimensionr & 2 is containedin exactly two
maximalflats.

Wetakethe
�
r & 1� -flatsand

�
r & 2� -flatsastheverticesandedgesof agraphΓ,

thatis, we join two
�
r & 1� -flatsif their intersectionis an

�
r & 2� -flat. Thetheorem

will follow if we show that Γ is connectedandbipartite, and that the distance
betweentwo verticesof Γ is the codimensionof their intersection.Clearly the
codimensionof the intersectionincreasesby at mostonewith every stepin the
graph,soit is at mostequalto thedistance.We proveequalityby induction.

Let U be a
�
r & 1� -flat andK a

�
r & 2� -flat. We claim that the two

�
r & 1� -

spacesW1 � W2 containingK have differentdistancesfrom U . Factoringout the
t.s. subspaceU U K andusinginduction,we may assumethatU U K � /0. Then
U U K � is apoint p, which lies in onebut not theotherof W1 � W2; sayp � W1. By
induction,thedistancefrom U to W1 is r & 1; so thedistancefrom U to W2 is at
mostr, henceequalto r by theremarkin theprecedingparagraph.

This establishestheclaim aboutthedistance.Thefact thatΓ is bipartitealso
follows, sincein any non-bipartitegraphthereexistsanedgebothof whosever-
ticeshavethesamedistancefromsomethirdvertex, andtheargumentgivenshows
thatthis doesn’t happenin Γ.

In particular, the rank 2 hyperbolicquadricconsistsof two familiesof lines
formingagrid, asshown in Fig.6.1.Thisis theso-called“ruled quadric”,familiar
from modelssuchaswastepaperbaskets.

Exercises

1. Prove(BS).
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Figure6.1: A grid

2. Prove theassertionsaboveaboutx� A x and � x � y � � .
3. Show thatTheorem6.11canbeprovedusingonly properties(P1)–(P4)of

polarspacestogetherwith thefactthatan
�
r & 1� -flat lies in exactly two maximal

flats.

6.5 Finite polar spaces

Theclassificationof finite classicalpolarspaceswasachievedbyTheorem6.7.
We subdivide thesespacesinto six families accordingto their germ, viz., one
symplectic,two unitary, and threeorthogonal. (Forms which differ only by a
scalarfactorobviously definethe samepolar space.)The following tablegives
someinformation about them. In the table, r denotesthe polar spacerank, n
the vectorspacerank. The significanceof the parameterε will emerge shortly.
This number, dependingonly on the germ,carriesnumericalinformationabout
all spacesin thefamily. Notethat,in theunitarycase,theorderof thefinite field
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mustbeasquare.

Type n ε
Symplectic 2r 0

Unitary 2r & 1
2

Unitary 2r 	 1 1
2

Orthogonal 2r & 1
Orthogonal 2r 	 1 0
Orthogonal 2r 	 2 1

Table6.1: Finiteclassicalpolarspaces

Theorem 6.12 Thenumberof pointsin a finitepolar spaceof rank1 is q1� ε 	 1,
where ε is givenin Table6.1.

Proof Let V be a vectorspacecarryinga form of rank 1 over GF
�
q� . ThenV

is theorthogonaldirectsumof a hyperbolicline L andananisotropicgermU of
dimensionk (say).Let nk bethenumberof points.

Supposethatk � 0. If p is apointof thepolarspace,thenp lieson thehyper-
planep� ; any otherhyperplanecontainingp is non-degeneratewith polarrank1
andhaving germof dimensionk & 1. Considera parallelclassof hyperplanesin
the affine spacewhosehyperplaneat infinity is p� . Eachsuchhyperplanecon-
tainsnk 3 1 & 1 points,andthehyperplaneat infinity containsjust one,viz., p. So
wehave

nk & 1 � q
�
nk 3 1 & 1�
�

from which it follows thatnk � 1 	 � n0 & 1� qk. Soit is enoughto prove theresult
for thecasek � 0, thatis, for ahyperbolicline.

In thesymplecticcase,eachof theq 	 1 projectivepointsonaline is isotropic.
Considertheunitarycase.Wecantake theform to be

b
�P�

x1 � y1 �
� � x2 � y2 �P��� x1y2 	 y1x2 �
wherex � xσ � xr , r2 � q. So the isotropicpointssatisfyxy 	 yx � 0, that is,
Tr
�
xy�#� 0. How many pairs

�
x � y� satisfythis? If y � 0, thenx is arbitrary. If

y �� 0, thenafixedmultipleof x is in thekernelof thetracemap,asetof sizeq1d 2
(sinceTr is GF

�
q1d 2 � -linear).Sothereare

q 	 � q & 1� q1d 2 � 1 	 � q & 1� � q1d 2 	 1�
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vectors,i.e.,q1d 2 	 1 projectivepoints.
Finally, considertheorthogonalcase.Thequadraticform is equivalentto xy,

andhastwo singularpoints, � � 1 � 0�P and � � 1 � 0�P .
Theorem 6.13 In a finitepolar spaceof rankr, thereare

�
qr & 1� � qr � ε 	 1�PA � q &

1� points,of which q2r 3 1� ε arenotperpendicularto a givenpoint.

Proof We let F
�
r � be the numberof points,andG

�
r � the numbernot perpen-

dicular to a givenpoint. (We do not assumethatG
�
r � is constant;this constancy

follows from the induction that provesthe theorem.) We usethe two inductive
principlesdescribedat theendof thelastsection.

Step1 G
�
r ��� q2G

�
r & 1� .

Takeapointx, andcountpairs
�
y� z� , wherey � x� , z �� x� , andz � y� . Choos-

ing zfirst, thereareG
�
r � choices;then � x � z is ahyperbolicline,andy is apoint in� x � z � , sothereareF
�
r & 1� choicesfor y. Ontheotherhand,choosingy first, the

linesthroughy arethepointsof therankr & 1 polarspacex� A x, andsothereare
F
�
r & 1� of them,with q pointsdifferentfrom x oneach,giving qF

�
r & 1� choices

for y; then � x � y and � y� z arenon-perpendicularlines in y� , i.e., pointsof y� A y,
sothereareG

�
r & 1� choicesfor � y� z , andsoqG

�
r & 1� choicesfor y. thus

G
�
r �/e F � r & 1��� qF

�
r & 1�Oe qG

�
r & 1�.�

from which theresultfollows.
SinceG

�
1��� q1� ε, it follows immediatelythatG

�
r ��� q2r 3 1� ε, asrequired.

Step2 F
�
r ��� 1 	 qF

�
r & 1� 	 G

�
r � .

For this, simply observe (asabove) thatpointsperpendicularto x lie on lines
of x� A x.

Now it is justamatterof calculationthatthefunction
�
qr & 1� � qr � ε 	 1�PA � q &

1� satisfiesthe recurrenceof Step2 andcorrectlyreducesto q1� ε 	 1 whenr �
1.

Theorem 6.14 Thenumberof maximalflatsin a finite polar spaceof rankr is

r

∏
i f 1

�
1 	 qi � ε �.
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Proof Let H
�
r � be this number. Countpairs

�
x � U � , whereU is a maximalflat

andx � U . Wefind that

F
�
r �/e H � r & 1��� H

�
r �Oe � qr & 1�PA � q & 1�
�

so
H
�
r ��� � 1 	 qr � ε � H � r & 1�



Now theresultis immediate.

It shouldnow beclearthatany reasonablecountingquestionaboutfinite polar
spacescanbeansweredin termsof q � r � ε.


