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1. We can regard a matrix as:

• a linear algebraic object, i.e. a representation in particular coordinates of some linear map be-
tween vector spaces. We then focus on properties invariant under coordinate transformation.
E.g. for L(Rn → Rn) isomorphism = similarity and we are interested in the characteristic

polynomial, spectrum and other such invariants. Given A,B ∈ Rn×n, we write A
sim
∼ B for

A =M−1BM. Given A ⊆ Rn×n we write

Sim(A) = {B : B
sim
∼ A ∈ A} , SpecA =

⋃
A∈A

SpecA .

• a combinatorial object; we define various measures of structure, perhaps via other discrete
objects. The natural notion of isomorphism is no longer similarity, but depends on our
characterisation of structure.

2. What might we mean by structure? For example, for A ∈ Rn×m, we might identify “structure”

with “sign-pattern”: we define a (−1, 0, 1) matrix signA and say that A
sign
∼ B if signA = signB.

Here the equivalence class [A] is its qualitative class:

Q(A) = {B ∈ Rn×m : B
sign
∼ A}

(Q(A), its closure, is also important.) For square matrices we might define isomorphism via:
A ∼= B if signA = T t(signB)T for some permutation matrix T .

3. Given A ∈ Rn×n, define GA, the signed digraph of A, via its adjacency matrix:

A(GA) = signA .

Clearly GA ∼= GB (in the natural sense) iff A ∼= B (in the above sense).

4. So, in general, combinatorial isormorphism is neither necessary nor sufficient for linear algebraic

isomorphism: A
sign
∼ B 6⇒ A

sim
∼ B and A

sim
∼ B 6⇒ A ∼= B. I.e., there are non-similar matrices with

identical sign-patterns and similar matrices with non-permutation-similar sign-patterns.

5. The goal here: use structure to make claims about spectrum. Why? Original motivation from
dynamical systems and bifurcation theory; we may be able to make claims about the possibility of
various local bifurcations, or even global claims about the injectivity of functions. Structural claims
are “robust” (satisfied by families of models); and precise as the rely on finite exact computations.

An example and some basic notions

6. A circuit (directed cycle) in GA is odd if it contains an odd number of positive arcs (we’ll need
to generalise later, and see then that “odd” = “1-odd” in the more general sense). A ∈ Rn×n is
sign nonsingular (“A ∈ SNS”) if all matrices in Q(A) are nonsingular.

7. For A ∈ Rn×n with Aii > 0, A ∈ SNS if and only if all circuits in GA are odd (“GA ∈ ODD”).
This is a “structure to spectrum” result: if A ∈ Rn×n with Aii > 0 then

GA ∈ ODD ⇔ SpecQ(A) ⊆ C\{0}
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8. Actually we can do better. A ∈ Rn×n is a P-matrix (“A ∈ P”) if all its principal minors are
positive. A is a P0-matrix (“A ∈ P0”) if all its principal minors are nonnegative.

9. This is a structural characterisation (Sim(P) 6⊆ P), with spectral implications: by a result of
Kellogg [1], the spectra of n× n P-matrices avoid the following closed “wedge” in C.

F(n) = {reiθ ∈ C : |θ− π| ≤ π/n} .

10. Easy: (A ∈ SNS, Aii > 0) ⇔ Q(A) ⊆ P. So we really have for A ∈ Rn×n with Aii > 0:

GA ∈ ODD ⇔ Q(A) ⊆ P ⇔ Spec(Q(A)) ⊆ C\F(n).

More generally for A ∈ Rn×n (with diagonal elements not necessarily positive):

GA ∈ ODD ⇔ Q(A) ⊆ P0 ⇔ Spec(Q(A)) ⊆ C\F(n).

11. Remark: the implication that (assuming positive diagonal entries) Spec(Q(A)) ⊆ C\F(n) ⇒
Q(A) ⊆ P takes a little proof: in fact it can be shown that (A ∈ Rn×n, Aii > 0, Q(A) 6⊆ P) ⇒
0 ∈ Spec(Q(A)). Similarly, it is can be shown that (A ∈ Rn×n, Q(A) 6⊆ P0), ⇒ Spec(Q(A))
intersects the interior of F(n).

Beyond qualitative classes

12. Many matrix-sets other than qualitative classes arise in applications. E.g.

(a) (Assume AB is valid): AQ(B), Q(A)Q(B) (may/may not be a subset of a qualitative class).

(b) Given A ∈ Rn×n, define Qk(A) = {Bk : B ∈ Q(A)}. [Note: Q2(A) ⊆ Q(A)Q(A)]
(c) More generally, given a matrix set A, define Ak = {Ak : A ∈ A}. [Note: A2 ⊆ AA]

13. Example. Suppose A2 ⊆ P. Then SpecA ⊆ C\
√
F(n). In particular, SpecA misses the

imaginary axis. If A is sign-symmetric, then A2 ∈ P0 and SpecA misses the nonzero imaginary
axis. [Sign-symmetric: A[α|β]A[β|α] ≥ 0, ∀ α,β, i.e., no pair of oppositely placed minors has
negative product.]

14. Example. The sets AQ(At) arise in the study of systems of chemical reactions. There are now
a variety of necessary and sufficient conditions on A for AQ(At) ⊆ P0, and a variety of other
theory allowing claims about these sets.

Generalising the basic sign nonsingularity result

15. Given matrices A,B such that AB is square we define the signed bipartite digraph GA,B via

A(GA,B) =

(
0 signA

signB 0

)
.

