5 Unitary groups

In this sectionwe analysethe unitary groupsin a similar way to the treatment
of the symplecticgroupsin the lastsection.Note thatthe treatmenthereapplies
only to theisometrygroupsof Hermitianformswhich arenot anisotropic.Soin
particular the Lie groupsSU(n) overthe complex numbersarenotincluded.

LetV beavectorspaceover F, o anautomorphisnof F of order2, andB a
non-dgenerater-Hermitianform onV (thatis, B(y,Xx) = B(x,y)? for all x,y € V).
It is oftencorvenientto denotec® by ¢, for any elementc € F.

Let Ry denotethefixedfield of F. Therearetwo importantmapsfrom F to Fy
associateavith o, thetraceandnormmaps.definedby

Tr(c) =c+Tc,
N(c)=c-T.

Now Tr is an additve homomorphism(indeed,an Fy-linear map),andN is a
multiplicative homomorphismAs we have seentheimageof Tr is Fy; thekernel
is thesetof ¢ suchthatc® = —c (whichis equalto F if the characteristigs 2 but
not otherwise).

Supposehat F is finite. Thenthe orderof F is a squaresayF = GF(¢?),
andFy = GF(q). Sincethe multiplicative group of Fy hasorderq— 1, a non-
zeroelementc € F liesin Fy if andonly if ¢c81 = 1. This holdsif andonly if
c = a%t! for somea € F (asthe multiplicative group of F is cyclic), in other
words,c = a-a= N(a). Sotheimageof N is the multiplicative groupof Fy, and
its kernelis the setof (q+ 1)strootsof 1. Also, thekernelof Tr consistsof zero
andthesetof (q— 1)strootsof —1, thelatterbeingacosetof FJ* in F*.

TheHermitianform on a hyperbolicplanehastheform

B(x,y) = x1¥2 + y1%2.

An arbitraryHermitianformedspacds the orthogonaldirectsumof r hyper
bolic planesandananisotropicspace We have seenthat,up to scalammultiplica-
tion, thefollowing hold:

(a) overC, ananisotropicspaceis positive definite,andthe form canbe taken
to be
B(X,Y) = X1y1 + -+ X¥s;

(b) overafinite field, an anisotropicspacehasdimensionat mostone;if non-
zero,theform canbetakento be

B(X7 y) = Xy.
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5.1 Theunitary groups

Let A be the matrix associatedvith a non-dgjenerateHermitianform B. Then
A= KT, andthe isometrygroupof B (the unitary group U(V, B) consistsof all

invertiblematricesP which satisfyﬁTAP =A.
SinceA is invertible,we seethat

N(detP)) = detP ') de{(P) = 1.

Sodet(P) € Fy. Moreover, ascalarmatrix cl liesin theunitarygroupif andonly
if N(c) =cc=1.

The specialunitary group SU(V, B) consistsof all elementsof the unitary
groupwhich have determinantl (thatis, SU(V,B) = U(V,B) N SL(V)), andthe
projectivespecialunitary groupis thefactorgroupSU(V, B) /J (V,B) N Z, where
Z is thegroupof scalamatrices.

In thecasewhereF = GF(g?) is finite, we canunambiguouslyvrite SU(n, g)
andPSUn,q), sinceup to scalarmultiplicationthereis a uniqueHermitianform
on GF(g?)" (with rank | n/2| andgermof dimensiorD or 1 accordingasn is even
or odd). (It would be morelogical to write SU(n, ¢?) and PSUn, ¢?) for these
groups;we have usedthe standardyroup-theoreticornvention.

Proposition 5.1 (a) |U(n,q) = g" ™92, (d — (=1)").

(b) [SU(n,a)| =[U(n,a)l/(q+1).
(c) |PSUn,q)| =|SU(n,q)|/d, wheed = (n,q+1).

Proof (a)WeuseTheorenB.17,with eithern=2r,e= -1, orn=2r+1,e=3,
andwith q replacedby g2, notingthat,in thelattercase,|Go| = g+ 1. It happens
thatboth casescanbe expressedy the sameformula! On the sametheme,note
that, if we replace(—1)' by 1 (andq+1 by g— 1 in parts(b) and (c) of the
theorem)we obtainthe ordersof GL(n,q), SL(n,q), andPSL(n, g) instead.

