
1 Fieldsand vector spaces

In thissectionwerevisesomealgebraicpreliminariesandestablishnotation.

1.1 Division rings and fields

A division ring, or skew field, is a structureF with two binaryoperationscalled
additionandmultiplication, satisfyingthefollowing conditions:

(a)
�
F ����� is anabeliangroup,with identity0, calledtheadditivegroupof F;

(b)
�
F � 0 ���	� is agroup,calledthemultiplicativegroupof F;

(c) left or right multiplicationby any fixedelementof F is anendomorphismof
theadditivegroupof F .

Note that condition(c) expressesthe two distributive laws. Note that we must
assumeboth,sinceonedoesnot follow from theother.

Theidentityelementof themultiplicativegroupis called1.
A field is a division ring whosemultiplicationis commutative (that is, whose

multiplicativegroupis abelian).

Exercise1.1 Prove thatthecommutativity of additionfollows from theotherax-
ioms for a division ring (that is, we needonly assumethat

�
F ����� is a groupin

(a)).

Exercise1.2 A real quaternionhasthe form a � bi � cj � dk, wherea � b � c � d 
�
. Addition andmultiplicationaregivenby “the usualrules”, togetherwith the

following rulesfor multiplicationof theelements1 � i � j � k:� 1 i j k
1 1 i j k
i i � 1 k � j
j j � k � 1 i
k k j � i � 1

Prove that theset 
 of realquaternionsis a division ring. (Hint: If q � a � bi �
cj � dk, let q��� a � bi � cj � dk; prove thatqq��� a2 � b2 � c2 � d2.)
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Multiplication by zeroinducesthezeroendomorphismof
�
F ����� . Multiplica-

tion by any non-zeroelementinducesan automorphism(whoseinverseis mul-
tiplication by the inverseelement). In particular, we seethat the automorphism
groupof

�
F ����� actstransitively on its non-zeroelements.So all non-zeroele-

mentshave thesameorder, which is eitherinfinite or a prime p. In thefirst case,
wesaythatthecharacteristicof F is zero;in thesecondcase,it hascharacteristic
p.

Thestructureof themultiplicative groupis not sostraightforward. However,
the possiblefinite subgroupscanbe determined.If F is a field, thenany finite
subgroupof themultiplicative groupis cyclic. To prove this we requireVander-
monde’sTheorem:

Theorem 1.1 A polynomialequationof degreen overa fieldhasat mostn roots.

Exercise1.3 Prove Vandermonde’s Theorem. (Hint: If f
�
a��� 0, then f

�
x����

x � a� g � x� .)
Theorem 1.2 A finitesubgroupof themultiplicativegroupof a field is cyclic.

Proof An elementω of afield F is annthrootof unity if ωn � 1; it is aprimitive
nth rootof unity if alsoωm �� 1 for 0 � m � n.

Let G bea subgroupof ordern in themultiplicativegroupof thefield F. By
Lagrange’s Theorem,every elementof G is annth root of unity. If G containsa
primitiventh rootof unity, thenit is cyclic, andthenumberof primitiventh roots
is φ

�
n� , whereφ is Euler’s function.If not, thenof coursethenumberof primitive

nth rootsis zero.Thesameconsiderationsapplyof courseto any divisorof n. So,
if ψ

�
m� denotesthenumberof primitivemth rootsof unity in G, then

(a) for eachdivisormof n, eitherψ
�
m��� φ

�
m� or ψ

�
m��� 0.

Now everyelementof G hassomefinite orderdividing n; so

(b) ∑
m �nψ

�
m��� n.

Finally, a familiarpropertyof Euler’s functionyields:

(c) ∑
m� nφ

�
m��� n.

From (a), (b) and(c) we concludethat ψ
�
m��� φ

�
m� for all divisorsm of n. In

particular, ψ
�
n��� φ

�
n� �� 0, andG is cyclic.
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Fordivisionrings,thepositionisnotsosimple,sinceVandermonde’sTheorem
fails.

Exercise1.4 Findall solutionsof theequationx2 � 1 � 0 in 
 .

However, the possibilitiescanbe determined.Let G be a finite subgroupof
themultiplicativegroupof thedivision ring F. We claim that thereis anabelian
groupA suchthatG is agroupof automorphismsof A actingsemiregularlyonthe
non-zeroelements.Let B bethesubgroupof

�
F ����� generatedby G. ThenB is a

finitely generatedabeliangroupadmittingG actingsemiregularly. If F hasnon-
zerocharacteristic,thenB is elementaryabelian;take A � B. Otherwise,choose
a prime p suchthat, for all x � g 
 G, theelement

�
xg � x� p � 1 is not in B, andset

A � B� pB.
The structureof semiregular automorphismgroupsof finite groups(a.k.a.

