
3 Polarities and forms

3.1 Sesquilinearforms

We saw in Chapter1 that the projective spacePG
�
n � 1 � F � is isomorphicto its

dual if andonly if the field F is isomorphicto its opposite.More precisely, we
havethefollowing. Let σ beananti-automorphismof F, andV anF-vectorspace
of rankn. A sesquilinearformB onV is a functionB : V � V � F whichsatisfies
thefollowing conditions:

(a) B
�
c1x1 � c2x2 � y��� c1B

�
x1 � y� � c2B

�
x2 � y� , that is, B is a linearfunctionof

its first argument;

(b) B
�
x � c1y1 � c2y2 �	� B

�
x � y1 � cσ

1 � B
�
x � y2 � cσ

2, thatis,B is asemilinearfunction
of its secondargument,with field anti-automorphismσ.

(Theword ‘sesquilinear’means‘one-and-a-half’.) If σ is theidentity (sothatF is
commutative),wesaythatB is abilinear form.

Theleft radicalof B is thesubspace
 x � V :
�
�

y � V � B � x ����� 0 � , andtheright
radical is thesubspace
 y � V :

���
x � V � B � x � y��� 0 � .

Exercise3.1 (a)Prove thattheleft andright radicalsaresubspaces.
(b) Show that the left andright radicalshave the samerank (if V hasfinite

rank).
(c) Constructa bilinear form on a vectorspaceof infinite rank suchthat the

left radicalis zeroandtheright radicalis no-zero.

Thesesquilinearform B is callednon-degenerate if its left andright radicals
arezero.(By theprecedingexercise,it sufficesto assumethatoneof theradicals
is zero.)

A non-degeneratesesquilinearform inducesadualityof PG
�
n � 1 � F � (aniso-

morphismfrom PG
�
n � 1 � F � to PG

�
n � 1 � F ��� ) asfollows: for any y � V, themap

x �� B
�
x � y� is a linearmapfrom V to F, that is, anelementof thedualspaceV �

(whichis aleft vectorspaceof rankn overF � ); if wecall thiselementβy, thenthe
mapy �� βy is a σ-semilinearbijectionfrom V to V � , andsoinducestherequired
duality.

Theorem 3.1 For n � 3, anyduality of PG
�
n � 1 � F � is inducedin this wayby a

non-degeneratesesquilinearform onV � Fn.
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Proof By theFundamentalTheoremof ProjectiveGeometry, adualityis induced
by a σ-semilinearbijectionφ from V toV � , for someanti-automorphismσ. Set

B
�
x � y��� x

�
yφ ���

Wecanshort-circuitthepassageto thedualspace,andwrite thedualityas

U �� U ����
 x � V : B
�
x � y��� 0 for all y � U ���

Obviously, adualityappliedtwice is acollineation.Themostimportanttypes
of dualitiesare thosewhosesquareis the identity. A polarity of PG

�
n � F � is a

duality � whichsatisfiesU ��� � U for all flatsU of PG
�
n � F � .

It will turn out that polaritiesgive rise to a classof geometries(the polar
spaces)with propertiessimilar to thoseof projective spaces,anddefinegroups
analogousto theprojectivegroups.If adualityisnotapolarity, thenany collineation
which respectsit mustcommutewith its square,which is a collineation;so the
groupwe obtainwill lie insidethecentraliserof someelementof thecollineation
group.Sothe“largest”subgroupsobtainedwill bethosepreservingpolarities.

A sesquilinearform B is reflexive if B
�
x � y��� 0 impliesB

�
y� x��� 0.

Proposition3.2 Adualityisapolarity if andonlyif thesesquilinearformdefining
it is reflexive.

Proof B is reflexive if andonly if x �! y" �$# y �! x" � . Hence,if B is reflexive,
thenU % U ��� for all subspacesU . But by non-degeneracy, dimU �&� � dimV �
dimU � � dimU ; andsoU � U �&� for all U . Conversely, givena polarity � , if
y �! x" � , thenx �' x" �&� %� y" � (sinceinclusionsarereversed).

We now turn to the classificationof reflexive forms. For convenience,from
now on F will always be assumedto be commutative. (Note that, if the anti-
automorphismσ is anautomorphism,andin particularif σ is theidentity, thenF
is automaticallycommutative.)

Theform B is saidto beσ-Hermitianif B
�
y� x��� B

�
x � y� σ for all x � y � V. If B

is anon-zeroσ-Hermitianform, then

(a) for any x, B
�
x � x� lies in thefixedfield of σ;

(b) σ2 � 1. For everyscalarc is avalueof B, sayB
�
x � y��� c; then

cσ2 � B
�
x � y� σ2 � B

�
y� x� σ � B

�
x � y��� c �
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If σ is theidentity, sucha form (which is bilinear)is calledsymmetric.
A bilinearform b is calledalternatingif B

�
x � x�(� 0 for all x � V. This implies

thatB
�
x � y���)� B

�
y� x� for all x � y � V. For

0 � B
�
x � y� x � y��� B

�
x � x� � B

�
x � y� � B

�
y� x� � B

�
y� y�(� B

�
x � y� � B

�
y� x���

Hence,if thecharacteristicis 2, thenany alternatingform is symmetric(but not
conversely); but, in characteristicdifferent from 2, only the zero form is both
symmetricandalternating.

Clearly, analternatingor Hermitianform is reflexive. Conversely, wehavethe
following:

Theorem 3.3 A non-degenerate reflexive σ-sesquilinearform is either alternat-
ing, or a scalar multiple of a σ-Hermitian form. In the latter case, if σ is the
identity, thenthescalarcanbetakento be1.

Proof I will give theproof just for a bilinearform. Thus,it mustbeprovedthat
anon-degeneratereflexivebilinearform is eithersymmetricor alternating.

