Group action morphisms in backtrack search

1.1

1.2

Christopher W. Monteith
October 22, 2008

Recapitulate

Combinatorial isomorphism problems

What: Amounts to deciding membership of orbits under a group
action.

Our case: Symmetric group S,,.

Complicated problems.

Practical solution through partition backtrack algorithms.
Vaguely: determines a set of permutations to search through.
My study: nauty algorithm.

Complicated methods for complicated problems: just look at the liter-
ature!

McKay and Leon.

My goals

Write a survey: literature highly specialised or too arcane.

Reveal more of the forest: many treatments get bogged down in algo-
rithmic details.

May lead to connections being made between different methods.

1.3 What we want from the algorithm
e Group S,, and S,-space (Q; left action.

e Canonical map:
we) —Q
s.t.
(Va € Q) (Vx € S,) pula) = p(za)

and
(Va € Q) (Jy € S,) pla) = ya.

e Constant on each orbit taking a value within the orbit.
e No direct comparison needed: o~ <= pu(«a) = u(B).

e Furthermore, with perms x and y that give za = p(a) = yf, we have
-1
Yy rxa = 0.

e Automorphism group:
Aut (o) == (S,),,-
1.4 Ordered Partitions: II,
e Used to “encode” sets of partitions: easily retrievable.
e Finite sequences: disjoint, non-empty sets of integers; union to [n].
e Notn: (m,ma,...,Tk).
e Acted upon by S5,: pointwise.

e Each orbit contains a unique harmonious partition.

e Harmonising Function
h: 11, — 11,

s.t.
(Vr € 1I,) (Vo € S,) h(m) = h(zm)

and
(Vr e 1Il,) (3y € S,) h(r) =yrm

e Canonical map!

e refinement relation C: 7 C 0 <= split cells in o to obtain .

2 Functions

2.1 Permutations defined by ordered partition

e Ordered partitions define a set of permutations.

Set of all perms that harmonise a partition.

Grab them! Define the function

B:10, — P(S,)
T {zesS,|zr="nr)}

e h canonical map = B (7) is always non-empty.

Prop: (Vr €11,,) B(m) = yAut (7), where ym = h(r).

Prop: (Vr €1l,) (Vo € S,) B(am) = B(n)x™ L.

— h constant on orbits: h(xm) = h()
— Let y € B(n) giving ym = h(zm)

— - (yx Y (xm) = h(zm)

— By prop: B (z7) = (yz~!)Aut (z7)
— Standard: Aut (z7) = zAut (7) 27!

Finally:
B(xm) = (yr ') (zAut (1) 271) = yAut (7)™t = B(r) 2.

e Only thing used is the canonical property!

2.2 Group action morphisms

e What is a group action morphism? Why do we want them?
e Let Q and I be S,,-spaces

e Defn: S,-morphism is function ¢ : Q@ — I s.t.

(Va € Q) (Vx € S,) ¢(za) = z¢(av).

B an example.

Why? Two fold. Suppose that
f:Q—="P(S,)

s.t.
(Vx € S,) (Va € Q) flza) = f(a)z™!

Prop: Va € Q, Vz € S5,
fl@)a = f(za)(za).
Set at least as large as the orbit.
Prop: Let a € Q; fix x € f(a).
zAut () C f(a).
We can retrieve the elements of Aut () from f(a).

Nauty constructs and searches such a set. Hopefully a small one.

Split, Choose, Refine
Some important S,-morphisms.

Split: take an ordered partition; force an element into a singleton
cell.
S: 10, x [n] — 11,

Important: S(a,) C 7.
Choose: Choose a non-singleton cell from a coarse ptn.
C:QxI,\®, — P([n])
Refine: Split zero or more cells in place.
R :QxII, — I1,.
Important: R(«,7) C 7.
All domains and codomains form S,,-spaces.

All three functions must be S,,-morphisms.

3 Tree function

e Function

7T:QxII, - P(QxII,)

s.t.
T (o, m) = {(o, R(a, 7))}

if R(a, m) is fine; otherwise,

T (a,m) ={(a, R(a,m))} U (U T(a,S(R(a,ﬁ),v))) .

veC(a,R(a,m))

e Prop: 7 is an S,-morphism:
V(a,7) € Q x 11, Vo € S,

2T (a,7) =T (za, xm).

e Prop: At least one (3,0) in 7 («,) such that o is fine.

4 Harvesting what we need

4.1 Grabbing Permutations

e Turn the tree set into a set of permutations.

e Define

L:P(QxIL,) — P(S,)
A {2z €S, | Ga,n)€8) B(r)={a}}

e Prop: £ is an S,-morphism:
VAeP(QxI1l,), Yz e s,

L(xA)=L(A)z

e Cor: Lo7T is an S,-morphism:
V(a,m) € Q x 11, Vo € S,

LoT (za,am) = LoT (a,7)z".
(Morphisms compose to morphisms)

e Lo7T is just an instance of f earlier.

4.2 Canonical Map

e For our canonical map:

V(a,m) € Q x 11, Vo € S,

LoT(a,m)(a,m) =LoT (xa,am)(xar, xm).

e So select a unique representative from the set
LoT (a,m)(a,)

(constant across entire orbit).

4.3 Automorphism Group

For our automorphism group: Fix x in £o7 («a,7); we have

zAut ((o, 7)) € LoT (a, 7).

4.4 Let’s be realistic

e Need the set Lo7 (a,) as small as we can get it.
e R is the key to better performance.

e Other “pruning” is possible when we get into algorithmic mode: uses
auts that have already been found.

e Base and strong generating set methods need to be introduced.

5 Where to?

There are some opportunities to generalise:
e What if we are not acting on with S,?
e Group action morphisms are sufficient — but are they necessary?

e More on these next week.