Frobeniuscomplements) wasdeterminedby Zassenhaus.SeePassman,Permu-
tation Groups, Benjamin,New York, 1968,for a detailedaccount.In particular,
either G is metacyclic, or it hasa normal subgroupisomorphicto SL

�
2 � 3� or

SL
�
2 � 5� . (Thesearefinite groupsG having a uniquesubgroupZ of order2, such

thatG� Z is isomorphicto thealternatinggroupA4 or A5 respectively. Thereis a
uniquesuchgroupin eachcase.)

Exercise1.5 Identify the division ring 
 of real quaternionswith the real vec-
tor space

� 4 with basis � 1 � i � j � k � . Let U denotethemultiplicative groupof unit
quaternions, thoseelementsa � bi � cj � dk satisfyinga2 � b2 � c2 � d2 � 1. Show
thatconjugationby aunit quaternionis anorthogonaltransformationof

� 4, fixing
the1-dimensionalspacespannedby 1 andinducinganorthogonaltransformation
on the3-dimensionalsubspacespannedby i � j � k.

Prove that themapfrom U to the3-dimensionalorthogonalgrouphaskernel 
1 andimagethegroupof rotationsof 3-space(orthogonaltransformationswith

determinant1).
Henceshow thatthegroupsSL

�
2 � 3� andSL

�
2 � 5� arefinite subgroupsof the

multiplicativegroupof 
 .
Remark: Thisconstructionexplainswhy thegroupsSL

�
2 � 3� andSL

�
2 � 5� are

sometimescalledthebinarytetrahedral andbinaryicosahedral groups.Construct
alsoa binary octahedral groupof order48, andshow that it is not isomorphicto
GL

�
2 � 3� (the groupof 2 ! 2 invertible matricesover the integersmod 3), even

thoughboth groupshave normalsubgroupsof order2 whosefactorgroupsare
isomorphicto thesymmetricgroupS4.
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1.2 Finite fields

Thebasicfactsaboutfinite fieldsaresummarisedin thefollowing two theorems,
dueto WedderburnandGaloisrespectively.

Theorem 1.3 Everyfinitedivisionring is commutative.

Theorem 1.4 Thenumberof elementsin a finite field is a prime power. Con-
versely, if q is a primepower, thenthere is a uniquefield with q elements,up to
isomorphism.

Theuniquefinite field with a givenprimepower orderq is calledtheGalois
field of orderq, anddenotedby GF

�
q� (or sometimes" q). If q is prime, then

GF
�
q� is isomorphicto #$� q# , theintegersmodq.
Wenow summarisesomeresultsaboutGF

�
q� .

Theorem 1.5 Let q � pa, where p is primeanda is a positiveinteger. Let F �
GF

�
q� .

(a) F hascharacteristic p, and its additivegroup is an elementaryabelian p-
group.

(b) Themultiplicativegroupof F is cyclic, generatedby a primitive
�
pa � 1� th

rootof unity (calleda primitiveelementof F).

(c) Theautomorphismgroupof F is cyclicof ordera,generatedbytheFrobenius
automorphismx %& xp.

(d) For everydivisorb of a, thereis a uniquesubfieldof F of order pb, consisting
of all solutionsof xpb � x; andtheseare all thesubfieldsof F.

Proof Part(a) is obvioussincetheadditivegroupcontainsanelementof orderp,
andpart (b) follows from Theorem1.2. Parts(c) and(d) aremosteasilyproved
usingGaloistheory. Let E denotethe subfield #$� p# of F. Thenthe degreeof
F over E is a. The Frobeniusmapσ : x %& xp is an E-automorphismof F, and
hasordera; so F is a Galoisextensionof E, andσ generatesthe Galoisgroup.
Now subfieldsof F necessarilycontainE; by theFundamentalTheoremof Galois
Theory, they arethefixedfieldsof subgroupsof theGaloisgroup ' σ ( .
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For explicit calculationin F � GF
�
pa � , it is mostconvenientto representit

asE ) x*+� � f � , whereE �,#$� p# , E ) x* is the polynomialring over E, and f is the
(irreducible)minimumpolynomialof a primitive elementof F. If α denotesthe
coset

�
f �-� x, thenα is a rootof f , andhencea primitiveelement.