Wehave
B
�
u � v� B � u � w��� B

�
u � w� B � u � v��� 0

by commutativity; thatis, usingbilinearity,

B
�
u � B � u � v� w � B

�
u � w� v�(� 0 �

By reflexivity,
B
�
B
�
u � v� w � B

�
u � w� v� u�&� 0 �

whencebilinearityagaingives

B
�
u � v� B � w� u�(� B

�
u � w� B � v� u��� (1)

Call a vectoru good if B
�
u � v��� B

�
v� u�+*� 0 for somev. By Equation(1), if

u is good,thenB
�
u � w�,� B

�
w� u� for all w. Also, if u is goodandB

�
u � v�-*� 0,

thenv is good. But, given any two non-zerovectorsu1 � u2, thereexists v with
B
�
ui � v�.*� 0 for i � 1 � 2. (For thereexist v1 � v2 with B

�
ui � vi �+*� 0 for i � 1 � 2, by

non-degeneracy; andat leastoneof v1 � v2 � v1 � v2 hastherequiredproperty.) So,
if somevectoris good,theneverynon-zerovectoris good,andB is symmetric.

But, puttingu � w in Equation(1) gives

B
�
u � u� � B � u � v�	� B

�
v� u�/��� 0

for all u � v. So,if u is notgood,thenB
�
u � u��� 0; and,if novectoris good,thenB

is alternating.
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Exercise3.2 (a) Show that the left andright radicalsof a reflexive form are
equal.

(b) AssumingTheorem3.3,provethattheassumptionof non-degeneracy in the
theoremcanberemoved.

Exercise3.3 Let σ bea (non-identity)automorphismof F of order2. Let E be
thesubfieldFix

�
σ � .

(a)Prove thatF is of degree2 overE, i.e.,a rank2 E-vectorspace.
[Seeany textbookon Galoistheory. Alternately, argueasfollows: Take λ �

F 0 E. Then λ is quadraticover E, so E
�
λ � hasdegree2 over E. Now E

�
λ �

containsanelementω suchthatωσ �1� ω (if thecharacteristicis not 2) or ωσ �
ω � 1 (if thecharacteristicis 2). Now, giventwo suchelements,their quotientor
differencerespectively is fixedby σ, solies in E.]

(b) Prove that 
 λ � F : λλσ � 1 �2�)
 ε 3 εσ : ε � F ���
[Theleft-handsetclearlycontainstheright. For thereverseinclusion,separate

into casesaccordingasthecharacteristicis 2 or not.
If thecharacteristicis not 2, thenwe cantake F � E

�
ω � , whereω2 � α � E

and ωσ �4� ω. If λ � 1, then take ε � 1; otherwise,if λ � a � bω, take ε �
bα � � a � 1� ω.

If thecharacteristicis 2, show thatwecantakeF � E
�
ω � , whereω2 � ω � α �

0, α � E, andωσ � ω � 1. Again, if λ � 1, setε � 1; else,if λ � a � bω, take
ε � �

a � 1� � bω.]

Exercise3.4 Use the result of the precedingexerciseto completethe proof of
Theorem3.3 in general.

[If B
�
u � u��� 0 for all u, theform B is alternatingandbilinear. If not,suppose

that B
�
u � u�.*� 0 andlet B

�
u � u� σ � λB

�
u � u� . Choosingε asin Exercise3.3 and

re-normalisingB, show thatwemayassumethatλ � 1, and(with thischoice)that
B is Hermitian.]

3.2 Hermitian and quadratic forms

Wenow changegroundslightly from thelastsection.Ontheonehand,werestrict
thingsby excluding somebilinear forms from the discussion;on the other, we
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introducequadraticforms. Thelossandgainexactly balanceif thecharacteristic
is not2; but, in characteristic2, wemakeanetgain.

Let σ beanautomorphismof thecommutativefield F, of orderdividing2. Let
Fix

�
σ ���5
 λ � F : λσ � λ � bethefixedfield of σ, andTr

�
σ ���1
 λ � λσ : λ � F �

the traceof σ. Sinceσ2 is theidentity, it is clearthatFix
�
σ �76 Tr

�
σ � . Moreover,

if σ is theidentity, thenFix
�
σ ��� F, and

Tr
�
σ ���98 0 if F hascharacteristic2,

F otherwise.

Let B bea σ-Hermitianform. We observed in the last sectionthat B
�
x � x�:�

Fix
�
σ � for all x � V. We call the form B trace-valuedif B

�
x � x�2� Tr

�
σ � for all

x � V.

Exercise3.5 Let σ beanautomorphismof a commutativefield F suchthatσ2 is
theidentity.

(a) Prove thatFix
�
σ � is asubfieldof F .

(b) Prove thatTr
�
σ � is closedunderaddition,andundermultiplicationby ele-

mentsof Fix
�
σ � .

Proposition3.4 Tr
�
σ �7� Fix

�
σ � unlessthe characteristicof F is 2 and σ is the

identity.

Proof E � Fix
�
σ � is a field, andK � Tr

�
σ � is anE-vectorspacecontainedin E

(Exercise3.5). So, if K *� E, thenK � 0, andσ is the mapx �� � x. But, since
σ is a field automorphism,this implies that the characteristicis 2 andσ is the
identity.

Thus,in characteristic2, symmetricbilinear formswhich arenot alternating
arenottrace-valued;but thisis theonly obstruction.Weintroducequadraticforms
to repairthisdamage.But, of course,quadraticformscanbedefinedin any char-
acteristic.However, we noteat this point thatTheorem3.3 dependsin a crucial
wayonthecommutativity of F ; this leavesopenthepossibilityof additionaltypes
of polarspacesdefinedby so-calledpseudoquadratic forms. We will not pursue
thishere:seeTits’sclassificationof sphericalbuildings.

LetV beavectorspaceoverF . A quadratic formonV is a functionq : V � F
satisfying
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(a) q
�
λx��� λ2 f

�
x� for all λ � F, x � V;

(b) q
�
x � y��� q

�
x� � q

�
y� � B

�
x � y� , whereB is bilinear.

Now, if thecharacteristicof F is not 2, thenB is a symmetricbilinear form.
Eachof q andB determinestheother, by

B
�
x � y�;� q

�
x � y�	� q

�
x��� q

�
y���

q
�
x�;� 1

2B
�
x � x���

the latterequationcomingfrom thesubstitutionx � y in (b). Sonothingnew is
obtained.

