3 Polarities and forms

3.1 Sesquilinearforms

We saw in Chapterl thatthe projective spacePG(n— 1,F) is isomorphicto its
dualif andonly if thefield F is isomorphicto its opposite. More precisely we
havethefollowing. Let o beananti-automorphismof F, andV anF-vectorspace
of rankn. A sesquilineaformB onV is afunctionB:V xV — F whichsatisfies
thefollowing conditions:

(@) B(cixq + Cax2,Y) = c1B(X1,Y) + c2B(X2,Y), thatis, B is a linear function of
its first algument;

(b) B(x,c1y1+Cay2) = B(X,y1)c] +B(X,y2)c3, thatis, Bis asemilineafunction
of its secondargumentwith field anti-automorphisna.

(Theword ‘sesquilinearmeansone-and-a-half) If o is theidentity (sothatF is
commutatve), we saythatB is a bilinear form.

Theleftradicalof Bis thesubspacégx <V : (Vy € V)B(x,) = 0}, andtheright
radicalis thesubspacdy € V : (Vx € V)B(x,y) = 0}.

Exercise3.1 (a) Provethattheleft andright radicalsaresubspaces.

(b) Shaw that the left andright radicalshave the samerank (if V hasfinite
rank).

(c) Constructa bilinear form on a vectorspaceof infinite rank suchthatthe
left radicalis zeroandtheright radicalis no-zero.

The sesquilineaform B is callednon-dgenegteif its left andright radicals
arezero. (By theprecedingexercise,t suficesto assumehatoneof theradicals
is zero.)

A non-degeneratesesquilineaform inducesa duality of PG(n— 1, F) (aniso-
morphismfrom PG(n— 1,F) to PG(n— 1,F°)) asfollows: for ary y € V, themap
x— B(x,y) is alinearmapfromV to F, thatis, anelementof the dual spacev*
(whichis aleft vectorspaceof rankn over F°); if we call thiselemeny, thenthe
mapy — By is ac-semilinearijectionfromV to V*, andsoinducestherequired
duality.

Theorem 3.1 For n > 3, anyduality of PG(n — 1,F) is inducedin this way by a
non-dgeneratesesquilineaformonV = F".
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Proof By theFundamental heorenof Projectve Geometryadualityisinduced
by a o-semilineaijection@fromV toV*, for someanti-automorphisno. Set

Bx,y) =x(yp). =
We canshort-circuitthe passagéo the dualspaceandwrite theduality as
U ULt ={xeV:B(xy)=0forallycU}.

Obviously, aduality appliedtwice is a collineation. The mostimportanttypes
of dualitiesare thosewhosesquareis the identity. A polarity of PG(n,F) is a
duality | whichsatisfiedJ++ = U for all flatsU of PG(n,F).

It will turn out that polaritiesgive rise to a classof geometrieqthe polar
spaces)ith propertiessimilar to thoseof projective spacesanddefinegroups
analogouso theprojectvegroups.If adualityis notapolarity, thenary collineation
which respectst mustcommutewith its square which is a collineation;so the
groupwe obtainwill lie insidethe centraliseiof someelemenbf the collineation
group.Sothe*“largest’subgroup®btainedwill bethosepreservingoolarities.

A sesquilineaform B is refleiveif B(x,y) = 0 impliesB(y,x) = 0.

Proposition 3.2 Adualityis a polarity if andonlyif thesesquilineaformdefining
it is reflexive

Proof Bisreflexiveif andonly if x € {(y)* = y € (X)*. Hence|f B is reflexive,
thenU C UL for all subspaces . But by non-dgenerag, dimU-++ = dimV —
dimU+ = dimU; andsoU = U+ for all U. Corversely givena polarity L, if
y € (x)*, thenx € (x)+ C (y)* (sinceinclusionsarereversed). m

We now turn to the classificationof reflexive forms. For corvenience from
now on F will alwaysbe assumedo be commutatve. (Note that, if the anti-
automorphisno is anautomorphismandin particularif o is theidentity, thenF
is automaticalljcommutatve.)

Theform B is saidto be o-Hermitianif B(y,x) = B(x,y)° for all x,y € V. If B
is anon-zeroo-Hermitianform, then

(a) for ary x, B(x,X) liesin thefixedfield of o;

(b) 0 = 1. For every scalarc is avalueof B, sayB(x,y) = c; then

< =B(x,Y)% = B(y,x)° =B(x,y) = C.
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If oistheidentity, suchaform (whichis bilinear)is calledsymmetric
A bilinearform b is calledalternatingif B(x,x) = O for all x e V. Thisimplies
thatB(x,y) = —B(y, x) for all x,y € V. For

0= B(x+Y,x+Y) = B(x,X) + B(X,y) + B(Y,X) + B(y,y) = B(X,y) + B(Y, X).

Hence,if the characteristigs 2, thenary alternatingform is symmetric(but not
corversely); but, in characteristidifferentfrom 2, only the zeroform is both
symmetricandalternating.

Clearly, analternatingor Hermitianform s reflexive. Corversely we have the
following:

Theorem 3.3 A non-d@eneante reflxive o-sesquilinearform is either alternat-
ing, or a scalar multiple of a o-Hermitian form. In the latter case if o is the
identity, thenthe scalarcanbetakento bel.

Proof 1 will givetheproofjustfor abilinearform. Thus,it mustbe provedthat
anon-dgenerateeflexive bilinearform is eithersymmetricor alternating.
We have
B(u,Vv)B(u,w) — B(u,w)B(u,v) =0
by commutatvity; thatis, usingbilinearity;
B(u, B(u,v)w— B(u,w)v) = 0.

