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1 Synchronization

Let 2 be a set with n elements. A transformation monoid on € is a set of
maps from Q to itself which is closed under composition and contains the
identity. A transformation monoid M is synchronizing if it contains a map
with rank 1 (that is, whose image has only one element).

The notion comes from automata theory. A (finite deterministic) au-
tomaton consists of a set 2 of states and a set S of transitions or maps on
Q. It is said to be synchronizing if there is a word in the transitions which
evaluates to a map of rank 1. (Such a word is called a reset word.) So
(2,.5) is synchronizing if and only if the monoid M = (S) generated by S is
synchronizing.

It is easy to tell whether an automaton is synchronizing, but hard to say
what the length of the shortest reset word is.

2 Monoids and graphs

There is a very close connection between transformation monoids and graphs.

In one direction, let I" be a graph. An endomorphism of I' is a map on the
vertex set of I" which maps edges to edges. The set End(I") of endomorphisms
of I' is a transformation monoid.

In the other direction, let M be a transformation monoid on 2. Form a
graph I' = Gr(M) on the vertex set of € by the rule that v and w are joined
if and only if there is no element f € M such that vf = wf.

We have M < End(Gr(M)) for any transformation monoid M. For sup-
pose that f € M and {v, w} is an edge of Gr(M). By definition, vf # wf. If



{vf,wf} were a non-edge, then there would exist h € M with (vf)h = (wf)h;
but then fh € M and v(fh) = w(fh), contradicting the assumption that
{v,w} is an edge. So {vf,wf} is an edge.

I' = Gr(M) has the property that its clique number w(I') and chromatic
number x(I') are equal. For let f be an element of minimal rank in M. Then
the image of f cannot be further compressed, and so is a clique in Gr(M);
and the kernel of f (the partition of 2 into inverse images of points in the
image) is a proper colouring, since no part can contain an edge. Clearly the
cardinalities of image and kernel are equal.

We see that there is only one obstruction to synchronization:

Theorem 1 A transformation monoid M is non-synchronizing if and only if
there is a non-null graph T on M, with w(I') = x(I"), such that M < End(T").

Proof If M < End(I') for some non-null graph I, then M is not synchro-
nizing: an edge cannot be collapsed. For the converse, take I' = Gr(M).

3 Permutation groups

A permutation group G on 2 is a subgroup of the symmetric group, that is,
a transformation monoid whose elements are permutations.

A permutation group G is transitive if, for any v,w € (), there exists
g € G with vg = w; it is primitive if it is transitive and preserves no non-
trivial equivalence relation on €2; and it is 2-transitive if it acts transitively
on the set of ordered pairs of elements of (2.

If G is transitive but imprimitive, a part of a non-trivial G-invariant
partition is called a block of imprimitivity of G.

Let f be a map on 2 which is not a permutation. We say that G' syn-
chronizes f if (G, f) is synchronizing. By abuse of terminology, we say that
the group G is synchronizing if it synchronizes every non-permutation.

Now G is non-synchronizing if and only if it is a group of automorphisms
of a graph I', not complete or null, with w(I") = x(I"). Hence:

e A 2-transitive group is synchronizing (since it is not a group of auto-
morphisms of any graph except the complete and null graphs).

e A synchronizing group is primitive (since an imprimitive group pre-
serves the graph whose connected components are complete graphs on
the parts of the invariant partition, and so is not synchronizing).
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Neither of these implications reverses. However, Araijo has made the
following bold conjecture. A map is uniform if all parts of its kernel have
the same size, and is non-uniform otherwise.

Conjecture A primitive group synchronizes any non-uniform map.

The rest of this note considers some cases of this conjecture.
We define the kernel type of a map f to be the partition of n given by
the sizes of the parts of the kernel of f.

4 Maps of large rank
The following theorem was proved by Rystsov:

Theorem 2 A permutation group G of degree n is primitive if and only if
it synchronizes every map of rank n — 1.

Our first result is a strengthening of this theorem.

Theorem 3 Let G be a permutation group of degree n, and 1 < k < n.
Then G is imprimitive with a block of imprimitivity of size at least k if and
only if it fails to synchronize some map whose kernel has a part of size k and
all other parts singletons.

We note that a map of rank n — 1 satisfies the conditions of this theorem,
with k£ = 2.

Proof Suppose first that G is imprimitive and has an invariant equivalence
relation with parts of size at least k. Let I' be the complete multipartite
graph in which all pairs of vertices in different parts are edges. Then any
map which maps each part into itself is an endomorphism; we can choose an
endomorphism which collapses k£ points in a single part to one of them, and
maps every further point to itself.

Conversely, suppose that G is a transitive permutation group, f is a map
whose kernel has type (k,1,...,1), and suppose that G fails to synchronize
f. Let I' = Gr((G, f)), and let A be the part of size k of the kernel of f.
There are no edges within A; so, if v € A, then the set N(v) of neighbours



of v is mapped bijectively by f to the set N(vf) of neighbours of vf. The
same is true for another point w € A; so N(v) = N(w).