On theotherhand,if thecharacteristicof F is 2, thenB is analternatingbi-
linearform, andq cannotberecoveredfrom B. Indeed,many differentquadratic
formscorrespondto thesamebilinear form. (Note that the quadraticform does
give extra structureto thevectorspace;we’ll seethat this structureis geometri-
cally similar to thatprovidedby analternatingor Hermitianform.)

Wesaythatthebilinearform B is obtainedby polarisationof q.
Now let B bea symmetricbilinearform overa field of characteristic2, which

is notalternating.Set f
�
x��� B

�
x � x� . Thenwehave

f
�
λx�<� λ2 f

�
x���

f
�
x � y�<� f

�
x� � f

�
y���

sinceB
�
x � y� � B

�
y� x�&� 0. Thus f is “almost” asemilinearform; themapλ �� λ2

is ahomomorphismof thefield F with kernel0, but it mayfail to beanautomor-
phism. But in any case,thekernelof f is a subspaceof V, andtherestrictionof
B to this subspaceis an alternatingbilinear form. So again,in the spirit of the
vaguecommentmotivatingthestudyof polaritiesin thelastsection,thestructure
provided by the form B is not “primiti ve”. For this reason,we do not consider
symmetricbilinear forms in characteristic2 at all. However, asindicatedabove,
wewill considerquadraticformsin characteristic2.

Now, in characteristicdifferentfrom 2, we cantake eitherquadraticformsor
symmetricbilinearforms,sincethestructuralcontentis thesame.Forconsistency,
wewill takequadraticformsin thiscasetoo. This leavesuswith three“types” of
formsto study:alternatingbilinearforms;σ-Hermitianformswhereσ is not the
identity;andquadraticforms.

We have to definethe analogueof non-degeneracy for quadraticforms. Of
course,we could requirethat the bilinear form obtainedby polarisationis non-
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degenerate;but this is too restrictive. We say that a quadraticform q is non-
degenerate if

q
�
x��� 0 &

�
�
y � V � B � x � y��� 0 # x � 0 �

whereB is theassociatedbilinearform; thatis, if theform q is non-zeroonevery
non-zerovectorof theradical.

If thecharacteristicis not2, thennon-degeneracy of thequadraticform andof
thebilinearform areequivalentconditions.

Now supposethat thecharacteristicis 2, andlet W betheradicalof B. Then
B is identicallyzeroonW; sotherestrictionof q toW satisfies

q
�
x � y� � q

�
x� � q

�
y���

q
�
λx�;� λ2q

�
x���

As above, f is verynearlysemilinear.
The field F is called perfect if every elementis a square. If F is perfect,

thenthe mapx �� x2 is onto, andhencean automorphismof F; so q is indeed
semilinear, andits kernelis ahyperplaneof W. Weconclude:

Theorem 3.5 Letq bea non-singularquadratic form,which polarisesto B, over
a fieldF.

(a) If thecharacteristicof F is not 2, thenB is non-degenerate.

(b) If F is a perfectfield of characteristic2, thenthe radical of B hasrankat
most1.

Exercise3.6 Let B beanalternatingbilinearform onavectorspaceV overafield
F of characteristic2. Let

�
vi : i � I � bea basisfor V, and

�
ci : i � I � any function

from I to F . Show thatthereis a uniquequadraticform q with thepropertiesthat
q
�
vi ��� ci for every i � I , andq polarisesto B.

Exercise3.7 (a) Constructanimperfectfield of characteristic2.

(b) Constructa non-singularquadraticform with the propertythat the radical
of theassociatedbilinearform hasrankgreaterthan1.

Exercise3.8 Show thatfinite fieldsof characteristic2 areperfect.

Exercise3.9 Let B beaσ-Hermitianform onavectorspaceV overF , whereσ is
nottheidentity. Set f

�
x�(� B

�
x � x� . Let E � Fix

�
σ � , andletV = beV regardedasan

E-vectorspaceby restrictingscalars.Provethat f is aquadraticform onV = , which
polarisesto the bilinear form Tr

�
B� definedby Tr

�
B� � x � y�>� B

�
x � y� � B

�
x � y� σ.

Show furtherthatTr
�
B� is non-degenerateif andonly if B is.
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3.3 Classificationof forms

As explainedin the lastsection,we now considera vectorspaceV of finite rank
equippedwith a form of oneof thefollowing types:a non-degeneratealternating
bilinear form B; a non-degeneratetrace-valuedσ-Hermitianform B, whereσ is
not the identity; or a non-singularquadraticform q. In the third case,we let B
bethebilinear form obtainedby polarisingq; thenB is alternatingor symmetric
accordingasthecharacteristicis or is not2, but B maybedegenerate.Wealsolet
f denotethefunctionq. In theothertwo cases,wedefineafunction f : V � F by
f
�
x�?� B

�
x � x� — this is identicallyzeroif b is alternating.SeeExercise3.10for

theHermitiancase.
Suchapair

�
V � B� or

�
V � q� will becalleda formedspace.

Exercise3.10 LetBbeaσ-HermitianformonavectorspaceV overF, whereσ is
nottheidentity. Set f

�
x�(� B

�
x � x� . Let E � Fix

�
σ � , andletV = beV regardedasan

E-vectorspaceby restrictingscalars.Provethat f is aquadraticform onV = , which
polarisesto the bilinear form Tr

�
B� definedby Tr

�
B� � x � y�>� B

�
x � y� � B

�
x � y� σ.

Show furtherthatTr
�
b� is non-degenerateif andonly if B is.

We saythatV is anisotropic if f
�
x�@*� 0 for all x *� 0. Also,V is a hyperbolic

planeif it is spannedby vectorsv andw with f
�
v�A� f

�
w�7� 0 andB

�
v� w�A� 1.

(Thevectorsv andw arelinearly independent,soV hasrank2.)

Theorem 3.6 A non-degenerateformedspaceis thedirectsumof a numberr of
hyperboliclinesandananisotropicspaceU. Thenumberr andtheisomorphism
typeofU are invariantsof V.

