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1 Derangements

A derangement, or fixed-point-free permutation, is a permutation on a set Ω
which leaves no point fixed.

Dante Alighieri, in the Inferno (the first part of the Divine Comedy) said,

For [Luck] your science finds no measuring-rods; . . .
Her permutations never know truce nor pause

Today we do have a measuring rod for luck, namely the theory of probability;
and we know also that about 36.79% (1/e) of random permutations have no
“truce or pause”, that is, no fixed points – a standard result of enumerative
combinatorics.

However, we want to know about derangements, not in the symmetric
group, but in arbitrary groups of permutations. Their existence and enumer-
ation has applications in many other fields; I recommend to you Jean-Pierre
Serre’s paper “On a theorem of Jordan”, in Bull. Amer. Math. Soc. 40 (2003),
429–440. The theorem of Jordan asserts that a transitive permutation group
contains a derangement; we will see why soon.

2 Orbit-counting lemma and Jordan’s theo-

rem

Let fix(g) be the number of fixed points of the permutation g (so that g is
a derangement if and only if fix(g) = 0). The celebrated “Orbit-counting
Lemma” asserts:
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Theorem 1 Let G be a permutation group on a finite set Ω. Then the
number of orbits of G is equal to the average number of fixed points of G,
that is,

1

|G|
∑
g∈G

fix(g).

I will give a proof, since we will use the technique again. We count in
two ways the number of pairs (g, x) with g ∈ G, x ∈ Ω, such that xg = x.
Choosing g first, this sum is clearly equal to∑

g∈G

fix g.

Now choose x first. According to the Orbit–Stabiliser Theorem, the num-
ber of elements g fixing x (the order of the stabiliser of x) is equal to |G|
divided by the size of the orbit of G containing x. This means, that the sum,
over all points x in a given G-orbit, of | StabG(x)|, is equal to |G|. So the
sum over all points x ∈ Ω is |G| times the number of orbits.

Equating the two expressions proves the theorem.

Said otherwise, we form a bipartite graph on the vertex set G ∪ Ω with
an edge from g to x whenever g fixes x. The proof of the Orbit-Counting
Lemma simply involves counting edges of this graph. Mark Jerrum showed
that, starting anywhere in Ω, the random walk with an even number of steps
(returning to Ω) has limiting distribution which is uniform on the orbits of
G – a useful tool if there are some very small orbits!

Jordan’s theorem is a corollary of this:

Theorem 2 A transitive finite permutation group on more than one point
contains a derangement.

For the average number of fixed points of the elements of the group is 1,
while the identity fixes more than one point; so some element fixes less than
one point.

As Serre remarks, this theorem was quantified by Arjeh Cohen and me:

Theorem 3 Let G be a transitive finite permutation group on a set of n
points, where n > 1. Then the number of derangements in G is at least
|G|/n.
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To prove this, consider the sum

1

|G|
∑
g∈G

(fix(g)− 1)(fix(g)− n).

Now fix(g)2 is the number of fixed points of G acting on the set Ω2 of
ordered pairs of points of Ω; the group has at least two orbits on this set
(since pairs (x, x) and (x, y) with y 6= x lie in different orbits), so the average
is at least two. Thus

1

|G|
∑
g∈G

(fix(g)2 − (n + 1) fix(g) + n) ≥ 2− (n + 1) + n = 1.

On the other hand, every derangement contributes n to the sum; the identity
and the elements with just one fixed points contribute 0; and the contribution
of any other element is negative. So we have

1

|G|
∑
g∈G

(fix(g)− 1)(fix(g)− n) ≤ dn,

where d is the number of derangements. So d ≥ |G|/n, as claimed.

We see that the bound is met if and only if

• G has just two orbits on Ω2 (that is, G is 2-transitive);

• no non-identity element fixes more than one point.

In other words, G is sharply 2-transitive.

3 Variants

A remarkable variant of Jordan’s Theorem was found by Bill Kantor, and
appears in a paper of Fein, Kantor and Schacher, J. Reine Angew. Math. 328
(1981), 39–57. Remarkably the paper is on relative Brauer groups of finite
extensions of global fields.

