Partition backtrack methods for more complicated group actions

Christopher W. Monteith

October 24, 2008

1 Outline

- Combinatorial isomorphism problems: action of group G on set Ω.
- Current implementation requires $G=S_{n}$.
- Not even possible to use an arbitrary permutation group.
- Two goals
- Augment the framework for added flexibility.
- Generalise the framework to work with general actions.
- add bells and whistles vs. generalise existing bells and whistles.
- Progress has been made on both.
- This talk: generalisation.

2 Generalisation: what, why, and how

2.1 What?

- Two clear ways:
- Generalise the types of objects used to define permutations.
- Generalise the type of group that acts on the objects.
- Progress has been made on the latter.
- Work is very new and certainly incomplete.
- When finished should provide a "shopping list" of functions.

2.2 Why?

- Why generalise to groups other than S_{n} ?
- At least deal with different permutation groups.
- Ideally deal with abstract groups.
- E.g.: Different actions on the set $\mathbb{F}_{q}^{[n]}$ of length n codewords.

1. Act on $\mathbb{F}_{q}^{[n]}$ with S_{n} :

$$
\begin{aligned}
S_{n} \times \mathbb{F}_{q}^{[n]} & \rightarrow \mathbb{F}_{q}^{[n]} \\
(x, \omega) & \mapsto \omega \circ x^{-1}
\end{aligned}
$$

2. Act on $\mathbb{F}_{q}^{[n]}$ with $\mathbb{F}_{q}^{\times} \operatorname{wr} S_{n}$:

$$
\begin{aligned}
\left(\left(F_{q}^{\times}\right)^{[n]} \times S_{n}\right) \times \mathbb{F}_{q}^{[n]} & \rightarrow \mathbb{F}_{q}^{[n]} \\
((u, x), \omega) & \mapsto u \cdot\left(\omega \circ x^{-1}\right)
\end{aligned}
$$

3. Act on $\mathbb{F}_{q}^{[n]}$ with $\operatorname{Aut}\left(\mathbb{F}_{q}\right) \times\left(\mathbb{F}_{q}^{\times}\right.$wr $\left.S_{n}\right)$:

$$
\begin{aligned}
\left(\operatorname{Aut}\left(\mathbb{F}_{q}\right) \times\left(\left(F_{q}^{\times}\right)^{[n]} \times S_{n}\right)\right) \times \mathbb{F}_{q}^{[n]} & \rightarrow \mathbb{F}_{q}^{[n]} \\
((\lambda,(u, x)), \omega) & \mapsto \lambda\left(u \cdot\left(\omega \circ x^{-1}\right)\right)
\end{aligned}
$$

- The second and third actions on $\mathbb{F}_{q}^{[n]}$ certainly don't seem isomorphic to symmetric groups.
- \therefore current algorithm falls short of naturally working with sophisticated group actions.

2.3 How?

- Many mechanisms dependent on ordered partitions.
- \therefore Want to keep using them.
- But: To move past using S_{n} we need to move past [n].
- Only concept dependent on $[n]$: the group action.
- All else depends on concepts that generalise readily.

3 Catalogue what we have

3.1 Objects

- Set of objects Ω.
- S_{n} acts on left of Ω.

3.2 Points

- Set of points $[n]$.
- S_{n} acts faithfully on left of $[n]$.

3.3 Partitions on points

- Set Π_{n} of ordered partitions over $[n]$.
- S_{n} acts pointwise on the left of Π_{n}.
- Two critical aspects.
- Firstly: each π in Π_{n} defines subset of S_{n}.
- All perms that send π to a canonical representative $h(\pi)$.
- Obtained with function

$$
\begin{aligned}
& \mathcal{B}: \Pi_{n} \rightarrow \Pi_{n} \\
& \pi \mapsto\left\{x \in S_{n} \mid x \pi=h(\pi)\right\}
\end{aligned}
$$

- Harmonious partition is canonical representative.
- Secondly: we construct a refinement process.
- Gives a set of fine partitions for each $(\alpha, \pi) \in \Omega \times \Pi_{n}$.
- Each fine partition gives exactly one permutation.
$-\therefore$ a set of permutations is found.
- Properties of \mathcal{B} and refinement \Rightarrow all automorphisms and canonical representative obtained.
- What are these properties?

4 Distill the essentials

- Two fundamental actions of S_{n} : one on Ω and one on $[n]$.
- All other G actions are built up.
- Roughly: Studying the (probably complicated) action of S_{n} on Ω by working with the (hopefully simpler) action of S_{n} over $[n]$.
- Two stages (concurrent in practice).
- Firstly: Generate (refine) ordered partitions.
- Critical: All functions involved in refinement are S_{n}-morphisms.
- Split:

$$
\mathcal{S}: \Pi_{n} \times[n] \rightarrow \Pi_{n} .
$$

- Choose:

$$
\mathcal{C}: \Omega \times \Pi_{n} \backslash \Phi_{n} \rightarrow \mathcal{P}([n]) .
$$

- Refine:

$$
\mathcal{R}: \Omega \times \Pi_{n} \rightarrow \Pi_{n}
$$

- Tree:

$$
\mathcal{T}: \Omega \times \Pi_{n} \rightarrow \mathcal{P}\left(\Omega \times \Pi_{n}\right) .
$$

- Secondly: Generate corresponding permutations.
- Critical: Function h is a canonical map over Π_{n} under S_{n}.
- Practical need: easily derive $h(\pi)$ and $\mathcal{B}(\pi)$.
- Result: Leaf permutation function

$$
\mathcal{L}: \mathcal{P}\left(\Omega \times \Pi_{n}\right) \rightarrow \mathcal{P}\left(S_{n}\right)
$$

is an S_{n}-morphism.