Proof If V is anisotropic,thenthereis nothingto prove,sinceV cannotcontain
ahyperbolicplane.SosupposethatV containsavectorv *� 0 with f

�
v��� 0.

We claim that thereis a vectorw with B
�
v� w�B*� 0. In the alternatingand

Hermitiancases,this follows immediatelyfrom thenon-degeneracy of theform.
In thequadraticcase,if nosuchvectorexists,thenv is in theradicalof B; but v is
asingularvector, contradictingthenon-degeneracy of f .

Multiplying w by anon-zeroconstant,wemayassumethatB
�
v� w��� 1.

Now, for any valueof λ, we have B
�
v� w � λv��� 1. We wish to chooseλ so

that f
�
w � λv��� 0; thenv andw will spana hyperbolicline. Now wedistinguish

cases.

(a) If B is alternating,thenany valueof λ works.
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(b) If B is Hermitian,wehave

f
�
w � λv�C� f

�
w��� λB

�
v� w��� λσB

�
w� v� � λλσ f

�
v�� f

�
w��� � λ � λσ � ;

and,sinceB is trace-valued,thereexistsλ with Tr
�
λ ��� f

�
w� .

(c) Finally, if f � q is quadratic,wehave

f
�
w � λv�<� f

�
w��� λB

�
w� v� � λ2 f

�
v�� f

�
w��� λ �

sowechooseλ � f
�
w� .

Now letW1 bethehyperbolicline  v� w � λv" , andletV1 � W �1 , whereorthog-
onalityis definedwith respectto theform B. It is easilycheckedthatV � V1 D W1,
andtherestrictionof theform to V1 is still non-degenerate.Now theexistenceof
thedecompositionfollowsby induction.

Theuniquenessof the decompositionwill beproved later, asa consequence
of Witt’ sLemma(Theorem3.15).

Thenumberr of hyperboliclines is calledthepolar rankof V, and(the iso-
morphismtypeof) U is calledthegermof V.

To completethe classificationof forms over a given field, it is necessaryto
determineall the anisotropicspaces.In general,this is not possible;for exam-
ple, thestudyof positivedefinitequadraticformsover therationalnumbersleads
quickly into deepnumber-theoreticwaters. I will considerthe casesof the real
andcomplex numbersandfinite fields.

First, though,thealternatingcaseis trivial:

Proposition3.7 Theonlyanisotropicspacecarryinganalternatingbilinear form
is thezero space.

In combinationwith Theorem3.6, this shows that a spacecarrying a non-
degeneratealternatingbilinearform is adirectsumof hyperbolicplanes.

Over therealnumbers,Sylvester’s theoremassertsthatany quadraticform in
n variablesis equivalentto theform

x2
1 � �/�/� � x2

r � x2
r E 1 �!�/�/�F� x2

r E s �
for somer � s with r � s G n. If theform is non-singular, thenr � s � n. If both r
ands arenon-zero,thereis a non-zerosingularvector(with 1 in positions1 and
r � 1, 0 elsewhere).Sowehave:
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Proposition3.8 If V is a real vectorspaceof rank n, thenan anisotropic form
onV is eitherpositivedefiniteor negativedefinite;there is a uniqueformof each
typeup to invertiblelinear transformation,onethenegativeof theother.

The realshave no non-identityautomorphisms,so Hermitian forms do not
arise.

Over thecomplex numbers,thefollowing factsareeasilyshown:

(a) Thereis auniquenon-singularquadraticform (upto equivalence)in n vari-
ablesfor any n. A spacecarryingsucha form is anisotropicif andonly if
n G 1.

(b) If σ denotescomplex conjugation,thesituationfor σ-Hermitianformsis the
sameasfor quadraticformsoverthereals:anisotropicformsarepositiveor
negativedefinite,andthereis a uniqueform of eachtype,onethenegative
of theother.

For finite fields,thepositionis asfollows.

Theorem 3.9 (a) Ananisotropicquadratic form in n variablesoverGF
�
q� ex-

istsif andonlyif n G 2. There is a uniqueformfor each n exceptwhenn � 1
andq is odd,in which casethere are two forms,onea non-squaremultiple
of theother.

(b) Let q � r2 and let σ be the field automorphismα �� αr . Thenthere is an
anisotropicσ-Hermitianform in n variablesif andonly if n G 1. Theform
is uniquein each case.

Proof (a)Considerfirst thecasewherethecharacteristicisnot2. Themultiplica-
tivegroupof GF

�
q� is cyclic of evenorderq � 1; sothesquaresform a subgroup

of index 2, andif η is afixednon-square,theneverynon-squarehastheform ηα2

for someα. It followseasilythatany quadraticform in onevariableis equivalent
to eitherx2 or ηx2.

Next, considernon-singularformsin two variables.By completingthesquare,
sucha form is equivalentto oneof x2 � y2, x2 � ηy2, ηx2 � ηy2.

Supposefirst that q H 1
�
mod4� . Then � 1 is a square,say � 1 � β2. (In

the multiplicative group, � 1 hasorder2, so lies in the subgroupof even order
1
2

�
q � 1� consistingof squares.)Thusx2 � y2 � �

x � βy� � x � βy� , andthefirst and
third formsarenot anisotropic.Moreover, any form in 3 or morevariables,when
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convertedto diagonalform, containsoneof thesetwo, andso is not anisotropic
either.

Now considerthe other case,q H4� 1
�
mod4� . Then � 1 is a non-square

(sincethegroupof squareshasoddorder),so thesecondform is
�
x � y� � x � y� ,

andis not anisotropic.Moreover, thesetof squaresis not closedunderaddition
(elseit wouldbeasubgroupof theadditivegroup,but 1

2

�
q � 1� doesn’t divideq);

so thereexist two squareswhosesumis a non-square.Multiplying by a suitable
square,thereexist β � γ with β2 � γ2 �5� 1. Then� � x2 � y2 ��� �

βx � γy� 2 � � γx � βy� 2 �
andthefirst andthird formsareequivalent. Moreover, a form in threevariables
is certainlynot anisotropicunlessit is equivalentto x2 � y2 � z2, andthis form
vanishesat thevector

�
β � γ � 1� ; hencethereis noanisotropicform in threeor more

variables.
Thecharacteristic2 caseis anexercise(seebelow).
(b) Now considerHermitianforms.If σ is anautomorphismof GF

�
q� of order

2, thenq is asquare,sayq � r2, andασ � αr . Weneedthefactthateveryelement
of Fix

�
σ ��� GF

�
r � hastheform αασ (seeExercise3.3).