(b) As we noted,detis ahomomorphisnirom U(n, q) ontothegroupof (q+
1)strootsof unity in GF(g?)*, whosekernelis SU(n, q).

(c) A scalarcl belongsto U(n, q) if ¢! =1, andto SL(n,¢?) if c" = 1. So
1ZNSL(n,g?)| = d, asrequired.

We concludethis sectionby consideringunitary trans\ections,thosewhich
presere a Hermitianform. Accordingly, let T : x — X+ (xf)a be atrans\ection,

58



whereaf = 0. We have

B(xT,yT) = B(x+(xf)ay+(yf)a)

= B(xy)+ (xf)B(y,a)+ (yf)B(x,a) + (xf)(yf)B(a a).

SoT isunitaryif andonlyif thelastthreetermsvanishfor all x,y. Puttingy =awe
seethat(xf)B(a,a) = 0 for all x, whence(sincef # 0) we musthave B(a, a) = 0.
Now choosingy suchthatB(y,a) = 1 andsettingA = (yf), we havexf = AB(x,a)
for all x. Soaunitarytrans\ectionhastheform

X— X+ AB(x,a)a,

whereB(a,a) = 0. In particulay ananisotropicspaceadmitsno unitarytrans\ec-
tions. Also, choosingx andy suchthatB(x,a) = B(y,a) = 1, wefind thatTr(A) =
0. Corverselyfor ary A € ker(Tr) andary a with B(a,a) = 0, theabove formula
definesa unitarytrans\ection.

5.2 Hyperbalic planes

In this sectiononly, we usethe corventionthatU(2, Fy) meanghe unitarygroup
associateavith a hyperbolicplaneover F, ando is theassociatedield automor
phism,having fixedfield F.

Theorem 5.2 SU(2, ) = SL(2, Fp).

Proof Wewill shav, morewer, thattheactionsof the unitarygrouponthepolar
spaceandthatof the specialineargroupon the projectve spacecorrespondand
thatunitarytrans\ectionscorrespondo trans\ectionsin SL(2,F). LetK = {c €
F : c+t= 0} bethekernelof thetracemap;recallthattheimageof thetracemap
is Fo.

With the standardhyperbolicform, we find thata unitary matrix

S

mustsatisfyP' AP= A, where
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Hence
ac+ac=0, bc+ad=1 bd+bd=0.

In addition,we require thatdet P) = 1, thatis, ad — bc= 1.
Fromtheseequationsve deducehatb+b = c+t = 0, thatis, b, c € K, while
a—a=d—d=0,thatis,a d ¢ F.
Choosea fixed elementu € K. ThenA € K if andonly if uh € Fy. Also,

u—1 e K. Hencethe matrix
+ ([ a ub
b= (u—lc d )

belonggo SL(2, Fpy). Conversely any matrixin SL(2, Fy) givesriseto amatrixin
SU(2,Fy) by theinversemap. Sowe have a bijectionbetweerthetwo groups.It
is now routineto checkthatthe mapis anisomorphism.

Representhe pointsof the projective line over F by F U {0} asusual.Recall
thate isthepoint(rank1 subspacegpannedby (0, 1), while cis thepointspanned
by (1,c). We seethatw is flat, while cis flatif andonly if c4+t = 0, thatis, c € K.
Sothe mapx +— X takesthe polar spacefor the unitary groupontothe projective
line over Fy. It is readily checled that this maptakesthe action of the unitary
groupto thatof thespeciallineargroup.

By transitwvity, it is enoughto considerthe unitary trans\ectionsx — x+
AB(x,a)a, wherea= (0,1). In matrixform, theseare

1 A
PZ(O 1)’
T 1 uA
"=(s 1)

whichis atrans\ectionin SL(2, Fp), asrequired. =

with A € K. Then

In particular we seethatPSU 2, Fy) is simpleif |Fo| > 3.