Theorem 4 A transitive finite permutation group on more than one point
contains a derangement of prime power order.
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The small addition to Jordan’s theorem changes things completely. A
sketch of the proof: by elementary means, we can reduce to the case when
the group is simple and acts primitively (that is, the stabiliser of a point is a
maximal subgroup); the Classification of Finite Simple Groups gives us a list
of primitive groups; then it is possible to go through the list and show that,
if G is a finite simple group and H a maximal subgroup, then G contains an
element of prime power order which lies in no conjugate of H.

No “elementary” proof is known.

Another, much more elementary, variant arose in combinatorial enumer-
ation.

Theorem 5 Let G be a finite transitive permutation group. Then the average
number of fixed points of all the elements in a coset Gh of G (in the symmetric
group) is equal to 1.

The proof is as before: we count pairs (g, x) for which xgh = x, that is,
xg = xh−1. Again this sum is equal to |G| times the average number of fixed
points of elements of Gh; also, since the elements mapping x to xh−1 form
a coset of the stabiliser of x, there are |G|/|Ω| such g for each x ∈ Ω, so |G|
pairs (g, x) altogether.

4 Finding a derangement

It is known that the problem of deciding whether a subgroup G of the sym-
metric group of degree n (given by generating permutations) contains a de-
rangement is NP-complete.

For transitive groups, the decision problem is trivial, by Jordan’s theorem.
But how hard is it to actually find a derangement?

Given generators for G, we can in polynomial time find a base and a
strong generating set for G. Having this, it is easy to choose a (uniform)
random element of G. Now by the quantification of Jordan’s theorem, the
probability that this element is not a derangement is at most 1 − 1/n, so
the probability that we don’t find a derangement when we choose m random
elements is at most (1− 1/n)m, which is exponentially small if m = cn2, for
example. So there is a very easy randomized polynomial-time algorithm.

Some time ago, I asked for a deterministic polynomial-time algorithm.
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Emil Vaughan pointed out that we can use Kantor’s work to settle this.
The reductions in Kantor’s theorem, and the constructions which produce
the required derangements, can all be done in polynomial time. However,
the resulting algorithm is rather complicated, and requires the Classification
of Finite Simple Groups to prove its correctness.

So I was delighted when Vikraman Arvind from Chennai sent me a
preprint he had just posted on the arXiv (article id 1301.0379), giving an
elementary and simple algorithm. In the rest of this note, I will give his
algorithm.

5 Arvind’s algorithm

We saw that the average number of fixed points of an element in a coset of a
transitive group is 1. This result cannot be extended to intransitive groups;
but the key to Arvind’s algorithm is the following observation:

Theorem 6 Let G be a permutation group on a finite set Ω, and h any
permutation on Ω. Then the average number of fixed points of elements in
the coset Gh can be computed in polynomial time.

We follow the same argument as before, counting pairs (x, g) with xgh =
x, or xg = xh−1. If xh−1 is not in the G-orbit of x, there are no such elements;
otherwise, the elements form a coset of the stabiliser of x, so their number
is |G| divided by the size of the G-orbit of x. So the average is obtained by
summing, over all x for which xh−1 lies in the G-orbit of x, the reciprocal of
the size of this G-orbit.

Now from this theorem, it is clear that the following is the case. Let G
be a permutation group on Ω, and K a subgroup of G. Then the coset Gh
splits into cosets of K; if we know coset representatives for K in G then, in
polynomial time, we can choose a coset of K contained in Gh in which the
average number of fixed points is at most the average over all of Gh.

Now start with our transitive group G. At any step in the algorithm, we
will have a subgroup K of G (the stabiliser of a number of points) and a
distinguished coset Kh of K. We start with the subgroup G and coset G.

Choose a point and compute its stabiliser K ′ in K. Then the
coset Kh splits into cosets of K ′; choose one such that the average
number of fixed points is at most the average over Kh.
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Eventually the coset becomes a single element; stop at that point.
Now in the original group G, the average number of fixed points is 1;

it decreases (non-strictly) as the algorithm runs. We can assume that it
decreases strictly at the first step. For the stabiliser of a point has at least
two orbits, so the average over this subgroup is 1; so there is another coset
in which the average is strictly less than 1.

So the single element at the end of the algorithm has less than one fixed
point; that is, it is the required derangement.
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