In onevariable,we have f
�
x�A� µxxσ for somenon-zeroµ � Fix

�
σ � ; writing

µ � αασ andreplacingx by αx, wecanassumethatµ � 1.
In two variables,we cansimilarly take the form to bexxσ � yyσ. Now � 1 �

Fix
�
σ � , so � 1 � λλσ; thentheform vanishesat

�
1 � λ � . It follows that thereis no

anisotropicform in any largernumberof variableseither.

Exercise3.11 Prove thatthereis, up to equivalence,a uniquenon-degenerateal-
ternatingbilinearform onavectorspaceof countablyinfinite dimension(adirect
sumof countablymany isotropicplanes).

Exercise3.12 Let F bea finite field of characteristic2.

(a) Prove thateveryelementof F hasauniquesquareroot.

(b) By consideringthebilinearform obtainedby polarisation,provethatanon-
singularform in 2 or 3 variablesover F is equivalent to αx2 � xy � βy2

or αx2 � xy � βy2 � γz2 respectively. Prove that forms of the first shape
(with α � β *� 0) areall equivalent,while thoseof thesecondshapecannotbe
anisotropic.
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3.4 Polar spaces

Polarspacesdescribethegeometryof vectorspacescarryingareflexivesesquilin-
earform or a quadraticform in muchthesameway asprojectivespacesdescribe
thegeometryof vectorspaces.We now embarkon thestudyof thesegeometries;
thethreeprecedingsectionscontaintheprerequisitealgebra.

First, someterminology. Thepolarspacesassociatedwith the threetypesof
forms(alternatingbilinear, Hermitian,andquadratic)arereferredto by thesame
namesasthe groupsassociatedwith them: symplectic, unitary, andorthogonal
respectively. Of whatdo thesespacesconsist?

Let V bea vectorspacecarryinga form of oneof our threetypes.Recallthat
aswell asasesquilinearform b in two variables,wehaveaform f in onevariable
— either f is definedby f

�
x�7� B

�
x � x� , or b is obtainedby polarising f — and

we make useof both forms. A subspaceof V on which B vanishesidentically
is calleda B-flat subspace, andoneon which f vanishesidentically is calleda
f -flat subspace. (Note: thesetermsarenotstandard;in theliterature,suchspaces
are called totally isotropic (t.i.) and totally singular (t.s.) respectively.) The
unqualifiedterm flat subspacewill meana B-flat subspacein the symplecticor
unitarycase,andaq-flat subspacein theorthogonalcase.

Thepolar spaceassociatedwith avectorspacecarryingaform is thegeometry
whoseflats arethe flat subspaces(in the above sense).Note that, if the form is
anisotropic,thenthe only memberof the polar spaceis the zerosubspace.The
polar rank of a classicalpolar spaceis the largestvectorspacerank of any flat
subspace;it is zero if and only if the form is anisotropic. Wherethere is no
confusion,polar rankwill becalledsimply rank. (We will soonseethat thereis
no conflict with our earlierdefinitionof rankasthenumberof hyperbolicplanes
in thedecompositionof thespace.)We usethetermspoint, line, plane, etc.,just
asfor projectivespaces.

Polarspacesbearthesamerelationto formedspacesasprojective spacesdo
to vectorspaces.

Wenow proceedto derivesomepropertiesof polarspaces.Let Γ beaclassical
polarspaceof polarrankr.

(P1) Any flat, togetherwith theflats it contains,is a projective spaceof dimen-
sionatmostr � 1.

(P2) Theintersectionof any family of flatsis aflat.

(P3) If U is aflat of dimensionr � 1 andp apointnot in U , thentheunionof the
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planesjoining p to pointsof U is aflatW of dimensionr � 1; andU I W is
ahyperplanein bothU andW.

(P4) Thereexist two disjointflatsof dimensionr � 1.

(P1)is clearsinceasubspaceof aflat subspaceis itself flat. (P2)is alsoclear.
To prove (P3), let p �4 y" . The function x �� B

�
x � y� on the vectorspaceU is

linear; let K be its kernel,a hyperplanein U . Then the line (of the projective
space)joining p to a point q � U is flat if andonly if q � K; andtheunionof all
suchflat linesis aflat spaceW �5 K � y" , suchthatW I U � K, asrequired.

Finally, to prove(P4),weusethehyperbolic-anisotropicdecompositionagain.
If L1 �/�/�/�J� Lr arethe hyperbolicplanes,andxi � yi are the distinguishedspanning
vectorsin Li , thentherequiredflatsare  x1 �/�K�/�K� xr " and  y1 �/�K�/�J� yr " .

Thesignificanceof thegeometricproperties(P1)–(P4)lies in themajorresult
of VeldkampandTits whichdeterminesall thegeometriesof rankat least3 which
satisfythem.All thesegeometriesarepolarspaces(aswe have definedthem)or
slightgeneralisations,togetherwith acoupleof exceptionsof rank3. In particular,
thefollowing theoremholds:

Theorem 3.10 A finitegeometrysatisfying(P1)–(P4)with r � 3 is a polar space.

Exercise3.13 Let P � PG
�
3 � F � for some(notnecessarilycommutative)division

ring F. Constructanew geometryΓ asfollows:

(a) the‘points’ of Γ arethelinesof P;

(b) the ‘lines’ of Γ aretheplanepencilsin P (consistingof all lines lying in a
planeΠ andcontainingapoint p of Π);

(c) the ‘planes’ of Γ areof two types: the pencils(consistingof all the lines
throughapoint)andthedualplanes(consistingof all thelinesin aplane).