By reflexivity,

B(B(u,v)w— B(u,w)v,u) =0,
whencebilinearity againgives

B(u,v)B(W, u) = B(u,W)B(V, u). (1)

Call a vectoru goodif B(u,v) = B(v,u) # 0 for somev. By Equation(1), if

u is good, thenB(u,w) = B(w,u) for all w. Also, if uis goodandB(u,v) # 0,
thenv is good. But, given ary two non-zerovectorsus, Uy, thereexists v with
B(uj,Vv) # 0 for i = 1,2. (For thereexist vy, V2> with B(uj,vi) # 0 fori = 1,2, by
non-dgenerayg; andatleastoneof vy, Vs, v1 + Vo hastherequiredproperty) So,

if somevectoris good,thenevery non-zerovectoris good,andB is symmetric.
But, puttingu = win Equation(1) gives

B(u,u) (B(u,v) —B(v,u)) =0

for all u,v. So,if uis notgood,thenB(u,u) = 0; and,if no vectoris good,thenB
is alternating. =
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Exercise3.2 (a) Shav thatthe left andright radicalsof a reflexive form are
equal.

(b) AssumingTheorent.3,provethattheassumptiof non-dgenerag in the
theoremcanberemoved.

Exercise3.3 Let o be a (non-identity)automorphisnof F of order2. Let E be
the subfieldFix(o).

(a) ProvethatF is of degree2 overE, i.e.,arank2 E-vectorspace.

[Seeary textbook on Galoistheory Alternately argueasfollows: Take A €
F\E. ThenA is quadraticover E, so E(A\) hasdegree2 over E. Now E(A)
containsanelementw suchthatw® = —w (if the characteristiés not2) or wo =
w+ 1 (if thecharacteristiés 2). Now, giventwo suchelementstheir quotientor
differencerespecitiely is fixedby g, soliesin E.]

(b) Prove that

{AeF:M°=1}={e/e% ;e F}.

[Theleft-handsetclearlycontaingheright. For thereverseinclusion,separate
into casesaccordingasthe characteristics 2 or not.

If the characteristids not 2, thenwe cantake F = E(w), wherew? = a € E
andw’ = —w. If A =1, thentake € = 1; otherwise,if A = a+ bw, take € =
ba + (a—1)w.

If thecharacteristiés 2, shov thatwe cantake F = E(w), wherew? + w+4a =
0,a € E, andw® = w+ 1. Again,if A =1, sete = 1, else,if A = a+ bw, take
e=(a+1)+bw]

Exercise3.4 Usethe resultof the precedingexerciseto completethe proof of
Theorem3.3in general.

[If B(u,u) =0 for all u, theform B is alternatingandbilinear. If not, suppose
that B(u,u) # 0 andlet B(u,u)® = AB(u,u). Choosinge asin Exercise3.3 and
re-normalising3, shav thatwe mayassumehatA = 1, and(with this choice)that
B is Hermitian.]

3.2 Hermitian and quadratic forms

We now changegroundslightly from thelastsection.Ontheonehand werestrict
things by excluding somebilinear forms from the discussion;on the other we
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introducequadratidorms. Thelossandgainexactly balanceaf the characteristic
is not2; but, in characteristi€, we make anetgain.

Let o beanautomorphisnof thecommutatvefield F, of orderdividing 2. Let
Fix(o) = {A € F : A° = A} bethefixedfield of o, andTr(o) = {A+A°: A€ F}
thetraceof 0. Sincea? is theidentity, it is clearthatFix(o) D Tr(a). Moreover,
if o is theidentity, thenFix(o) = F, and

0 if F hascharacteristi@
Tr = K !
(0) { F otherwise.

Let B be a o-Hermitianform. We obseredin the last sectionthat B(x, x) €
Fix(o) for all x € V. We call the form B trace-valuedf B(x,x) € Tr(o) for all
XeV.

Exercise3.5 Let o beanautomorphisnof acommutatve field F suchthato? is
theidentity.

(a) ProvethatFix(0o) is asubfieldof F.

(b) Prove thatTr(o) is closedunderaddition,andundermultiplication by ele-
mentsof Fix(o).

Proposition 3.4 Tr(o) = Fix(o) unlessthe characteristicof F is 2 and o is the
identity.

Proof E = Fix(0) is afield,andK = Tr(0g) is anE-vectorspacecontainedn E
(Exercise3.5). So,if K # E, thenK = 0, ando is the mapx — —x. But, since
o is a field automorphismthis implies that the characteristias 2 and o is the
identity,. m

Thus,in characteristi@, symmetricbilinear forms which arenot alternating
arenottrace-alued;but thisis theonly obstruction We introducequadratidorms
to repairthisdamageBut, of course guadratidormscanbedefinedin ary char
acteristic. However, we noteat this point that Theorem3.3 dependsn a crucial
way onthecommutatvity of F; thisleavesopenthepossibilityof additionaltypes
of polarspacegefinedby so-calledpseudoquaditic forms We will not pursue
this here:seeTits’s classificatiorof sphericabuildings.

LetV beavectorspaceoverF. A quadmticformonV isafunctionq:V — F
satisfying
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(@) g(Ax) = A%f(x) forallA € F,x € V;
(b) q(x+vy) =q(x)+qa(y) + B(x,y), whereB is bilinear

Now, if the characteristiof F is not 2, thenB is a symmetrichilinearform.
Eachof g andB determineshe other by

B(xy) = q(x+y)—a(x) —q(y),
qx) = 3B(xX),

the latter equationcomingfrom the substitutionx = y in (b). Sonothingnew is
obtained.

