
Partition backtrack methods for more
complicated group actions

Christopher W. Monteith

October 24, 2008

1 Outline

• Combinatorial isomorphism problems: action of group G on set Ω.

• Current implementation requires G = Sn.

• Not even possible to use an arbitrary permutation group.

• Two goals

– Augment the framework for added flexibility.

– Generalise the framework to work with general actions.

• add bells and whistles vs. generalise existing bells and whistles.

• Progress has been made on both.

• This talk: generalisation.

2 Generalisation: what, why, and how

2.1 What?

• Two clear ways:

– Generalise the types of objects used to define permutations.

– Generalise the type of group that acts on the objects.

1

• Progress has been made on the latter.

• Work is very new and certainly incomplete.

• When finished should provide a “shopping list” of functions.

2.2 Why?

• Why generalise to groups other than Sn?

– At least deal with different permutation groups.

– Ideally deal with abstract groups.

• E.g.: Different actions on the set F[n]
q of length n codewords.

1. Act on F[n]
q with Sn:

Sn × F[n]
q → F[n]

q

(x, ω) 7→ ω ◦x−1

2. Act on F[n]
q with F×q wrSn:((

F×q
)[n] × Sn

)
× F[n]

q → F[n]
q

((u, x), ω) 7→ u · (ω ◦x−1).

3. Act on F[n]
q with Aut (Fq)×

(
F×q wrSn

)
:(

Aut (Fq)×
((
F×q

)[n] × Sn
))
× F[n]

q → F[n]
q

((λ, (u, x)), ω) 7→ λ(u · (ω ◦x−1))

• The second and third actions on F[n]
q certainly don’t seem isomorphic

to symmetric groups.

• ∴ current algorithm falls short of naturally working with sophisti-
cated group actions.

2

2.3 How?

• Many mechanisms dependent on ordered partitions.

• ∴ Want to keep using them.

• But: To move past using Sn we need to move past [n].

• Only concept dependent on [n]: the group action.

• All else depends on concepts that generalise readily.

3 Catalogue what we have

3.1 Objects

• Set of objects Ω.

• Sn acts on left of Ω.

3.2 Points

• Set of points [n].

• Sn acts faithfully on left of [n].

3.3 Partitions on points

• Set Πn of ordered partitions over [n].

• Sn acts pointwise on the left of Πn.

• Two critical aspects.

• Firstly: each π in Πn defines subset of Sn.

– All perms that send π to a canonical representative h(π).

– Obtained with function

B : Πn → Πn

π 7→ {x ∈ Sn | xπ = h(π) }

3

– Harmonious partition is canonical representative.

• Secondly: we construct a refinement process.

– Gives a set of fine partitions for each (α, π) ∈ Ω× Πn.

– Each fine partition gives exactly one permutation.

– ∴ a set of permutations is found.

• Properties of B and refinement⇒ all automorphisms and canonical
representative obtained.

• What are these properties?

4 Distill the essentials

• Two fundamental actions of Sn: one on Ω and one on [n].

• All other G actions are built up.

• Roughly: Studying the (probably complicated) action of Sn on Ω
by working with the (hopefully simpler) action of Sn over [n].

• Two stages (concurrent in practice).

• Firstly: Generate (refine) ordered partitions.

– Critical: All functions involved in refinement are Sn-morphisms.

– Split:
S : Πn × [n]→ Πn.

– Choose:
C : Ω× Πn\Φn → P ([n]) .

– Refine:
R : Ω× Πn → Πn.

– Tree:
T : Ω× Πn → P (Ω× Πn) .

• Secondly: Generate corresponding permutations.

4

– Critical: Function h is a canonical map over Πn under Sn.

– Practical need: easily derive h(π) and B (π).

– Result: Leaf permutation function

L : P (Ω× Πn)→ P (Sn)

is an Sn-morphism.

5 Generalise

5.1 G-spaces

• Act with an arbitrary group G.

• Ω is a G-space.

• Instead of [n] use finite set Γ forming a left G-space.

• Resulting set of ordered partitions: ΠΓ.

• Fine partitions: ΦΓ.

• ΠΓ forms a left G-space under pointwise action.

5.2 Defining the subsets of G

• Analogous to Sn on Πn.

• Essential: Canonical map

µ : ΠΓ → ΠΓ.

• (What used to be h)

• Recall: ∀π ∈ ΠΓ, ∀g ∈ G

µ(π) = µ(gπ)

and ∃g′ ∈ G s.t.
µ(π) = g′π.

5

• Want elements of G that send π to its canonical representative µ(π).

• Defn:

B : ΠΓ → P (G)

π 7→ { g ∈ G | gπ = µ(π) }

• Prop: (∀π ∈ ΠΓ) (∀g ∈ B (π))

B (π) = gAut (π)

• Corr: ∀π ∈ ΠΓ, ∀g ∈ G

B (gπ) = B (π) g−1

• So B is a G-morphism.

• Only one group element from a fine partition?

• Corr: Let π be fine. |B (π) | = 1 if and only if G acts faithfully on Γ.

• Proof:

– Definition G is faithful on Γ ⇐⇒ ∩γ∈ΓAut (γ) = {1}.
– Since π is fine Aut (π) = ∩γ∈ΓAut (γ).

– By Prop |B (π) | = 1 ⇐⇒ Aut (π) = {1}.

• Tree function gives a subset of Ω× ΠΓ.

• Need to derive the group elements corresponding to fine partitions.

• Defn:

L : P (Ω× ΠΓ)→ P (G)

A 7→ { g ∈ G | (∃(α, π) ∈ A) π ∈ ΦΓ ∧ g ∈ B (π) }

• Prop: L is a G-morphism; that is, (∀A ∈ P (Ω× ΠΓ)) (∀g ∈ G)

L (gA) = L (A) g−1.

6

5.3 Refining partitions of ΠΓ

• Refinement relation v can still be defined.

• Same approach: split, choose, and refine.

– Split:
S : ΠΓ × Γ→ ΠΓ.

– Choose:
C : Ω× ΠΓ\ΦΓ → P (Γ) .

– Refine:
R : Ω× ΠΓ → ΠΓ.

• All domains and codomains are G-spaces

• We require all these functions to be G-morphisms.

• Definition of the tree function is identical to before.

• However,
T : Ω× ΠΓ → P (Ω× ΠΓ)

• Induction is still useable; therefore,

– T is a G-morphism

– T always gives a set with at least one fine partition.

5.4 Combining the two

• L ◦ T will be a G-morphism.

• Prop:

(∀(α, π) ∈ Ω× ΠΓ) (∀g ∈ G)

(L◦T (gα, gπ)) (gα, gπ) = (L◦T (α, π)) (α, π).

• Prop:

(∀(α, π) ∈ Ω× ΠΓ) (∀g ∈ L◦T (α, π))

gAut ((α, π)) ⊆ L◦T (α, π).

7

6 Outstanding tasks

• Still need to get at a base and strong generating set.

• May impose a few extra limitations on what function µ can be.

• Nice interaction with the refinement relation may be one such need.

• Examples of functions that fit the shopping list are needed.

8