Prove thatΓ satisfies(P1)–(P4)with r � 3.
Provethat,if F isnotisomorphicto itsopposite,thenΓ containsnon-isomorphic

planes.
(We will seelater that, if F is commutative, then Γ is an orthogonalpolar

space.)

Exercise3.14 Prove the Buekenhout–Shultproperty of the geometryof points
andlinesin a polarspace:if p is a point not lying on a line L, thenp is collinear
with oneor all pointsof L.
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You shouldprove this bothfrom theanalyticdescriptionof polarspaces,and
using(P1)–(P4).

In apolarspaceΓ, givenany setSof points,we let S� denotethesetof points
which areperpendicularto (thatis, collinearwith) every point of S. Polarspaces
have goodinductive properties.Let G bea classicalpolar space.Therearetwo
naturalwaysof producinga “smaller” polarspacefrom G:

(a) Takea pointx of G, andconsiderthequotientspacex� 3 x, thespacewhose
points,lines,. . . arethelines,planes,. . . of G containingx.

(b) Take two non-perpendicularpointsx andy, andconsider
 x � y � � .

In eachcase,the spaceconstructedis a classicalpolar space,having the same
germasG but with polarrankonelessthanthatof G. (Notethat,in (b), thespan
of x andy in thevectorspaceis ahyperbolicplane.)

Exercise3.15 Prove theaboveassertions.

Therearemoregeneralversions.For example,if Sis aflat of dimensiond � 1,
thenS� 3 S is a polar spaceof rank r � d with the samegermasG. We will see
below how this inductive processcanbe usedto obtaininformationaboutpolar
spaces.

We investigatejust onetypein moredetail,theso-calledhyperbolicquadric,
the orthogonalspacewhich is a direct sumof hyperbolicplanes(that is, having
germ0). Thequadraticform definingthis spacecanbetakento bex1x2 � x3x4 ��/�K� � x2r L 1x2r .

Proposition3.11 Themaximalflatsof a hyperbolicquadricfall into twoclasses,
with thepropertiesthattheintersectionof twomaximalflatshasevencodimension
in each if andonly if they belongto thesameclass.

Proof First,notethattheresultholdswhenr � 1,sincethenthequadraticform is
x1x2 andtherearejust two singularpoints,  � 1 � 0�/" and  � 0 � 1�/" . By theinductive
principle, it follows that any flat of dimensionr � 2 is containedin exactly two
maximalflats.

Wetakethe
�
r � 1� -flatsand

�
r � 2� -flatsastheverticesandedgesof agraphΓ,

thatis, wejoin two
�
r � 1� -flatsif their intersectionis an

�
r � 2� -flat. Thetheorem

will follow if we show that Γ is connectedand bipartite,and that the distance
betweentwo verticesof Γ is the codimensionof their intersection.Clearly the
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codimensionof the intersectionincreasesby at mostonewith every stepin the
graph,soit is atmostequalto thedistance.Weproveequalityby induction.

Let U be a
�
r � 1� -flat andK a

�
r � 2� -flat. We claim that the two

�
r � 1� -

spacesW1 � W2 containingK have differentdistancesfrom U . Factoringout the
flat subspaceU I K andusinginduction,we mayassumethatU I K � /0. Then
U I K � is apoint p, which lies in onebut not theotherof W1 � W2; sayp � W1. By
induction,thedistancefrom U to W1 is r � 1; so thedistancefrom U to W2 is at
mostr, henceequalto r by theremarkin theprecedingparagraph.

This establishestheclaim aboutthedistance.Thefact thatΓ is bipartitealso
follows, sincein any non-bipartitegraphthereexistsanedgebothof whosever-
ticeshavethesamedistancefromsomethirdvertex, andtheargumentgivenshows
thatthisdoesn’t happenin Γ.

In particular, the rank 2 hyperbolicquadricconsistsof two familiesof lines
formingagrid, asshown in Figure1. This is theso-called“ruled quadric”,famil-
iar from modelssuchaswastepaperbaskets.
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Figure1: A ruledquadric

Exercise3.16 Show that Proposition3.11 canbe proved usingonly properties
(P1)–(P4)of polarspacestogetherwith thefactthatan

�
r � 1� -flat lies in exactly

two maximalflats.

3.5 Finite polar spaces

The classificationof finite classicalpolar spaceswasachievedby Theorem3.6.
We subdivide thesespacesinto six families accordingto their germ, viz., one
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symplectic,two unitary, and threeorthogonal. (Forms which differ only by a
scalarfactorobviously definethe samepolar space.)The following tablegives
someinformationaboutthem. In thetable,r denotesthepolarspacerank,andδ
thevectorspacerankof thegerm;therankn of thespaceis givenby n � 2r � δ.
Thesignificanceof theparameterε will emergeshortly. This number, depending
only on the germ,carriesnumericalinformationaboutall spacesin the family.
Notethat,in theunitarycase,theorderof thefinite field mustbeasquare.

Type δ ε
Symplectic 0 0

Unitary 0 � 1
2

Unitary 1 1
2

Orthogonal 0 � 1
Orthogonal 1 0
Orthogonal 2 1

Table1: Finitepolarspaces

Theorem 3.12 Thenumberof pointsin a finitepolar spaceof rank1 is q1E ε � 1,
where ε is givenin Table1.

Proof Let V be a vectorspacecarryinga form of rank 1 over GF
�
q� . ThenV

is theorthogonaldirectsumof a hyperbolicline L andananisotropicgermU of
dimensionk (say).Let nk bethenumberof points.

Supposethatk Y 0. If p is apointof thepolarspace,thenp lieson thehyper-
planep� ; any otherhyperplanecontainingp is non-degeneratewith polarrank1
andhaving germof dimensionk � 1. Considera parallelclassof hyperplanesin
the affine spacewhosehyperplaneat infinity is p� . Eachsuchhyperplanecon-
tainsnk L 1 � 1 points,andthehyperplaneat infinity containsjust one,viz., p. So
wehave

nk � 1 � q
�
nk L 1 � 1���

from which it followsthatnk � 1 � � n0 � 1� qk. Soit is enoughto provetheresult
for thecasek � 0, thatis, for ahyperbolicline.