On the otherhand,if the characteristiof F is 2, thenB is an alternatingbi-
linearform, andg cannotberecoveredfrom B. Indeed,mary differentquadratic
forms correspondo the samebilinearform. (Note thatthe quadraticform does
give extra structureto the vectorspacewe’ll seethatthis structureis geometri-
cally similarto thatprovidedby analternatingor Hermitianform.)

We saythatthebilinearform B is obtainedby polarisationof g.

Now let B bea symmetrichilinearform overafield of characteristi@, which
is notalternating.Set f (x) = B(x,x). Thenwe have

fAX) = A%f(x),
fx+y) = )+ 1Y),

sinceB(x,y) + B(y,x) = 0. Thusf is “almost” asemilineaform; themapA — A2

is ahomomorphisnof thefield F with kernelO, but it mayfail to beanautomor

phism. But in ary casethekernelof f is asubspacefV, andtherestrictionof

B to this subspaces an alternatingbilinear form. So again,in the spirit of the
vaguecommenimotivatingthe studyof polaritiesin thelastsection the structure
provided by the form B is not “primitive”. For this reasonwe do not consider
symmetricbilinearformsin characteristi@ at all. However, asindicatedabove,

we will considemuadratidormsin characteristi@.

Now, in characteristiaifferentfrom 2, we cantake eitherquadraticformsor
symmetridilinearforms,sincethestructurakontenis thesame For consisteny,
we will take quadratidormsin this casetoo. This leavesuswith three“types” of
formsto study: alternatingbilinearforms; o-Hermitianformswhereac is notthe
identity; andquadratidorms.

We have to definethe analogueof non-dgenerag for quadraticforms. Of
course,we could requirethat the bilinear form obtainedby polarisationis non-
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degenerate;but this is too restrictve. We say that a quadraticform q is non-
degeneateif

gx)=0 & (YyeV)B(x,y)=0 = x=0,

whereB is theassociatethilinearform; thatis, if theform q is non-zercon every
non-zerovectorof theradical.

If thecharacteristi¢s not 2, thennon-dgenerag of thequadratidorm andof
thebilinearform areequvalentconditions.

Now supposehatthe characteristigs 2, andlet W betheradicalof B. Then
B isidenticallyzeroonW; sotherestrictionof g to W satisfies

ax+y) = a)+aly),
aAx) = Mq(x).
As above, f is verynearlysemilinear
The field F is called perfectif every elementis a square. If F is perfect,
thenthe mapx — x? is onto, and hencean automorphisnof F; soq is indeed
semilinearandits kernelis a hyperplaneof W. We conclude:

Theorem 3.5 Letq bea non-singularquadratic form, which polarisesto B, over
afieldF.

(a) If thecharacteristicof F is not2, thenB is non-dgeneate

(b) If F is a perfectfield of characteristic2, thenthe radical of B hasrankat
most1.

Exercise3.6 Let B beanalternatingbilinearform onavectorspace/ overafield
F of characteristi@. Let (v; : i € |) beabasisfor vV, and(c; : i € I) ary function
from1 to F. Show thatthereis a uniquequadratidorm q with the propertieghat
q(vi) = ¢; for everyi € |, andq polarisedo B.

Exercise3.7 (a) Constructanimperfectfield of characteristi@.

(b) Constructa non-singularguadraticform with the propertythatthe radical
of theassociatedtilinearform hasrankgreaterthan1.

Exercise3.8 Shaw thatfinite fieldsof characteristiQ areperfect.

Exercise3.9 Let B beao-Hermitianform onavectorspace/ overF, whereo is
nottheidentity. Setf(x) = B(x,X). LetE = Fix(o), andletV’ beV regardedasan
E-vectorspaceby restrictingscalars Provethat f is aquadratidorm onV’, which
polarisesto the bilinear form Tr(B) definedby Tr(B)(x,y) = B(x,y) + B(x,y)°.
Shaw furtherthatTr(B) is non-dgyeneratef andonly if Bis.
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3.3 Classificationof forms

As explainedin thelastsection,we now considera vectorspaceV of finite rank
equippedwith aform of oneof thefollowing types:a non-dgeneratalternating
bilinear form B; a non-dgeneratdrace-waluedo-Hermitianform B, whereao is

not the identity; or a non-singulamuadraticform g. In the third case,we let B

be the bilinearform obtainedby polarisingq; thenB is alternatingor symmetric
accordingasthecharacteristiés or is not 2, but B maybe degenerateWe alsolet

f denotethefunctionq. In the othertwo casesye defineafunctionf :V — F by

f(x) = B(x,X) — thisis identically zeroif b is alternating.SeeExercise3.10for

theHermitiancase.

Sucha pair (V, B) or (V,q) will becalledaformedspace

Exercise3.10 LetBbeao-Hermitianform onavectorspace/ overF, whereo is
nottheidentity. Setf (x) = B(x,X). LetE = Fix(0), andletV’ beV regardedasan
E-vectorspaceby restrictingscalars Provethat f is aquadratidorm onV’, which
polarisesto the bilinear form Tr(B) definedby Tr(B)(x,y) = B(X,y) + B(x,y)°.
Shaw furtherthatTr(b) is non-dgjeneratef andonly if Biis.

We saythatV is anisotiopicif f(x) # 0 for all x# 0. Also, V is a hyperbolic
planeif it is spannedy vectorsv andw with f(v) = f(w) = 0 andB(v,w) = 1.
(Thevectorsv andw arelinearlyindependentsoV hasrank?2.)

Theorem 3.6 A non-dgeneateformedspaceis the directsumof a numberr of
hyperboliclinesandan anisotiopic spacel. Thenumber andtheisomorphism
typeofU areinvariantsofV.

