Wiggles and finitely discontinuous k-to- 1 functions between graphs

A.J.W. Hilton

Abstract. The graphs we shall consider are topological graphs - that is they lie in \mathbb{R}_{3} and each edge is homeomorphic to $[0,1]$. If a graph is simple, that is it has no loops or multiple edges, then each edge may be taken to be a straight line joining the two vertices at the ends of the edge.

A function is k-to- 1 if each point in the codomain has precisely k preimages in the domain. Given two graphs G and H, and an integer $k \geq 1$, Jo Heath proved the surprising result that there exists a finitely discontinuous k-to- 1 function f from G onto H if and only if

$$
\begin{aligned}
\quad|E(G)|-|V(G)| & \leq k(|E(H)|-|V(H)|) \quad \text { if } \quad k \geq 3, \\
\text { and } \quad|E(G)|-|V(G)| & =2(|E(H)|-|V(H)|) \quad \text { if } \quad k=2 .
\end{aligned}
$$

Such functions often involve a limit construction, which we call a wiggle. In this talk, I shall discuss a simple formula (related to Jo Heath's result) which counts the number of wiggles.

I shall also discuss the special case when the finitely discontinuous function f can actually be chosen to be continuous. Much of the talk will be joint work from the past with Jo Heath, or current work with my student, John Gauci.