5.3 Generation and simplicity

We follow the now-familiar pattern.First we treattwo exceptionalfinite groups,
thenwe shav thatunitary groupsaregeneratedby unitary trans\ectionsandthat
mostare simple. By the precedingsection,we may assumehat the rankis at
least3.
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Thefinite unitary groupPSU3, q) is a 2-transitive group of permutationof
theq® + 1 pointsof the correspondingolar space(sinceary two suchpointsare
spannedy a hyperbolicpair) and hasorder (q° + 1)g3(¢? — 1) /d, whered =
(3,9+1). Moreover, ary two pointsspana line containingg+ 1 pointsof the
polarspace.The correspondingieometryis calleda unital.

For q = 2, the group hasorder 72, andso is soluble. In fact, it is sharply
2-transitive auniquegroupelementarriesary pair of pointsto ary other

Exercise5.1 (a) Shaw thattheunital associateavith PSU3, 2) is isomorphic
to theaffineplaneover GF(3), definedasfollows: thepointsarethevectors
in a vectorspaceV of rank 2 over GF(3), andthe lines are the cosetsof
rank 1 subspacesf V (which, over the field GF(3), meansthe triples of
vectorswith sumO).

(b) Shaw thattheautomorphisngroupof theunitalhasthestructure3? : GL(2,3),
where3? denotesan elementaryabeliangroupof this order(the translation
groupof V) and: denotesemidireciproduct.

(c) Shaw that PSU3,2) is isomorphicto 37 : Qg, whereQg is the quaternion
groupof order8.

(d) Shav thatPSU3,2) is notgeneratedby unitarytrans\ections.

We next considerthe groupPSU4, 2), andoutlinethe proof of the following
theorem:

Theorem 5.3 PSU4,2) = PS4, 3).

Proof Obsenre first thatboththesegroupshave order25920. We will construct
a geometryfor the groupPSU4, 2), andusethe technicalresultsof Section4.4
to identify it with the generalisedjuadrangldor PSf4,3). Now it hasindex 2
in thefull automorphisngroupof this geometryasalsodoesPSg4, 3), whichis
simple;sothesetwo groupsmustcoincide.

Thegeometryis constructedsfollows. LetV beavectorspaceof rank4 over
GH4) carryinga Hermitianform of polarrank2. The projectve spaceP&(3,4)
derivedfromV has(4*—1)/(4— 1) = 85points,of which (42— 1)(4%2+1) / (4—
1) = 45 arepointsof the polar space andthe remaining40 are pointson which
the form doesnot vanish(spannedy vectorsx with B(x,x) = 1). Notethat40=
(3*—1)/(3—1) is equalto the numberof pointsof the symplecticgeneralised
quadranglever GF(3). Let Q denotethis setof 40 points.
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Define an F-line to be a setof four pointsof Q spanneddy the vectorsof
an orthonormalbasisfor V (a setof four vectorsxy, xo, X3, x4 with B(X;,x) = 1
andB(x;,Xj) = 0 for i # j). Note thattwo orthogonalpoints p,q of Q spana
non-dgyenerate2-spacewhich is a line containingfive points of the projectve
spaceof which threeare flat and the othertwo belongto Q. Then{p,q}~ is
alsoanon-dgyenerat@-spacecontainingtwo pointsof Q, which complete{ p,q}
to anF-line. Thus,two orthogonalpointslie on a uniqueF-line, while two non-
orthogonapointslie onnoF-line. It is readilychecledthat,if L = {p1, p2, p3, pa}
is anF-line andq is anothemoint of Q, then p hasthreenon-zerocoordinatesn
the orthonormabasiscorrespondingo L, soq is orthogonako a uniquepoint of
L. Thus,the pointsof Q andthe F-linessatisfycondition(a) of Section4.4; that
is, they form ageneralisedjuadrangle.

Now considertwo pointsof Q which are not orthogonal. The 2-spacethey
spanis degeneratewith a radicalof rank 1. So of the five pointsof the corre-
spondingprojectie line, four lie in Q andone (the radical)is flat. Setsof four
pointsof thistype (which areobviously determinedy ary two of theirmembers)
will bethe H-lines. It is readily checled thatthe H-lines do indeedarisein the
mannerdescribedn Section4.4,thatis, asthe setsof pointsof Q orthogonalo
two givennon-orthogonapoints. Socondition(b) holds.