Now define an equivalence relation = on €2 by the rule that v = w if and
only if N(v) = N(w). This relation is G-invariant, since G < Aut(I"), and is
non-trivial (with equivalence classes of size at least k) since A is contained
in a single equivalence class. So the theorem is proved.

With a little more effort we can directly improve Rystsov’s Theorem:

Theorem 4 A primitive group of degree n synchronizes any map of rank
n—2.

Proof If f has rank n — 2, then its kernel type is either (3,1,...,1), or
(2,2,1,...,1). The first case is dealt with by the preceding theorem. In the
second case, more careful analysis shows that the permutation which inter-
changes the two points in each kernel class of size 2 and fixes all other points
is an automorphism of the graph I' = Gr((G, f)). Now a primitive group of
degree greater than 8 which contains a double transposition is known to be
symmetric or alternating, and hence 2-transitive (and hence synchronizing).
All exceptions of smaller degree are known, and the theorem is easily checked
for these.

5 Maps of small rank

At the other end of the scale, we have the following result, first observed by
Neumann:

Theorem 5 A primitive group of degree n > 2 synchronizes every map of
rank 2.

Proof A non-null graph which has an endomorphism onto a subgraph of
size 2 is bipartite. If it is disconnected, its connected components form
blocks of imprimitivity; if it is connected, then its bipartite blocks are blocks
of imprimitivity.

Extending this to higher rank looks difficult, for two reasons. First, there
will be counterexamples. The group S3wr.S,, of degree 3™ (the automorphism
group of the m-dimensional hypercube with three points on each edge) is



primitive but fails to synchronize a suitable map of size 3. Second, graphs
with chromatic number 3 are much more difficult than graphs with chromatic
number 2. Nevertheless, we were able to make some progress.

First some general observations. Let M be a transformation monoid
which contains a transitive permutation group G, and let f be an element
of M with minimum rank r. As we have seen, the graph Gr(M) has clique
number and chromatic number r: the image of f is an r-clique, and f itself
is an r-colouring. Now f must be uniform. For each part of the kernel of f
is an independent set in Gr(M), which is vertex-transitive; and in a vertex-
transitive graph, the product of clique number and independence number is
at most the number of vertices.

Theorem 6 Let M be a transformation monoid containing a primitive per-
mutation group. Let r be the minimum rank of an element of M, and let f be
an element of rank r, where r > 1. Then M cannot contain an element with
rank greater than r, all but one of whose kernel classes are kernel classes of

f.

The proof depends on the following result. A primitive graph is a graph
whose automorphism group is primitive.

Theorem 7 Let I' be a primitive graph with chromatic number r. Then I’
cannot contain a subgraph consisting of a complete graph of size r + 1 with
an edge deleted.

Proof Suppose that we have such a subgraph on the vertex set {1,2,...,7+
1}, where all edges except {r,r+1} are present. Then {1,...,7} is a complete
graph, so all its vertices have different colours (in a fixed colouring ¢ of " with
r colours); and the same is true for {1,2,...,7—1,7+1}. So ¢(r) = c¢(r+1).
The same argument applies for the image of this subgraph under any element
of the primitive group G.

Now let A be the graph whose edge-set is the G-orbit of {r,r +1}. Then
A is non-null and G-invariant, and any edge of A is contained within a colour
class of ¢. But this contradicts primitivity, since the connected components
of A are blocks of imprimitivity for G.

Proof of Theorem 6 Suppose that the hypotheses of this theorem hold,
and let h be an element of m with rank r + &k — 1 (for £ > 1) whose kernel

5



has k parts Ajq,..., A1 which partition a part A; of the kernel of f, and
the remaining parts of the kernels of f and h agree. Let a;; = A;;h, and
a; = A;h for j > 1.

Note that, if B is a part of the kernel of f, and v ¢ B, then there is an
edge from v to a point of B. For if not, then B U {v} is an independent set
of size n/r + 1, contradicting the bound for clique number and independence
number in a vertex-transitive graph. Hence there are edges between any
two of A; and Ay for j,k > 1, and from any A;; to any A; with j > 1.
Since h is a graph endomorphism, we see that the induced subgraph on
{a11,a19,a9,...,a,} is a complete graph with an edge removed, contrary to
the preceding theorem.

From this we can deduce:

Theorem 8 Let M be a transformation monoid containing a primitive per-
mutation group, and let r be the minimum rank of an element of M, with
r > 1. Then M cannot contain an element of rank r + 1.

For we may assume that the kernel of such an element h refines the kernel
of an element f of minimum rank r (by replacing f by Af if necessary); and
then only one kernel class of f is split by the kernel of h, contradicting the
theorem.

Finally, we have our result about maps of small rank:

Theorem 9 A primitive group synchronizes any non-uniform map of rank
3 or 4.

Proof Suppose that G is primitive and does not synchronize h, of rank 3
or 4. Now an element of minimum rank in (G, k) is uniform, so has rank
2 or 3; if rank 2, then G is imprimitive by Neumann’s result, while rank 3
contradicts the preceding theorem.