Now everyelementof F canbewrittenuniquelyin theform

c0 � c1α �.�����/� ca � 1αa � 1 �
wherec0 � c1 ��010�02� ca � 1 
 E; additionis straightforwardin thisrepresentation.Also,
every non-zeroelementof F can be written uniquely in the form αm, where
0 3 m � pa � 1, sinceα is primitive; multiplication is straightforward in this
representation.Using the fact that f

�
α ��� 0, it is possibleto constructa table

matchingup thetwo representations.

Example Thepolynomialx3 � x � 1 is irreducibleover E �4#$� 2# . Sothefield
F � E

�
α � haseightelements,whereα satisfiesα3 � α � 1 � 0 over E. We have

α7 � 1, andthetableof logarithmsis asfollows:

α0 1
α1 α
α2 α2

α3 α � 1
α4 α2 � α
α5 α2 � α � 1
α6 α2 � 1

Hence �
α2 � α � 1� � α2 � 1��� α5 � α6 � α4 � α2 � α 0

Exercise1.6 Show that therearethreeirreduciblepolynomialsof degree4 over
the field #$� 2# , of which two are primitive. HenceconstructGF

�
16� by the

methodoutlinedabove.

Exercise1.7 Show thatanirreduciblepolynomialof degreem over GF
�
q� hasa

root in GF
�
qn � if andonly if mdividesn.

Henceshow that thenumberam of irreduciblepolynomialsof degreem over
GF

�
q� satisfies

∑
m� nmam � qn 0
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Exercise1.8 Show that, if q is even, thenevery elementof GF
�
q� is a square;

while, if q is odd, thenhalf of the non-zeroelementsof GF
�
q� aresquaresand

half arenon-squares.
If q is odd,show that � 1 is asquarein GF

�
q� if andonly if q 5 1

�
mod4� .

1.3 Vector spaces

A left vectorspaceover a division ring F is a unital left F-module.That is, it is
anabeliangroupV, with a anti-homomorphismfrom F to End

�
V � mapping1 to

theidentityendomorphismof V.
Writing scalarson theleft, we have

�
cd� v � c

�
dv� for all c � d 
 F andv 
 V:

thatis, scalarmultiplicationby cd is thesameasmultiplicationby d followedby
multiplication by c, not vice versa. (The oppositeconventionwould make V a
right (ratherthanleft) vectorspace;scalarswould morenaturallybe written on
theright.) Theunital conditionsimplymeansthat1v � v for all v 
 V.

NotethatF is avectorspaceoveritself,usingfieldmultiplicationfor thescalar
multiplication.

If F is a division ring, theoppositedivision ring F 6 hasthesameunderlying
setasF andthesameaddition,with multiplicationgivenby

a 7 b � ba0
Now aright vectorspaceoverF canberegardedasa left vectorspaceoverF 6 .

A linear transformationT : V & W betweentwo left F-vectorspacesV and
W is a vectorspacehomomorphism;that is, a homomorphismof abeliangroups
which commuteswith scalarmultiplication. We write linear transformationson
theright, sothatwehave �

cv� T � c
�
vT �

for all c 
 F, v 
 V. We addlineartransformations,or multiply themby scalars,
pointwise(asfunctions),andmultiply thenby functioncomposition;the results
areagainlineartransformations.

If a linear transformationT is one-to-oneandonto, thenthe inversemapis
alsoa lineartransformation;wesaythatT is invertibleif thisoccurs.

Now Hom
�
V � W � denotesthe setof all linear transformationsfrom V to W.

Thedualspaceof F is F � � Hom
�
V � F � .

Exercise1.9 Show thatV � is a right vectorspaceoverF.
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A vectorspaceis finite-dimensionalif it is finitely generatedasF-module.
A basisis a minimal generatingset. Any two baseshave the samenumberof
elements;this numberis usuallycalledthedimensionof thevectorspace,but in
orderto avoid confusionwith a slightly differentgeometricnotionof dimension,
I will call it therankof thevectorspace.Therankof V is denotedby rk

�
V � .

Everyvectorcanbeexpresseduniquelyasa linearcombinationof thevectors
in abasis.In particular, a linearcombinationof basisvectorsis zeroif andonly if
all thecoefficientsarezero. Thus,a vectorspaceof rankn over F is isomorphic
to Fn (with coordinatewiseadditionandscalarmultiplication).