Now apointp of Q liesin four F-lines,whoseunionconsistf thirteenpoints.
If g andr aretwo of thesepointswhich do notlie onanF-linewith p, thenq and
r cannotbe orthogonalandsothey lie in anH-line; sincep andq areorthogonal
to p, so arethe remainingpointsof the H-line containingthem. Thuswe have
condition(c). Now (d) is easilyverifiedby counting,andtheproofis complete. =

Exercise5.2 (a) Giveadetailedproofof theaboseisomorphism.

(b) If you arefamiliar with a computeralgebrapackageyerify computation-
ally thatthe above geometryfor PSU(4, 2) is isomorphicto the symplectic
generalisedjuadrangldor PSr(4,3).

In our generatiorandsimplicity resultswe treattherank 3 caseseparatelyln
therank3 casetheunitarygroupis 2-transitve on the pointsof the unital.

Theorem 5.4 Let(V,B) bea unitaryformedspaceof Witt rank1, with rk(V) = 3.
Assumehatthefield F is not GF(22).

(a) SU(V,B) is geneatedby unitary transvections.

(b) PSUV,B) is simple
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Proof We excludethe caseof PSU3,2) (with F = GF(2?), considereckarlier
Replacingthe form by a scalarmultiple if necessarywe assumehatthe germ
containsvectorsof norm1. Take sucha vectorassecondasisvectotr wherethe
first andthird area hyperbolicpair. Thatis, we assumehattheform is

B((X1,X%2,X3), (Y1,Y2,¥3)) = X1Y3 + X2¥2 + X3V,

sotheisometrygroupis

{(P:P'AP=A}
where
0 01
A=[10 1 0
1 00
Now we checkthatthegroup

1 -a b

Q= 0 1 a|:N@+Trb)=0
0O 0 1

is asubgroumf G = SU(V, B), andits derivedgroupconsistf unitarytrans\ec-

tions(theelementsvith a = 0).

Next we shav thatthe subgroupT of V generatedy the trans\ectionsin G
is transitive on the setof vectorsx suchthatB(x,x) = 1. Let x andy be two such
vectors. Supposdirst that (x,y) is nondegenerate.Thenit is a hyperbolicline,
anda calculationin SU(2, Fp) givestheresult. Otherwisethereexistsz suchthat
(x,2) and(y, zy arenond@eneratesowe cangetfrom x to y in two steps.

Now the stabiliserof sucha vectorin G is SU(x", B) = SU(2, ), whichiis
generatedby trans\ections;andevery cosetof this stabilisercontainsa trans\ec-
tion. SoG is generatedby trans\ections.

Now it follows thatthetrans\ectionslie in G, andlwasava’s Lemma(Theo-
rem2.7)shavsthatPSL(V,B) issimple. =

Exercise 5.3 Completethedetailsin theabove proofby shaving

(a) thegroupSU(2, Fy) actstransitively on the setof vectorsof norm1 in the
hyperbolicplane;

(b) giventwo vectorsx,y of norm1 in arank 3 unitary spaceasin the proof,
either(x,y) is a hyperbolicplane,or thereexistsz suchthat(x, z) and(y, 2)
arehyperbolicplanes.
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Theorem 5.5 Let(V, B) bea unitary formedspacewith Witt rankat least2. Then
(a) SU(V,B) is geneatedby unitary transvections.
(b) PSUV,B) is simple

Proof We follow the usual pattern. The agumentin the precedingtheorem
shows part (a) without changeif F # GF(4). In the excludedcase,we know
thatPSU4,2) = PS4, 3) is simple,andsois generatedby ary conjugag class
(in particular theimagesof thetrans\ectionsof SU(4,2)). Theninductionshows
the resultfor higherrank spacesover GF(4). Again, the agumentin 3 dimen-
sionsshaws that trans\ectionsare commutatorsthe actionon the pointsof the
polarspaces primitive; andsolwasava’s Lemmashovsthe simplicity. =
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