Proof If V is anisotropicthenthereis nothingto prove, sinceV cannotcontain
ahyperbolicplane.SosupposehatV containsavectorv # 0 with f(v) = 0.

We claim that thereis a vectorw with B(v,w) # 0. In the alternatingand
Hermitiancasesthis follows immediatelyfrom the non-degenerag of the form.
In thequadraticcasejf nosuchvectorexists,thenv is in theradicalof B; but v is
asingularvector contradictinghenon-degjenerag of f.

Multiplying w by a non-zeroconstantyve mayassumehatB(v,w) = 1.

Now, for ary valueof A, we have B(v,w— Av) = 1. We wish to choose\ so
that f (w— Av) = 0; thenv andw will spana hyperbolicline. Now we distinguish
cases.

(a) If Bis alternatingthenary valueof A works.

34



(b) If Bis Hermitian,we have
f(w—Av) = f(w)—AB(V,w)—A°B(W,V) +AA°f(V)
= f(w)—(A+A);
and,sinceB is trace-alued,thereexistsA with Tr(A) = f(w).
(c) Finally,if f = qis quadraticwe have
f(W—Av) = f(w)—AB(W,V)+A%f(v)
= f(w)—A,
sowe choose\ = f(w).

Now letW; bethehyperbolicline (v,w—Av), andletV; = W;", whereorthog-
onalityis definedwith respecto theform B. It is easilychecledthatV =V; ®W,,
andtherestrictionof theform to V; is still non-dgenerateNow the existenceof
thedecompositioriollows by induction.

The uniguenes®f the decompositiorwill be provedlater, asa consequence
of Witt’sLemma(Theorem3.15). =

The numberr of hyperboliclinesis calledthe polar rank of V, and(theiso-
morphismtypeof) U is calledthegermof V.

To completethe classificationof forms over a givenfield, it is necessaryo
determineall the anisotropicspaces.In general,this is not possible;for exam-
ple,the studyof positive definitequadratidormsover therationalnumberdeads
quickly into deepnumbertheoreticwaters. | will considerthe casesof thereal
andcomple« numbersandfinite fields.

First, though thealternatingcaseis trivial:

Proposition 3.7 Theonlyanisotopicspacecarryinganalternatingbilinearform
isthezeo space

In combinationwith Theorem3.6, this shavs that a spacecarryinga non-
degeneratalternatingoilinearform is adirectsumof hyperbolicplanes.

Overtherealnumbers Sylvesters theoremassertshatarny quadraticdorm in
n variabless equialentto theform

2 2 2 2
G+ A==,

for somer, s with r +s < n. If theform is non-singularthenr +s=n. If bothr
ands arenon-zerothereis a non-zerosingularvector(with 1 in positionsl and
r+1, 0 elsavhere).Sowe have:
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Proposition 3.8 If V is a real vector spaceof rankn, thenan anisotiopic form
onV is eitherpositivedefiniteor ngyativedefinite;there is a uniqueform of each
typeupto invertiblelinear transformationpnethe neggativeof theother m

The realshave no non-identityautomorphismsso Hermitian forms do not
arise.
Overthecomplex numbersthefollowing factsareeasilyshown:

(a) Thereis auniguenon-singulaquadratidorm (upto equialence)n nvari-
ablesfor any n. A spacecarryingsucha form is anisotropiaf andonly if
n<l1.

(b) If o denotexomple conjugationthesituationfor o-Hermitianformsis the
sameasfor quadratidormsoverthereals:anisotropidormsarepositive or
negative definite,andthereis a uniqueform of eachtype, onethe negatve
of theother

For finite fields,the positionis asfollows.

Theorem3.9 (a) Ananisotiopicquadmtic formin n variablesover GF(q) ex-
istsif andonlyif n < 2. Theris auniqueformfor eat n exceptwhenn=1
andq is odd,in which casethere are two forms,onea non-squae multiple
of theother

(b) Letq=r? andlet o bethefield automorphisnu — a'. Thenther is an
anisotiopic o-Hermitianformin n variablesif andonlyif n < 1. Theform
is uniquein ead case

Proof (a)Consideffirstthecasewvherethecharacteristics not2. Themultiplica-
tive groupof GF(q) is cyclic of evenorderq— 1; sothe squaregorm a subgroup
of index 2, andif n is afixednon-squarethenevery non-squardastheform na?
for somea. It follows easilythatarny quadratidorm in onevariableis equvalent
to eitherx? or nx2.

Next, considemon-singulaformsin two variables By completingthesquare,
suchaform is equivalentto oneof X2 + y2, X2+ ny?, nx2 +ny-.

Supposedirst thatqg= 1 (mod4). Then—1 is asquaresay—1 = 2. (In
the multiplicative group, —1 hasorder 2, solies in the subgroupof even order
%(q— 1) consistingof squares.Jhusx? +y2 = (x+ By) (x— By), andthefirstand
third formsarenot anisotropic.Moreover, ary formin 3 or morevariableswhen
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convertedto diagonalform, containsoneof thesetwo, andsois not anisotropic
either

Now considerthe othercase,g= —1 (mod4). Then—1 is a non-square
(sincethe groupof squareshasodd order),sothe secondorm is (x+Yy)(x—Y),
andis not anisotropic.Moreover, the setof squares".s not closedunderaddition
(elseit would bea subgroupof theadditive group,but 5 (q+ 1) doesnt divide g);
sothereexist two squaresvhosesumis a non- squareMuItlpIylng by a suitable
squarethereexist B,y with 2+ y? = —1. Then

O +y?) = (Bx+yy)? + (yx— By)?,

andthefirst andthird forms areequvalent. Moreover, a form in threevariables
is certainly not anisotropicunlessit is equivalentto x2 + y? + Z2, andthis form

vanishestthevector(B,y, 1); hencethereis no anisotropidorm in threeor more
variables.