I will assumefamiliarity with standardresultsof linear algebraaboutranks
of sumsand intersectionsof subspaces,aboutranksof imagesand kernelsof
linear transformations,andaboutthe representationof linear transformationsby
matriceswith respectto givenbases.

Aswell aslineartransformations,werequiretheconceptof asemilineartrans-
formationbetweenF-vectorspacesV andW. Thiscanbedefinedin two ways.It
is amapT fromV toW satisfying

(a)
�
v1 � v2 � T � v1T � v2T for all v1 � v2 
 V;

(b)
�
cv� T � cσvT for all c 
 F, v 
 V, whereσ is anautomorphismof F called
theassociatedautomorphismof T.

Note that, if T is not identically zero,the associatedautomorphismis uniquely
determinedby T.

Theseconddefinitionis asfollows. Givenanautomorphismσ of F, weextend
theactionof σ to Fn coordinatewise:�

c1 �10�0�01� cn � σ � �
cσ

1 ��010�02� cσ
n �80

Hencewe have anactionof σ on any F-vectorspacewith a givenbasis.Now a
σ-semilineartransformationfrom V to W is thecompositionof a lineartransfor-
mationfrom V to W with theactionof σ onW (with respectto somebasis).

Thefactthatthetwo definitionsagreefollowsfrom theobservations9 theactionof σ onFn is semilinearin thefirst sense;9 thecompositionof semilineartransformationsis semilinear(andtheassoci-
atedautomorphismis thecompositionof theassociatedautomorphismsof
thefactors).
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This immediatelyshows thata semilinearmapin thesecondsenseis semilinear
in thefirst. Conversely, if T is semilinearwith associatedautomorphismσ, then
thecompositionof T with σ � 1 is linear, soT is σ-semilinear.

Exercise1.10 Prove theaboveassertions.

If a semilineartransformationT is one-to-oneandonto,thentheinversemap
is alsoasemilineartransformation;wesaythatT is invertibleif thisoccurs.

Almost exclusively, I will consideronly finite-dimensionalvectorspaces.To
completethepicture,hereis thesituationin general.In ZFC (Zermelo–Fraenkel
set theorywith the Axiom of Choice),every vectorspacehasa basis(a setof
vectorswith the propertythat every vectorhasa uniqueexpressionasa linear
combinationof a finite setof basisvectorswith non-zerocoefficients),andany
two baseshave the samecardinalnumberof elements. However, without the
Axiom of Choice,theremayexist avectorspacewhichhasnobasis.

Notealsothat thereexist division ringsF with bimodulesV suchthatV has
differentrankswhenregardedasa left or a right vectorspace.

1.4 Projectivespaces

It is not easyto give a concisedefinition of a projective space,sinceprojective
geometrymeansseveral different things: a geometrywith points, lines, planes,
andso on; a topologicalmanifold with a strangekind of torsion; a lattice with
meet,join, andorder;anabstractincidencestructure;atool for computergraphics.

Let V be a vectorspaceof rank n � 1 over a field F . The “objects” of the
n-dimensionalprojectivespacearethesubspacesof V, apartfromV itself andthe
zerosubspace� 0 � . Eachobjectis assignedadimensionwhich is onelessthanits
rank,andwe usegeometricterminology, so thatpoints, linesandplanesarethe
objectsof dimension0, 1 and2 (thatis, rank1,2, 3 respectively). A hyperplaneis
anobjecthaving codimension1 (thatis, dimensionn � 1, or rankn). Two objects
areincident if onecontainstheother. So two objectsof thesamedimensionare
incidentif andonly if they areequal.

Then-dimensionalprojectivespaceis denotedby PG
�
n � F � . If F is theGalois

field GF
�
q� , we abbreviatePG

�
n � GF

�
q��� to PG

�
n � q� . A similar conventionwill

beusedfor othergeometriesandgroupsoverfinite fields.
A 0-dimensionalprojective spacehasno internalstructureat all, like an ide-

alisedpoint. A 1-dimensionalprojective spaceis just a setof points,onemore
thanthenumberof elementsof F, with (at themoment)no furtherstructure.(If
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� e1 � e2 � is a basisfor V, thenthepointsarespannedby thevectorsλe1 � e2 (for
λ 
 F) ande1.)