In thesymplecticcase,eachof theq � 1 projectivepointsonaline is isotropic.
Considertheunitarycase.Wecantake theform to be

B
�/�

x1 � y1 ��� � x2 � y2 �K��� x1y2 � y1x2 �
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wherex � xσ � xr , r2 � q. So the isotropicpointssatisfyxy � yx � 0, that is,
Tr
�
xy�,� 0. How many pairs

�
x � y� satisfythis? If y � 0, thenx is arbitrary. If

y *� 0, thenafixedmultipleof x is in thekernelof thetracemap,asetof sizeq1Z 2
(sinceTr is GF

�
q1Z 2 � -linear).Sothereare

q � � q � 1� q1Z 2 � 1 � � q � 1� � q1Z 2 � 1�
vectors,i.e.,q1Z 2 � 1 projectivepoints.

Finally, considertheorthogonalcase.Thequadraticform is equivalentto xy,
andhastwo singularpoints,  � 1 � 0�/" and  � 1 � 0�/" .
Theorem 3.13 In a finitepolar spaceof rankr, thereare

�
qr � 1� � qr E ε � 1�/3 � q �

1� points,of which q2r L 1E ε arenotperpendicularto a givenpoint.

Proof We let F
�
r � be the numberof points,andG

�
r � the numbernot perpen-

dicularto a givenpoint. (We do not assumethatG
�
r � is constant;this constancy

follows from the inductionthat provesthe theorem.) We usethe two inductive
principlesdescribedat theendof thelastsection.

Claim1: G
�
r ��� q2G

�
r � 1� .

Takeapointx, andcountpairs
�
y� z� , wherey � x� , z *� x� , andz � y� . Choos-

ing zfirst, thereareG
�
r � choices;then  x � z" is ahyperbolicline,andy is apoint in x � z" � , sothereareF
�
r � 1� choicesfor y. Ontheotherhand,choosingy first, the

linesthroughy arethepointsof therankr � 1 polarspacex� 3 x, andsothereare
F
�
r � 1� of them,with q pointsdifferentfrom x oneach,giving qF

�
r � 1� choices

for y; then  x � y" and  y� z" arenon-perpendicularlinesin y� , i.e., pointsof y� 3 y,
sothereareG

�
r � 1� choicesfor  y� z" , andsoqG

�
r � 1� choicesfor y. thus

G
�
r ��[ F � r � 1��� qF

�
r � 1��[ qG

�
r � 1���

from which theresultfollows.
SinceG

�
1�?� q1E ε, it follows immediatelythatG

�
r ��� q2r L 1E ε, asrequired.

Claim2: F
�
r ��� 1 � qF

�
r � 1� � G

�
r � .

For this, simply observe (asabove) thatpointsperpendicularto x lie on lines
of x� 3 x.

Now it is justamatterof calculationthatthefunction
�
qr � 1� � qr E ε � 1�/3 � q �

1� satisfiesthe recurrenceof Claim 2 and correctly reducesto q1E ε � 1 when
r � 1.
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Theorem 3.14 Thenumberof maximalflatsin a finitepolar spaceof rankr is

r

∏
i \ 1

�
1 � qi E ε �]�

Proof Let H
�
r � be this number. Countpairs

�
x � U � , whereU is a maximalflat

andx � U . Wefind that

F
�
r �	[ H � r � 1�&� H

�
r ��[ � qr � 1�/3 � q � 1���

so
H
�
r ��� �

1 � qr E ε � H � r � 1���
Now theresultis immediate.

It shouldnow beclearthatany reasonablecountingquestionaboutfinite polar
spacescan be answeredin termsof q � r � ε. We will do this for the associated
classicalgroupsat theendof thenext section.

3.6 Witt’ sLemma

Let V bea formedspace,with sesquilinearform B and(if appropriate)quadratic
form q. An isometryof V is a linearmapg : V � V which satisfiesB

�
xg� yg�A�

B
�
x � y� for all x � y � V, and(if appropriate)q

�
xg��� q

�
x� for all x � V. (Notethat,

in thecaseof aquadraticform, thesecondconditionimpliesthefirst.)
The setof all isometriesof V forms a group,the isometrygroupof V. This

groupis ourobjectof studyfor thenext few sections.
More generally, if V andW areformedspacesof thesametype,an isometry

fromV toW is a linearmapfrom V to W satisfyingtheconditionslistedabove.

Exercise3.17 Let V bea (notnecessarilynon-degenerate)formedspaceof sym-
plecticor Hermitiantype,with radicalV � . Prove that thenaturalmapfrom V to
V 3 V � is anisometry.

Thepurposeof thissubsectionis toproveWitt’ sLemma, atransitivity assertion
abouttheisometrygroupof a formedspace.

Theorem 3.15 SupposethatU1 andU2 aresubspacesof theformedspaceV, and
h : U1 � U2 is an isometry. Thenthere is an isometryg of V which extendsh if
andonly if

�
U1 I V � � h � U2 I V � .

In particular, if V � � 0, thenanyisometrybetweensubspacesofV extendsto
an isometryof V.

44



Proof Assumethath : U1 � U2 is anisometry. Clearly, if h is therestrictionof
anisometryg of V, thenV � g � V � , andso�

U1 I V ��� h � �
U1 I V ��� g � U1g I V � g � U2 I V �>�

Wehave to prove theconverse.
First we show thatwe mayassumethatU1 andU2 containV � . Supposenot.

ChooseasubspaceW of V � which is acomplementto bothU1 I V � andU2 I V �
(seeExercise3.18),andextendh to U1 D W by the identity mapon W. This is
easilycheckedto beanisometryto U2 D W.

Theproof is by inductionon rk
�
U1 3 V � � . If U1 � V� � U2, thenchooseany

complementW for V � in V andextendh by theidentity onW. Sothebasestep
of theinductionis proved.Assumethattheconclusionof Witt’ sLemmaholdsfor
V = , U =1, U =2, h= whenever rk

�
U =1 3 � V =^� � �7_ rk

�
U1 3 V � � .