ThecharacteristiQ cases anexercise(seebelaw).

(b) Now consideHermitianforms. If o is anautomorphisnof GF(q) of order
2,thenqis asquaresayq = r?, anda® = a'. We needthefactthatevery element
of Fix(o) = GF(r) hastheform aa® (seeExercise3.3).

In onevariable,we have f(x) = ux»¥ for somenon-zerop € Fix(o); writing
U= aa® andreplacingx by ax, we canassuméhatpu = 1.

In two variableswe cansimilarly take the form to be xx° +yy®. Now —1 €
Fix(0), so—1 = AA%; thentheform vanishesat (1,A). It follows thatthereis no
anisotropidorm in ary largernumberof variablesither =

Exercise3.11 Prove thatthereis, up to equivalence a uniguenon-dgeneratel-
ternatingbilinearform on avectorspaceof countablyinfinite dimension(a direct
sumof countablymary isotropicplanes).

Exercise3.12 LetF beafinite field of characteristi@.
(a) Provethatevery elementbof F hasa uniquesquareoot.

(b) By consideringhebilinearform obtainedby polarisationprove thatanon-
singularform in 2 or 3 variablesover F is equivalentto ax? + xy+ By?
or ax? 4+ xy+ By? + yz° respectiely. Prove that forms of the first shape
(with a, B # 0) areall equivalent,while thoseof the secondshapecannotbe
anisotropic.
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3.4 Polar spaces

Polarspaceslescribehegeometryof vectorspacegarryingareflexive sesquilin-
earform or aquadratidform in muchthe sameway asprojectve spaceslescribe
the geometryof vectorspacesWe now embarkon the studyof thesegeometries;
thethreeprecedingsectionontainthe prerequisitealgebra.

First, someterminology The polar spacesassociatedavith the threetypesof
forms (alternatingpilinear, Hermitian,andquadratic)arereferredto by the same
namesasthe groupsassociatedvith them: symplecti¢c unitary, and orthogonal
respectrely. Of whatdo thesespacegonsist?

LetV beavectorspacecarryingaform of oneof our threetypes.Recallthat
aswell asasesquilineaform b in two variableswe have aform f in onevariable
— either f is definedby f(x) = B(x,X), or b is obtainedby polarisingf — and
we make useof bothforms. A subspacef V on which B vanishesdentically
is calleda B-flat subspaceandoneon which f vanisheddentically is calleda
f-flat subspace(Note: thesetermsarenot standardin theliterature,suchspaces
are called totally isotropic (t.i.) andtotally singular (t.s.) respectrely.) The
unqualifiedterm flat subspacewill meana B-flat subspacen the symplecticor
unitary caseanda g-flat subspacén theorthogonakase.

Thepolar spaceassociatewith avectorspacecarryingaformis thegeometry
whoseflats arethe flat subspaceéin the above sense).Note that, if the form is
anisotropic thenthe only memberof the polar spaceis the zerosubspaceThe
polar rank of a classicalpolar spaceis the largestvectorspacerank of ary flat
subspaceijt is zeroif andonly if the form is anisotropic. Wherethereis no
confusion,polarrankwill be calledsimply rank (We will soonseethatthereis
no conflictwith our earlierdefinition of rankasthe numberof hyperbolicplanes
in thedecompositiorof the space.)We usethe termspoint, line, plane etc.,just
asfor projectve spaces.

Polarspacedearthe samerelationto formedspacesasprojectve spacesio
to vectorspaces.

We now proceedo derive somepropertieof polarspacesLetl” beaclassical
polarspaceof polarrankr.

(P1) Any flat, togetherwith theflatsit contains,s a projective spaceof dimen-
sionatmostr — 1.

(P2) Theintersectiorof any family of flatsis aflat.

(P3) If U isaflat of dimensiorr — 1 andp apointnotin U, thentheunionof the
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planegoining p to pointsof U is aflatW of dimensiorr — 1; andU NW is
ahyperplanen bothU andWw.

(P4) Thereexisttwo disjointflatsof dimensiorr — 1.

(P1)is clearsincea subspacef aflat subspaces itself flat. (P2)is alsoclear
To prove (P3),let p = (y). The functionx — B(X,y) on the vectorspaceU is
linear; let K be its kernel, a hyperplanen U. Thenthe line (of the projectve
spacejoining p to apointqg € U is flat if andonly if g € K; andtheunionof all
suchflat linesis aflat spacaV = (K, y), suchthatW NnU = K, asrequired.

Finally, to prove (P4),we usethehyperbolic-anisotropidecompositiomgain.
If L1,...,L; arethe hyperbolicplanes,andx;,y; arethe distinguishedspanning
vectorsin Lj, thentherequiredflatsare(x, ..., X ) and{yi, ..., ).

Thesignificanceof the geometrigpropertiegP1)—(P4)iesin themajorresult
of VeldkampandTits which determinesll thegeometrie®f rankatleast3 which
satisfythem. All thesegeometriesarepolarspacegaswe have definedthem)or
slightgeneralisationgpgethemith acoupleof exceptionsof rank3. In particular
thefollowing theoremholds:

Theorem 3.10 A finite geometrysatisfying(P1)—(P4)withr > 3is a polar space

Exercise3.13 Let P = PG(3, F) for some(notnecessarilgommutate) division
ring F. Constructanew geometrnyi” asfollows:

(a) the'points’ of I arethelinesof P;

(b) the'lines’ of I' arethe planepencilsin P (consistingof all lineslying in a
planell andcontaininga point p of M);

(c) the'planes’of I areof two types: the pencils(consistingof all the lines
througha point) andthe dualplanegconsistingof all thelinesin aplane).

