
Group action morphisms in backtrack search

Christopher W. Monteith

October 22, 2008

1 Recapitulate

1.1 Combinatorial isomorphism problems

• What: Amounts to deciding membership of orbits under a group
action.

• Our case: Symmetric group Sn.

• Complicated problems.

• Practical solution through partition backtrack algorithms.

• Vaguely: determines a set of permutations to search through.

• My study: nauty algorithm.

• Complicated methods for complicated problems: just look at the liter-
ature!

• McKay and Leon.

1.2 My goals

• Write a survey: literature highly specialised or too arcane.

• Reveal more of the forest: many treatments get bogged down in algo-
rithmic details.

• May lead to connections being made between different methods.

1



1.3 What we want from the algorithm

• Group Sn and Sn-space Ω; left action.

• Canonical map:
µ : Ω→ Ω

s.t.
(∀α ∈ Ω) (∀x ∈ Sn) µ(α) = µ(xα)

and
(∀α ∈ Ω) (∃y ∈ Sn) µ(α) = yα.

• Constant on each orbit taking a value within the orbit.

• No direct comparison needed: α ' β ⇐⇒ µ(α) = µ(β).

• Furthermore, with perms x and y that give xα = µ(α) = yβ, we have
y−1xα = β.

• Automorphism group:

Aut (α) := (Sn)α.

1.4 Ordered Partitions: Πn

• Used to “encode” sets of partitions: easily retrievable.

• Finite sequences: disjoint, non-empty sets of integers; union to [n].

• Notn: (π1, π2, . . . , πk).

• Acted upon by Sn: pointwise.

• Each orbit contains a unique harmonious partition.

• Harmonising Function
h : Πn → Πn

s.t.
(∀π ∈ Πn) (∀x ∈ Sn) h(π) = h(xπ)

and
(∀π ∈ Πn) (∃y ∈ Sn) h(π) = yπ

• Canonical map!

• refinement relation v: π v σ ⇐⇒ split cells in σ to obtain π.

2



2 Functions

2.1 Permutations defined by ordered partition

• Ordered partitions define a set of permutations.

• Set of all perms that harmonise a partition.

• Grab them! Define the function

B : Πn → P (Sn)

π 7→ {x ∈ Sn | xπ = h(π) }

• h canonical map ⇒ B (π) is always non-empty.

• Prop: (∀π ∈ Πn)B (π) = yAut (π), where yπ = h(π).

• Prop: (∀π ∈ Πn) (∀x ∈ Sn) B (xπ) = B (π)x−1.

– h constant on orbits: h(xπ) = h(π)

– Let y ∈ B (π) giving yπ = h(xπ)

– ∴ (yx−1)(xπ) = h(xπ)

– By prop: B (xπ) = (yx−1)Aut (xπ)

– Standard: Aut (xπ) = xAut (π)x−1

– Finally:

B (xπ) = (yx−1)(xAut (π)x−1) = yAut (π)x−1 = B (π)x−1.

• Only thing used is the canonical property!

2.2 Group action morphisms

• What is a group action morphism? Why do we want them?

• Let Ω and Γ be Sn-spaces

• Defn: Sn-morphism is function φ : Ω→ Γ s.t.

(∀α ∈ Ω) (∀x ∈ Sn)φ(xα) = xφ(α).

3



• B an example.

• Why? Two fold. Suppose that

f : Ω→ P (Sn)

s.t.
(∀x ∈ Sn) (∀α ∈ Ω) f(xα) = f(α)x−1

• Prop: ∀α ∈ Ω, ∀x ∈ Sn
f(α)α = f(xα)(xα).

• Set at least as large as the orbit.

• Prop: Let α ∈ Ω; fix x ∈ f(α).

xAut (α) ⊆ f(α).

• We can retrieve the elements of Aut (α) from f(α).

• Nauty constructs and searches such a set. Hopefully a small one.

2.3 Split, Choose, Refine

• Some important Sn-morphisms.

• Split: take an ordered partition; force an element into a singleton
cell.

S : Πn × [n]→ Πn

• Important: S(α, π) @ π.

• Choose: Choose a non-singleton cell from a coarse ptn.

C : Ω× Πn\Φn → P ([n])

• Refine: Split zero or more cells in place.

R : Ω× Πn → Πn.

• Important: R(α, π) v π.

• All domains and codomains form Sn-spaces.

• All three functions must be Sn-morphisms.

4



3 Tree function

• Function
T : Ω× Πn → P (Ω× Πn)

s.t.
T (α, π) = {(α,R(α, π))}

if R(α, π) is fine; otherwise,

T (α, π) ={(α,R(α, π))}
⋃  ⋃

v∈C(α,R(α,π))

T (α,S(R(α, π), v))

 .

• Prop: T is an Sn-morphism:

∀(α, π) ∈ Ω× Πn, ∀x ∈ Sn

xT (α, π) = T (xα, xπ).

• Prop: At least one (β, σ) in T (α, π) such that σ is fine.

4 Harvesting what we need

4.1 Grabbing Permutations

• Turn the tree set into a set of permutations.

• Define

L : P (Ω× Πn)→ P (Sn)

A 7→ {x ∈ Sn | (∃(α, π) ∈ S) B (π) = {x} }

• Prop: L is an Sn-morphism:

∀A ∈ P (Ω× Πn), ∀x ∈ Sn

L (xA) = L (A)x−1.

5



• Cor: L◦T is an Sn-morphism:

∀(α, π) ∈ Ω× Πn, ∀x ∈ Sn

L◦T (xα, xπ) = L◦T (α, π)x−1.

(Morphisms compose to morphisms)

• L ◦ T is just an instance of f earlier.

4.2 Canonical Map

• For our canonical map:

∀(α, π) ∈ Ω× Πn, ∀x ∈ Sn

L◦T (α, π)(α, π) = L◦T (xα, xπ)(xα, xπ).

• So select a unique representative from the set

L◦T (α, π)(α, π)

(constant across entire orbit).

4.3 Automorphism Group

For our automorphism group: Fix x in L◦T (α, π); we have

xAut ((α, π)) ⊆ L◦T (α, π).

4.4 Let’s be realistic

• Need the set L◦T (α, π) as small as we can get it.

• R is the key to better performance.

• Other “pruning” is possible when we get into algorithmic mode: uses
auts that have already been found.

• Base and strong generating set methods need to be introduced.

6



5 Where to?

There are some opportunities to generalise:

• What if we are not acting on Ω with Sn?

• Group action morphisms are sufficient – but are they necessary?

• More on these next week.

7