Let H bea hyperplaneof U1 containingV � . Thentherestriction f = of f to H
hasanextensionto an isometryg= of V. Now it is enoughto show thath

�
g= � L 1

extendsto anisometry;in otherwords,wemayassumethath is theidentityonH.
Moreover, theconclusionis clearif h is theidentity onU1; sosupposenot. Then
ker
�
h � 1��� H, andsotheimageof h � 1 is a rank1 subspaceP of U1.
Sinceh is anisometry, for all x � y � U1 wehave

B
�
xh� yh � y�C� B

�
xh� yh��� B

�
xh� y�� B

�
x � y��� B

�
xh� y�� B

�
x � xh� y���

So,if y � H, thenany vectorxh � x of P is orthogonalto y; thatis, H G P� .
Now supposethatP *G U �1 . ThenU1 I P� � U2 I P� � H. If W is a comple-

mentto H in P� , thenwecanextendh by theidentityonW to obtaintherequired
isometry. SowemayassumefurtherthatU1 � U2 G P� . In particular, P G P� .

Next we show that we may assumethat U1 � U2 � P� . Supposefirst that
U1 *� U2. If Ui �` H � ui " for i � 1 � 2, let W0 be a complementfor U1 � U2 in
P� , andW �a W0 � u1 � u2 " ; thenh canbe extendedby the identity on W to an
isometryonP� . If U1 � U2, take any complementW to U1 in P� . In eithercase,
theextensionis anisometryof P� which actsastheidentity on a hyperplaneH =
of P� containingH. SowemayreplaceU1 � U2 � H by P� � P� � H = .

Let P �9 x" andlet x � uh � u for someu � U1. We have B
�
x � x�A� 0. In the

orthogonalcase,wehave

q
�
x��� q

�
uh � u��� q

�
uh� � q

�
u�	� B

�
uh� u�&� 2q

�
u��� B

�
u � u�(� 0 �
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(WehaveB
�
uh� u�(� B

�
u � u� becauseB

�
uh � u � u��� 0.) SoP is flat, andthereis a

hyperbolicplane  u � v" , with v 3� P� . Our job is to extendh to thevectorv.
To achieve this, we show first that thereis a vectorv= suchthat  uh� v=^" � � u � v" � . Thisholdsbecause u � v" � is ahyperplanein  uh" � notcontainingV � .
Next, weobservethat  uh� v=^" is ahyperbolicplane,sowecanchooseavector

v=b= suchthatB
�
uh� v=b=c�?� 1 and(if relevant)Q

�
v=b=^��� 0.

Finally, we observe thatby extendingh to mapv to v=d= we obtaintherequired
isometryof V.

Exercise3.18 Let U1 andU2 besubspacesof a vectorspaceV having thesame
rank. Show that thereis a subspaceW of V which is a complementfor bothU1

andU2.

Corollary 3.16 (a) Theranksof maximalflat subspacesof a formedspaceare
all equal.

(b) TheWitt rank and isometrytypeof the germ of a non-degenerate formed
spaceare invariants.

Proof (a) Let U1 andU2 bemaximalflat subspaces.ThenbothU1 andU2 con-
tainsV � . If rk

�
U1 �e_ rk

�
U2 � , thereis an isometryh from U1 into U2. If g is the

extensionof h to V, thenthe imageof U2 underg L 1 is a flat subspaceproperly
containingU1, contradictingmaximality.

(b) Theresultis clearif V is anisotropic.Otherwise,let U1 andU2 behyper-
bolic planes.ThenU1 andU2 areisometricandaredisjoint fromV � . An isometry
of V carryingU1 toU2 takesU �1 to U �2 . Thentheresultfollowsby induction.

Theorem 3.17 Let Vr be a non-degenerate formedspacewith polar rank r and
germW overGF

�
q� . LetGr betheisometrygroupofVr . Thenf
Gr
f � g r

∏
i \ 1

�
qi � 1� � qi E ε � 1� q2i L 1E ε h fG0

f
� qr i r E ε j g r

∏
i \ 1

�
qi � 1� � qi E ε � 1� h fG0

f �
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where
f
G0
f
is givenby thefollowingtable:

Type δ ε
f
G0
f

Symplectic 0 0 1
Unitary 0 � 1

2 1
Unitary 1 1

2 q1Z 2 � 1
Orthogonal 0 � 1 1

Orthogonal 1 0 k 2 (q odd)
1 (q even)

Orthogonal 2 1 2
�
q � 1�

Proof By Theorem3.13, the numberof choicesof a vectorx spanninga flat
subspaceis

�
qr � 1� � qr E ε � 1� . Thenthenumberof choicesof avectory spanning

a flat subspaceandhaving innerproduct1 with x is q2r L 1E ε. Thenx andy span
a hyperbolicplane. Now Witt’ s Lemmashows that Gr actstransitively on such
pairs,andthestabiliserof suchapair is Gr L 1, by theinductiveprinciple.

In thecaseswhereδ � 0, G0 is the trivial groupon a vectorspaceof rank0.
In theunitarycasewith δ � 1, G0 preservestheHermitianform xxq1l 2

, soconsists
of multiplicationby

�
q1Z 2 � 1� st rootsof unity. In the orthogonalcasewith δ �

1, G0 preservesthe quadraticform x2, andso consistsof multiplication by m 1
only. Finally, considerthe orthogonalcasewith δ � 2. Herewe canrepresent
thequadraticform asthenormfrom GF

�
q2 � to GF

�
q� , that is, N

�
x��� xqE 1. The

GF
�
q� -linearmapswhich preserve this form a dihedralgroupof order2

�
q � 1� :

thecyclic groupis generatedby the
�
q � 1� st rootsof unity in GF

�
q2 � , which is

invertedby thenon-trivial fieldautomorphismoverGF
�
q� (since,if xqE 1 � 1, then

xq � xL 1).

47