Provethatl” satisfieqP1)—(P4with r = 3.

Provethat,if F is notisomorphidoits oppositethenl” containsion-isomorphic
planes.

(We will seelaterthat, if F is commutatve, thenT is an orthogonalpolar
space.)

Exercise3.14 Prove the Buelenhout—Shulproperty of the geometryof points
andlinesin apolarspaceif pisapointnotlying onaline L, thenp is collinear
with oneor all pointsof L.
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You shouldprove this both from the analyticdescriptionof polar spacesand
using(P1)—(P4).

In apolarspacd”, givenary setSof points,welet S- denotethe setof points
which areperpendiculato (thatis, collinearwith) every pointof S. Polarspaces
have goodinductive properties.Let G be a classicalpolar space.Therearetwo
naturalwaysof producinga “smaller” polarspacdrom G:

(a) Take apointx of G, andconsiderthe quotientspacex /x, the spacevhose
points,lines,... arethelines,planes, .. of G containingx.

(b) Take two non-perpendiculgsointsx andy, andconsider{x,y}*.

In eachcase,the spaceconstructeds a classicalpolar space having the same
germasG but with polarrankonelessthanthatof G. (Notethat,in (b), thespan
of x andy in thevectorspacds a hyperbolicplane.)

Exercise3.15 Provetheaborve assertions.

Therearemoregeneralersions.For example,if Sis aflat of dimensiord — 1,
thenS*/Sis a polar spaceof rankr — d with the samegermasG. We will see
belon how this inductive processcanbe usedto obtaininformationaboutpolar
spaces.

We investigatgust onetypein moredetail, the so-calledhyperbolicquadric
the orthogonalspacewhich is a direct sumof hyperbolicplanes(thatis, having
germO). The quadratidorm definingthis spacecanbetakento be xyXo + X3X4 +

. +X2|'_1X2r.

Proposition 3.11 Themaximalflatsof a hyperbolicquadricfall into two classes,
with thepropertieshattheintersectionof two maximalflatshasevencodimension
in eadh if andonly if they belongto thesameclass.

Proof First,notethattheresultholdswhenr = 1, sincethenthequadratidormis
X1X2 andtherearejusttwo singularpoints,((1,0)) and{((0,1)). By theinductive
principle, it follows thatary flat of dimensionr — 2 is containedn exactly two
maximalflats.

Wetakethe(r — 1)-flatsand(r — 2)-flatsastheverticesandedgef agraphr,
thatis, wejoin two (r — 1)-flatsif theirintersectioris an(r — 2)-flat. Thetheorem
will follow if we shav thatT" is connectecand bipartite, and that the distance
betweentwo verticesof I' is the codimensiorof their intersection. Clearly the
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codimensiorof the intersectionincreasedy at mostonewith every stepin the
graph,soit is atmostequalto the distance We prove equalityby induction.

LetU bea (r —1)-flat andK a (r — 2)-flat. We claim thatthe two (r — 1)-
spacedV;, W, containingK have differentdistancedrom U. Factoringout the
flat subspac&) NK andusinginduction,we may assumehatU NK = 0. Then
U NK+ is apoint p, whichliesin onebut notthe otherof Wy, Ws; sayp € Wy. By
induction,thedistancefrom U to W, is r — 1; sothedistancefrom U to W, is at
mostr, henceequalto r by theremarkin the precedingparagraph.

This establisheshe claim aboutthe distance.Thefactthatl™ is bipartitealso
follows, sincein any non-bipartitegraphthereexists an edgeboth of whosever-
ticeshavethesamalistancdrom somethird vertex, andtheargumenigivenshaws
thatthisdoesnt happennl. =

In particular the rank 2 hyperbolicquadricconsistsof two familiesof lines
formingagrid, asshavnin Figurel. Thisis theso-called‘'ruled quadric”,famil-
iar from modelssuchaswastepapebaslets.

Figurel: A ruledquadric

Exercise3.16 Shaw that Proposition3.11 canbe proved usingonly properties
(P1)—(P4)f polarspacesogethemith thefactthatan (r — 1)-flat liesin exactly
two maximalflats.

3.5 Finite polar spaces

The classificationof finite classicalpolar spacesvasachiezed by Theorem3.6.
We subdvide thesespacednto six families accordingto their germ, viz., one
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symplectic,two unitary, and three orthogonal. (Forms which differ only by a
scalarfactorobviously definethe samepolar space.) The following table gives
someinformationaboutthem. In thetable,r denotegshe polarspacerank,andd
thevectorspaceankof the germ;therankn of the spacds givenby n= 2r 4 d.
Thesignificanceof the parametet will emege shortly. This numberdepending
only on the germ, carriesnumericalinformationaboutall spacesn the family.
Notethat,in theunitarycasetheorderof thefinite field mustbeasquare.

Type o
Symplectic
Unitary
Unitary
Orthogonal
Orthogonal
Orthogonal

.
I—\NHI\)II—‘om

NF,ORFR OO

= O

Tablel: Finite polarspaces

Theorem 3.12 Thenumberof pointsin a finite polar spaceof rank 1 is ot+€ + 1,
whee € is givenin Table 1.

Proof LetV be a vectorspacecarryinga form of rank1 over GF(q). ThenV
is the orthogonaldirectsumof a hyperbolicline L andananisotropicgermU of
dimensiork (say).Let ny bethenumberof points.