For n : 1, PG
�
n � F � containsobjectsof differentdimensions,andtherelation

of incidencegivesit anon-trivial structure.
Insteadof our“incidencestructure”model,wecanrepresentaprojectivespace

asacollectionof subsetsof aset.Let Sbethesetof pointsof PG
�
n � F � . Thepoint

shadowof anobjectU is thesetof pointsincidentwith U . Now thepointshadow
of a point P is simply � P � . Moreover, two objectsareincidentif andonly if the
point shadow of onecontainsthatof theother.

Thediagrambelow showsPG
�
2 � 2� . It hassevenpoints,labelled1, 2, 3, 4, 5,

6, 7; theline shadowsare123,145,167,246,257,347356(where,for example,
123is anabbreviation for � 1 � 2 � 3 � ).

; ; ;
; ;;

;
< < < < < <= = =

= = = =
>>>>>> ???

????

2 6 4

3

1

5
7

Thecorrespondencebetweenpointsandspanningvectorsof the rank-1sub-
spacescanbetakenasfollows:

1 2 3 4 5 6 7�
0 � 0 � 1� �

0 � 1 � 0� �
0 � 1 � 1� �

1 � 0 � 0� �
1 � 0 � 1� �

1 � 1 � 0� �
1 � 1 � 1�

The following geometricpropertiesof projective spacesare easily verified
from therankformulaeof linearalgebra:

(a)Any two distinctpointsareincidentwith auniqueline.

(b) Two distinctlinescontainedin aplaneareincidentwith auniquepoint.

(c) Any threedistinctpoints,or any two distinctcollinearlines,areincidentwith
auniqueplane.

(d) A line not incidentwith agivenhyperplanemeetsit in a uniquepoint.

(e) If two distinct pointsare both incidentwith someobjectof the projective
space,then the uniqueline incident with them is also incident with that
object.
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Exercise1.11 Prove theaboveassertions.

It is usualto belessformalwith thelanguageof incidence,andsay“the point
P lies on the line L”, or “the line L passesthroughthepoint P” ratherthan“the
point P and the line L are incident”. Similar geometriclanguagewill be used
without furthercomment.

An isomorphismfrom aprojectivespaceΠ1 to aprojectivespaceΠ2 is amap
from theobjectsof Π1 to theobjectsof Π2 whichpreservesthedimensionsof ob-
jectsandalsopreservestherelationof incidencebetweenobjects.A collineation
of aprojectivespaceΠ is anisomorphismfrom Π to Π.

The importanttheoremwhich connectsthis topic with that of the previous
sectionis theFundamentalTheoremof ProjectiveGeometry:

Theorem 1.6 Any isomorphismof projectivespacesof dimensionat least two
is inducedby an invertible semilineartransformationof the underlyingvector
spaces. In particular, the collineationsof PG

�
n � F � for n @ 2 are inducedby

invertiblesemilineartransformationsof therank-
�
n � 1� vectorspaceoverF.

This theoremwill not beprovedhere,but I make a few commentsaboutthe
proof. Considerfirst the casen � 2. Oneshows that the field F canbe recov-
eredfrom the projective plane(that is, the additionandmultiplication in F can
bedefinedby geometricconstructionsinvolving pointsandlines). Theconstruc-
tion is basedon choosingfour pointsof which no threearecollinear. Henceany
collineationfixing thesefour points is inducedby a field automorphism.Since
the groupof invertible linear transformationsactstransitively on quadruplesof
pointswith this property, it follows thatany collineationis inducedby thecom-
positionof a lineartransformationanda field automorphism,thatis, a semilinear
transformation.

Forhigher-dimensionalspaces,weshow thatthecoordinatisationsof theplanes
fit togetherin aconsistentway to coordinatisethewholespace.

In thenext chapterwe studypropertiesof thecollineationgroupof projective
spaces.Sinceweareconcernedprimarily with groupsof matrices,I will normally
speakof PG

�
n � 1 � F � astheprojective spacebasedon a vectorspaceof rankn,

ratherthanPG
�
n � F � basedonavectorspaceof rankn � 1.

Next wegivesomenumericalinformationaboutfinite projectivespaces.