5 Generalise

5.1 G-spaces

- Act with an arbitrary group G.
- Ω is a G-space.
- Instead of $[n]$ use finite set Γ forming a left G-space.
- Resulting set of ordered partitions: Π_{Γ}.
- Fine partitions: Φ_{Γ}.
- Π_{Γ} forms a left G-space under pointwise action.

5.2 Defining the subsets of G

- Analogous to S_{n} on Π_{n}.
- Essential: Canonical map

$$
\mu: \Pi_{\Gamma} \rightarrow \Pi_{\Gamma} .
$$

- (What used to be h)
- Recall: $\forall \pi \in \Pi_{\Gamma}, \forall g \in G$

$$
\mu(\pi)=\mu(g \pi)
$$

and $\exists g^{\prime} \in G$ s.t.

$$
\mu(\pi)=g^{\prime} \pi
$$

- Want elements of G that send π to its canonical representative $\mu(\pi)$.
- Defn:

$$
\begin{aligned}
\mathcal{B}: \Pi_{\Gamma} & \rightarrow \mathcal{P}(G) \\
& \pi
\end{aligned}>\{g \in G \mid g \pi=\mu(\pi)\}
$$

- Prop: $\left(\forall \pi \in \Pi_{\Gamma}\right)(\forall g \in \mathcal{B}(\pi))$

$$
\mathcal{B}(\pi)=g \operatorname{Aut}(\pi)
$$

- Corr: $\forall \pi \in \Pi_{\Gamma}, \forall g \in G$

$$
\mathcal{B}(g \pi)=\mathcal{B}(\pi) g^{-1}
$$

- So \mathcal{B} is a G-morphism.
- Only one group element from a fine partition?
- Corr: Let π be fine. $|\mathcal{B}(\pi)|=1$ if and only if G acts faithfully on Γ.

- Proof:

- Definition G is faithful on $\Gamma \Longleftrightarrow \cap_{\gamma \in \Gamma} \operatorname{Aut}(\gamma)=\{1\}$.
- Since π is fine $\operatorname{Aut}(\pi)=\cap_{\gamma \in \Gamma} \operatorname{Aut}(\gamma)$.
- By Prop $|\mathcal{B}(\pi)|=1 \Longleftrightarrow \operatorname{Aut}(\pi)=\{1\}$.
- Tree function gives a subset of $\Omega \times \Pi_{\Gamma}$.
- Need to derive the group elements corresponding to fine partitions.
- Defn:

$$
\begin{aligned}
\mathcal{L}: \mathcal{P}\left(\Omega \times \Pi_{\Gamma}\right) & \rightarrow \mathcal{P}(G) \\
A & \mapsto\left\{g \in G \mid(\exists(\alpha, \pi) \in A) \pi \in \Phi_{\Gamma} \wedge g \in \mathcal{B}(\pi)\right\}
\end{aligned}
$$

- Prop: \mathcal{L} is a G-morphism; that is, $\left(\forall A \in \mathcal{P}\left(\Omega \times \Pi_{\Gamma}\right)\right)(\forall g \in G)$

$$
\mathcal{L}(g A)=\mathcal{L}(A) g^{-1} .
$$

5.3 Refining partitions of Π_{Γ}

- Refinement relation \sqsubseteq can still be defined.
- Same approach: split, choose, and refine.
- Split:

$$
\mathcal{S}: \Pi_{\Gamma} \times \Gamma \rightarrow \Pi_{\Gamma}
$$

- Choose:

$$
\mathcal{C}: \Omega \times \Pi_{\Gamma} \backslash \Phi_{\Gamma} \rightarrow \mathcal{P}(\Gamma) .
$$

- Refine:

$$
\mathcal{R}: \Omega \times \Pi_{\Gamma} \rightarrow \Pi_{\Gamma} .
$$

- All domains and codomains are G-spaces
- We require all these functions to be G-morphisms.
- Definition of the tree function is identical to before.
- However,

$$
\mathcal{T}: \Omega \times \Pi_{\Gamma} \rightarrow \mathcal{P}\left(\Omega \times \Pi_{\Gamma}\right)
$$

- Induction is still useable; therefore,
- \mathcal{T} is a G-morphism
$-\mathcal{T}$ always gives a set with at least one fine partition.

5.4 Combining the two

- $\mathcal{L} \circ \mathcal{T}$ will be a G-morphism.
- Prop:

$$
\begin{aligned}
& \left(\forall(\alpha, \pi) \in \Omega \times \Pi_{\Gamma}\right)(\forall g \in G) \\
& \quad(\mathcal{L} \circ \mathcal{T}(g \alpha, g \pi))(g \alpha, g \pi)=(\mathcal{L} \circ \mathcal{T}(\alpha, \pi))(\alpha, \pi) .
\end{aligned}
$$

- Prop:

$$
\begin{aligned}
\left(\forall(\alpha, \pi) \in \Omega \times \Pi_{\Gamma}\right)(& \forall g \in \mathcal{L} \circ \mathcal{T}(\alpha, \pi)) \\
& g \operatorname{Aut}((\alpha, \pi)) \subseteq \mathcal{L} \circ \mathcal{T}(\alpha, \pi) .
\end{aligned}
$$

6 Outstanding tasks

- Still need to get at a base and strong generating set.
- May impose a few extra limitations on what function μ can be.
- Nice interaction with the refinement relation may be one such need.
- Examples of functions that fit the shopping list are needed.