Supposehatk > 0. If pisapointof thepolarspacethenp liesonthehyper
planep™; ary otherhyperplaneontainingp is non-dgyeneratavith polarrank 1
andhaving germof dimensionk — 1. Considera parallelclassof hyperplanesn
the affine spacewhosehyperplaneat infinity is p-. Eachsuchhyperplanecon-
tainsnk_1 — 1 points,andthe hyperplaneat infinity containgustone,viz., p. So
we have

—1=q(n1—1),
from whichit followsthatn, = 1+ (ng— 1)g¥. Soit is enoughto prove theresult
for thecasek = 0, thatis, for a hyperbolicline.

In thesymplecticcase gachof theq+ 1 projective pointsonaline is isotropic.

Considertheunitary case We cantake theform to be

B((X1,Y1), (X2,¥2)) = X1¥2 + Y1 %,
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wherex = x9 = X', r? = g. Sothe isotropic points satisfy xy + yX = 0, thatis,
Tr(xy) = 0. How mary pairs(x,y) satisfythis? If y = 0, thenx is arbitrary If
y # 0, thenafixedmultiple of x is in thekernelof thetracemap,a setof sizeq!/2
(sinceTr is GF(g/?)-linear). Sothereare

g+ (a—1)g¥?=1+(q—1)(q"/?+1)

vectorsj.e., q'/2 + 1 projective points.
Finally, considerthe orthogonalkase.The quadraticform is equivalentto xy,
andhastwo singularpoints,{(1,0)) and{(1,0)). =

Theorem 3.13 In afinite polar spaceof rankr, thereare (" — 1) (g ¢+ 1) /(q—
1) points,of which g —*¢ are not perpendicularto a givenpoint.

Proof We let F(r) be the numberof points,and G(r) the numbernot perpen-
dicularto a given point. (We do not assumehatG(r) is constantthis constang
follows from the inductionthat provesthe theorem.) We usethe two inductive
principlesdescribedattheendof thelastsection.

Claim1: G(r) = ¢°G(r — 1).

Take apointx, andcountpairs(y, z), wherey € x*+, z¢ x*+, andz € y*. Choos-
ing zfirst, thereareG(r) choicesthen(x, z) is ahyperbolicine, andy is a pointin
(x,2)*, sothereareF (r — 1) choicedor y. Ontheotherhand,choosingy first, the
linesthroughy arethe pointsof therankr — 1 polarspacex* /x, andsothereare
F(r — 1) of them,with g pointsdifferentfrom x on each giving qF(r — 1) choices
for y; then(x,y) and(y,2) arenon-perpendiculdinesin y*, i.e., pointsof y* /y,
sothereareG(r — 1) choicedfor (y,z), andsoqG(r — 1) choicedfor y. thus

G(r)-F(r—1)=qF(r-1)-qG(r - 1),

from which theresultfollows.

SinceG(1) = g**¢, it followsimmediatelythatG(r) = g% ~1*¢, asrequired.

Claim2: F(r)=14+qF(r—1)+G(r).

Iior this, simply obsene (asabove) that pointsperpendiculato x lie on lines
of X /x.

Néw it is justa matterof calculationthatthefunction(q" — 1)(q" ¢ +1)/(q—
1) satisfiesthe recurrenceof Claim 2 and correctly reducesto g+ + 1 when
r=1 m
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Theorem 3.14 Thenumberof maximalflatsin a finite polar spaceof rankr is

r .
|—!(1+ ql—l-S).
i=
Proof LetH(r) bethis number Countpairs(x,U), whereU is a maximalflat
andx € U. We find that

F(r)-H(r=1)=H(r)-(d - 1)/(a-1),

SO
H(r)=(1+gH(r-1).
Now theresultisimmediate. =

It shouldnow beclearthatary reasonableountingquestioraboutfinite polar
spacescan be answeredn termsof qg,r,e. We will do this for the associated
classicafgroupsat the endof the next section.

3.6 Witt' sLemma

LetV beaformedspacewith sesquilineaform B and(if appropriatejuadratic
form g. An isometryof V is alinearmapg:V — V which satisfiesB(xg,yg) =
B(x,y) for all x,y € V, and(if appropriate}j(xg) = q(x) for all x € V. (Notethat,
in the caseof a quadratidorm, the seconcconditionimpliesthefirst.)

The setof all isometriesof V forms a group, the isometrygroupof V. This
groupis our objectof studyfor the next few sections.

More generallyif V andW areformedspacef the sametype,anisometry
fromV toW is alinearmapfromV to W satisfyingthe conditionslistedabove.

Exercise3.17 LetV bea(notnecessarilynon-dgeneratejormedspaceof sym-
plecticor Hermitiantype, with radicalV-. Prove thatthe naturalmapfromV to
V /V+ is anisometry

Thepurposef thissubsectiofis to prove Witt’ sLemmaatransitiity assertion
abouttheisometrygroupof aformedspace.

Theorem 3.15 Supposé¢hatU; andU, are subspacesftheformedspacée/, and
h:U; — Uz is anisometry Thenthere is an isometryg of V which extendsh if
andonlyif (UinV+Y)h=UNV+,,

In particular, if V- = 0, thenanyisometrybetweersubspacesfV extendsto
anisometryofV.
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Proof Assumethath:U; — Uy is anisometry Clearly, if his the restrictionof
anisometryg of V, thenV+g =V, andso

(UinVHh= UinVHg=UignVig=UNV-=.

We have to prove thecorverse.

First we shov thatwe may assumehatU; andU, containV . Supposeot.
Chooseasubspac#V of V- whichis acomplemento bothU; NV andU,NV+
(seeExercise3.18),andextendh to U; & W by the identity maponW. Thisis
easilychecledto beanisometryto U, &W.