16. Note that GA,At can be seen as a signed undirected graph, the bipartite graph of A.

17. This generalises to longer products, e.g. GA,B,C is defined via

A(GA,B,C) =

 0 signA 0
0 0 signB

signC 0 0

 .
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18. We generalise the notion of odd: a circuit C in GA1,...,Ak
is “k-odd” if |C|/k + (number of −ve

arcs in C) is odd (note: |C| = 0 mod k). GA1,A2,...,Ak
∈ k-ODD means all circuits in GA1,A2,...,Ak

are k-ODD. We have [2]:

GA1,A2,...,Ak
∈ k-ODD ⇔ Q(A1)Q(A2) · · · Q(Ak) ⊆ P0

19. Remark. For some computations, arcs in these digraphs may also be labelled with the absolute
value of their associated matrix entry.

Exterior algebra

20. The vector space ΛkRn (the kth exterior power of Rn) comprises finite formal linear combinations
of elements of the form

u1 ∧ u2 ∧ . . .∧ uk

where ui ∈ Rn, and “∧” is the wedge-product (a multilinear, alternating, product). A basis for
Rn naturally determines a basis for ΛkRn. A ∈ L(Rn → Rn) determines transformations from
ΛkRn to ΛkRn:

(a) A(k) : ΛkRn → ΛkRn defined by A(k)(u1 ∧ · · · ∧ uk) = (Au1) ∧ · · · ∧ (Auk). [The “kth
exterior power” or “kth multiplicative compound” of A].

(b) A[k] : ΛkRn → ΛkRn defined by A[k](u1∧ · · ·∧uk) =
∑k

i=1 u1∧ · · · (Aui)∧ · · ·∧uk. [The
“kth additive compound” of A.]

21. Remark. We can abbreviate some statements using compound matrices. E.g., A is a P-matrix
iff (A(k))ii > 0 for all i, k; A is a P0-matrix iff (A(k))ii ≥ 0 for all i, k; A is sign-symmetric
if (A(k))ij(A

(k))ji ≥ 0 for all i, j, k. The latter is a sufficient condition for A2 ∈ P0, since
(A2)(k) = A(k)A(k) and so [(A2)(k)]ii =

∑
`(A

(k))i`(A
(k))`i.

22. If SpecA = {λ1, . . . , λn} (a multiset).

(a) SpecA(k) = {
∏

i λσi}σ⊆{1,...,n}, |σ|=k. (All k-fold products of distinct eigenvalues.)

(b) SpecA[k] = {
∑

i λσi}σ⊆{1,...,n}, |σ|=k. (All k-fold sums of distinct eigenvalues.)

23. By analogy with Qk(A) = {Bk : B ∈ Q(A)}, we have Q(k)(A) = {B(k) : B ∈ Q(A)}, etc.

24. Example. Given A ⊆ Rn×n define A[k] = {A[k] : A ∈ A}. What would A[2] ⊆ P (resp. A[2] ⊆ P0)
imply about SpecA? For i 6= j, λi + λj 6∈ F(n) (resp. λi + λj 6∈ int F(n)). In particular there are
no nonreal eigenvalues in the closed (resp. open) left half-plane of C. What would A,A[2] ⊆ P
(resp. A,A[2] ⊆ P0) imply? A is positive stable (resp. positive semistable).

Graphs from the second additive compound of a product [3]

25. Given A,Bt ∈ Rn×m define the signed bipartite digraph on
(
n
2

)
× nm vertices G

[2]
A,B as follows.

One vertex set consists of all pairs (i, j) ∈ {1, . . . , n}2 with i < j (represented as ij); one consists
of all pairs (i, j) ∈ {1, . . . ,m} × {1, . . . , n} (represented as ij). Arc (k`, ij) exists if ` ∈ {i, j} and
A{i,j}\`,k 6= 0; arc (ij, k`) exists if ` ∈ {i, j} and Bk,{i,j}\` 6= 0. Thus each arc is associated with
an entry in either A or B. Arc (k`, ij) or (ij, k`) takes (resp. reverses) the sign of its associated
matrix entry if ` = i (resp. ` = j). Arcs may be labelled with the absolute value of their associated
matrix entry. Oppositely directed pairs of arcs of the same sign are generally merged into a single
undirected edge.
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26. As before, the special case G
[2]
A,At can be regarded as a signed bipartite graph.

27. Example: if A = (1, 1, 1, 1)t, then G
[2]
A,At is:

11

12

13

14

12

13

14

23

24

34

28. The key point is this: if G
[2]
A,B ∈ 2-ODD then (AB)[2] ∈ P0. For example, consider the sign

pattern A and G
[2]
A,I:

A =


1 1 0 0

−1 1 1 0

0 0 1 1

1 0 0 1

 23

13

13

23

24

14

14

2434 34

31 12
12

42

41

G
[2]
A,I ∈ 2-ODD so Q[2](A) ⊆ P0, so SpecQ(A) ⊆ {x + iy ∈ C : y = 0 or x ≥ 0}. [Incidentally

GA,I 6∈ 2-ODD and A is not necessarily positive semistable.]

29. Certain properties of G
[2]
A,B beyond the parity of cycles can be important. For example, if GC,Ct is

acyclic, then G
[2]
C,Ct has a property which implies for all A,Bt ∈ Q(C): AB, (AB)[2] ∈ P0, and so

AB is positive semistable.

30. There are many other results using G
[2]
A,B, some involving computations on edge-labels, and leading

to conclusions about the spectrum of the product AB.

31. Conclusions. This talk just scratches the surface of combinatorial approaches to claims about
matrix spectra.
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