Theorem 1.7 (a) Thenumberof pointsin the projectivespacePG
�
n � 1 � q� is�

qn � 1��� � q � 1� .
11



(b)Moregenerally, thenumberof
�
m � 1� -dimensionalsubspacesofPG

�
n � 1 � q�

is �
qn � 1� � qn � q�A���1� � qn � qm� 1 ��
qm � 1� � qm � q�A����� � qm � qm� 1 � 0

(c) Thenumberof
�
m � 1� -dimensionalsubspacesof PG

�
n � 1 � q� containinga

given
�
l � 1� -dimensionalsubspaceis equalto thenumberof

�
m � l � 1� -

dimensionalsubspacesof PG
�
n � l � 1 � q� .

Proof (a) Theprojective spaceis basedon a vectorspaceof rankn, which con-
tainsqn vectors.Oneof theseis the zerovector, andthe remainingqn � 1 each
spanasubspaceof rank1. Eachrank1 subspacecontainsq � 1 non-zerovectors,
eachof whichspansit.

(b) Count the numberof linearly independentm-tuplesof vectors. The jth
vectormustlie outsidethe rank

�
j � 1� subspacespannedby theprecedingvec-

tors,sothereareqn � q j � 1 choicesfor it. Sothenumberof suchm-tuplesis the
numeratorof the fraction. By the sameargument(replacingn by m), the num-
berof linearly independentm-tupleswhich spana givenrank m subspaceis the
denominatorof thefraction.

(c) If U is a rank l subspaceof the rank m vectorspaceV, thenthe Second
IsomorphismTheoremshows that thereis a bijectionbetweenrankm subspaces
of V containingU , andrank

�
m � l � subspacesof the rank

�
n � l � vectorspace

V � U .

Thenumbergivenby thefractionin part(b) of thetheoremis calleda Gaus-

siancoefficient, written B n
m C q

. Gaussiancoefficientshave propertiesresembling

thoseof binomialcoefficients,to which they tendasq & 1.

Exercise1.12 (a)Prove that

B n
k C q

� qn � kD 1 E n
k � 1 F q

� E n � 1
k F q

0
(b) Prove thatfor n @ 1,

n � 1

∏
i G 0

�
1 � qix�H� n

∑
kG 0

qk I k � 1JLK 2 B n
k C q

xk 0
(This result is known as the q-binomial theorem, sinceit reducesto the
binomialtheoremasq & 1.)
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If we regarda projectivespacePG
�
n � 1 � F � purelyasanincidencestructure,

thedimensionsof its objectsarenot uniquelydetermined.This is becausethere
is anadditionalsymmetryknown asduality. Thatis, if weregardthehyperplanes
aspoints,anddefinenew dimensionsby dim� � U ��� n � 2 � dim

�
U � , we again

obtaina projective space,with thesamerelationof incidence.Thereasonthat it
is aprojectivespaceis asfollows.

Let V �M� Hom
�
V � F � bethedualspaceof V, whereV is theunderlyingvector

spaceof PG
�
n � 1 � F � . RecallthatV � isarightvectorspaceoverF, orequivalently

a left vectorspaceover theoppositefield F 6 . To eachsubspaceU of V, thereis a
correspondingsubspaceU† of V � , theannihilator of U , givenby

U† �,� f 
 V � : uf � 0 for all u 
 U �N0
The correspondenceU %& U† is a bijection betweenthe subspacesof V andthe
subspacesof V � ; we denotethe inversemapfrom subspacesof V � to subspaces
of V alsoby †. It satisfies

(a)
�
U† � † � U ;

(b)U1 3 U2 if andonly if U†
1 @ U†

2 ;

(c) rk
�
U† �H� n � rk

�
U � .

Thuswehave:

Theorem 1.8 Thedual of PG
�
n � 1 � F � is theprojectivespacePG

�
n � 1 � F 6O� . In

particular, if n @ 3, thenPG
�
n � 1 � F � is isomorphicto its dual if andonly if F is

isomorphicto its oppositeF 6 .
Proof Thefirst assertionfollowsfrom ourremarks.Thesecondfollowsfrom the
first by useof theFundamentalTheoremof ProjectiveGeometry.

Thus,PG
�
n � 1 � F � is self-dualif F is commutative,andfor somenon-commutative

divisionringssuchas 
 ; but therearedivisionringsF for whichF �P� F 6 .
An isomorphismfrom F to its oppositeis abijectionσ satisfying�

a � b� σ � aσ � bσ ��
ab� σ � bσaσ �

for all a � b 
 F . Sucha mapis calledananti-automorphismof F.

Exercise1.13 Show that 
 P� 
 6 . (Hint:
�
a � bi � cj � dk � σ � a � bi � cj � dk.)
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