The proofis by inductionon rk(U; /V1). If Uy =V, = Uy, thenchooseary
complemenw for V4 in V andextendh by theidentity on W. Sothe basestep
of theinductionis proved. Assumethatthe conclusiorof Witt's Lemmaholdsfor
V/, Uf, US, i wheneverrk(U]/(V')1) < rk(Uy/V4).

Let H bea hyperplaneof U; containingV-. Thentherestrictionf’ of f to H
hasan extensionto anisometryg’ of V. Now it is enoughto shaw thath(g/)~1
extendsto anisometry;in otherwords,we mayassumehath is theidentityonH.
Moreover, the conclusionis clearif his theidentity onU;; sosupposeot. Then
kerlh— 1) = H, andsotheimageof h— 1 is arank1 subspac® of U;.

Sinceh is anisometry for all x,y € U; we have

B(xh,yh—y) = B(xhyh)-B(xhy)

= B(X7 y) - B(Xha y)
B(x—xh,y).

So,if y € H, thenary vectorxh— x of P is orthogonato y; thatis, H < P+,

Now supposehatP £ Ui-. ThenUi NP+ =U,NP+ = H. If W is acomple-
mentto H in P, thenwe canextendh by theidentity onW to obtaintherequired
isometry Sowe mayassumdurtherthatU;,U, < PL. In particulay P < P+,

Next we shov that we may assumehatU; = U, = P+. Supposdirst that
Up # Ua. If Uj = (H,u;) for i = 1,2, let Wp be a complementfor U; + Uz in
P+, andW = (W, u; + Up); thenh canbe extendedby the identity on W to an
isometryon P+ If U; = Uy, take ary complemenW to U; in P-. In eithercase,
the extensionis anisometryof P+ which actsasthe identity on a hyperplaneH’
of P containingH. Sowe mayreplaceU;,U,, H by P+, P H’.

Let P = (x) andlet x = uh—u for someu € U;. We have B(x,x) = 0. In the
orthogonakase we have

q(x) = q(uh—u) = g(uh) + q(u) — B(uh, u) = 2q(u) — B(u,u) = 0.

45



(We have B(uh,u) = B(u,u) becaus@&(uh—u,u) = 0.) SoP is flat, andthereis a
hyperbolicplane(u,v), with v ¢ P+. Ourjob is to extendh to thevectorv.

To achieve this, we shaw first thatthereis a vectorV suchthat (uh,v)+ =
(u,v)*. Thisholdsbecauséu, V)~ is ahyperplanen (uh)* notcontainingv-.

Next, we obsere that(uh,V) is ahyperbolicplane,sowe canchoosea vector
v’ suchthatB(uh,v"’) = 1 and(if relevant)Q(v’) = 0.

Finally, we obsere thatby extendingh to mapv to v/ we obtaintherequired
isometryof V.

Exercise3.18 Let U; andU, be subspacesf a vectorspaceV having the same
rank. Shav thatthereis a subspac&V of V which is a complementor bothU1
andUs.

Corollary 3.16 (a) Theranksof maximalflat subspacesfaformedspaceare
all equal.

(b) TheWitt rank and isometrytype of the germ of a non-dgeneite formed
spaceare invariants.

Proof (a)LetU; andU, be maximalflat subspacesThenbothU; andU, con-
tainsV+. If rk(U1) < rk(Uz), thereis anisometryh from Uy into U,. If g is the
extensionof h to V, thentheimageof U, underg 1! is a flat subspaceroperly
containingU1, contradictingmaximality.

(b) Theresultis clearif V is anisotropic.OtherwiseJet U; andU, be hyper
bolic planes ThenU; andU, areisometricandaredisjointfromV-. An isometry
of V carryingU; to U, takesU;- to U5-. Thentheresultfollows by induction. m

Theorem 3.17 LetV, be a non-dgeneate formedspacewith polar rankr and
germW over GF(q). Let G, betheisometrygroupofV;. Then

G| = (lL!(qi - 1)(q‘+8+1)q2“1+€) [ed

_ ql’(l’+€) (ILl(ql . 1)(ql+8+1)> ‘GO|7

46



whee |Gy is givenby thefollowing table:

Type | € |Go|
Symplectic| 0| O 1
Unitary | 0| —3 1
Unitary | 1] 1 q/2+1
Orthogonal 0| —1 1
2 (godd)
Orthogonal 1| O {1 (q even)
Orthogonal 2| 1 2(9+1)

Proof By Theorem3.13, the numberof choicesof a vectorx spanninga flat
subspacés (g —1)(g €+ 1). Thenthenumberof choicesof avectory spanning
a flat subspacendhaving inner productl with x is g €. Thenx andy span
a hyperbolicplane. Now Witt's Lemmashows that G, actstransitvely on such
pairs,andthe stabiliserof sucha pairis G,_1, by theinductive principle.

In the casesvhered = 0, Gy is thetrivial groupon a vectorspaceof rank 0.
In theunitarycasewith d = 1, Gg preseresthe Hermitianform o ® soconsists
of multiplication by (g2 + 1)st rootsof unity. In the orthogonalcasewith & =
1, Go preseresthe quadraticform x?, and so consistsof multiplication by +1
only. Finally, considerthe orthogonalcasewith & = 2. Herewe canrepresent
the quadratidform asthe normfrom GF(g?) to GF(q), thatis, N(x) = x4, The
GHq)-linear mapswhich presere this form a dihedralgroupof order2(q+ 1):
the cyclic groupis generatedy the (q+ 1)strootsof unity in GF(g?), which is
invertedby thenon-trivial field automorphisnover GF(q) (since,if x4t1 = 1,then
x4 =x1).
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