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Synchronization in the infinite case

We cannot simply take the definition of a syn-
chronizing finite permutation group and extend it
to the infinite: there would be no such groups!

Let Q) be an infinite set. Then both the injective
maps, and the surjective maps, on () form sub-
monoids of the full transformation monoid; they
contain the symmetric group but no reset word.

Since the essence of synchronization seems to
involve mapping different states to the same place,
it is reasonable to require that the map we adjoin
is not injective.

Our first attempt at a suitable definition is based
on the following fact about the finite case:

Theorem 1. Let M be a transformation monoid on a fi-
nite set ). Suppose that, for any v, w € (), there exists
f e Muwithof = wf. Then M is synchronizing.

Proof. Let f’ be an element of M whose image S
has least possible cardinality. If |[S| > 1, choose
distinct v,w € S, and choose f as in the hypoth-
esis; then the image of f'f is strictly smaller than
that of f. O

Accordingly, we could try a definition along the
following lines:

e A transformation monoid M on () is synchro-
nizing if, for any v, w € (), there exists f € M
with vf = wf; equivalently, Gr(M) is the null
graph on Q).

e A permutation group G on () is synchronizing
if, for any map f : QO — Q which is not injec-
tive, the monoid (G, f) is synchronizing.

Unfortunately this doesn’t give anything inter-
esting!

Ramsey’s Theorem
Ramsey’s Theorem is much more general than
the form given here; but this is all we need.

Where necessary, we assume the Axiom of
Choice, one of whose consequences is that an in-
finite set contains a countably infinite subset.

Theorem 2. An infinite graph contains either an infi-
nite clique or an infinite independent set.

By our remark, it suffices to prove this for a
countably infinite graph.

Proof. Let v1,vs,... be the vertices. We construct
inductively a sequence of triples (x;, Y;, €;), where
the x; are distinct vertices, Y; are infinite decreas-
ing subsets of vertices, x; € Y; if and only if j < i,
and x; is joined to all or no vertices of Y; according
as €; = 1 or €; = 0. We begin with Yy the whole
vertex set.

Choose x; € Y;_1. By the Pigeonhole Principle,
either x; has infinitely many neighbours, or it has
infinitely many non-neighbours, in Y;_1; let Y; be
the appropriate infinite set and choose €; appropri-
ately.

Now the sequence (€1,€3,...) has a constant
subsequence; the points x; corresponding to this



subsequence form a clique or independent set, de-
pending on the constant value of €;. O

We use Ramsey’s Theorem to show that the no-
tion of “synchronizing” we just defined is not in-
teresting, at least for permutation groups of count-
able degree.

Theorem 3. Let G be a permutation group of countable
degree. Then G is synchronizing if and only if it is 2-set
transitive.

Proof. Suppose that G is not 2-set transitive. Then
there is a non-trivial G-invariant graph X (take
a G-orbit on 2-sets as edges). Replacing X by
its complement if necessary, and using Ramsey’s
theorem, we may assume that X has a countable
clique Y.

Let v and w be non-adjacent vertices. Choose a
bijection f from Q \ w to Y, and extend it by set-
ting f(w) = f(v). Clearly f is an endomorphism
of X collapsing v and w, and (G, f) is not a syn-
chronizing monoid.

Conversely, if G is 2-set transitive and f a
map satisfying vf = wf, then (vg)(g~'f) =
(wg)(g71f) for any ¢ € G; so (G, f) collapses all
pairs, and G is synchronizing. O

Weak synchronization

We look at a couple of modifications. We say
that G is weakly synchronizing if, for any map f :
QO — O of finite rank (that is, having finite image),
the monoid (G, f) contains a reset word.

Now imprimitive groups may be weakly syn-
chronizing; but it is true that a weakly synchro-
nizing group cannot have a finite system of blocks
of imprimitivity.

For if S is a transversal for such a system, and
f is the map taking any point of Q) to the repre-
sentative point of f, then (G, f) contains no reset
word.

Note also that, if M is a transformation monoid
containing an element of finite rank, and Gr(M) is
complete, then M contains a reset word.

Strong synchronization

Another possible approach: since, in general,
words in (G, f) will not be reset words, we should
allow infinite words. This requires some prelimi-
nary thought.

Let M be a transformation monoid on (), and let
M be its closure in the topology of pointwise con-
vergence: a sequence (f,) of element of M con-
verges to the limit f if, for all v € (), there exists ng
such that vf, = vf forall n > ny.

Now we say that a permutation group G is
strongly synchronizing if, for any map f which is
not injective, the closure of M = (G, f) contains
an element of rank 1.

Theorem 4. o A strongly synchronizing group is
synchronizing.

o A 2-set transitive group of countable degree is
strongly synchronizing.

As a consequence of this theorem and the pre-
vious one about synchronizing groups, a permu-
tation group of countable degree is strongly syn-
chronizing if and only if it is 2-set transitive.

Proof. (a) Let f be amap which is not injective, and
let (f,) be a sequence of elements of (G, f) con-
verging to a rank 1 function with image {z}, and
choose two distinct points x and y. There exist 15
and 1y such that xf, = zforn > nj and yf, = z
forn > ny. So, if n = max(ny, ny), then f, € (G, f)
and xf, = yfu. So G is synchronizing.

(b) Let G be 2-set transitive and let f be a func-
tion which is not injective. Choose two points x
and y with xf = yf. By post-multiplication by an
element of G, we can assume that xf = x.

Enumerate ), as {x1,x2, ...}, with x; = x, and
construct a sequence (f,) of elements of (G, f) as
follows. Begin with f; = f. Now suppose that f;,
is defined, and satisfies x,, f, = x for m < n. If
Xp+1fn = x, then choose f,11 = f;. Otherwise,
choose g € G mapping {x, x,41} to {x,y}, and let
fu+1 = fugf. Clearly xy, fy11 = xforallm < n-+1.
So the sequence converges to the constant function
with value x. O



Larger infinities

I know nothing about synchronization for larger
infinite sets. But the proof that “synchronizing” is
equivalent to “2-set transitive” fails, because of the
failure of Ramsey’s theorem to guarantee a clique
or independent set of the same cardinality as Q).

I do not know whether the two concepts are
equivalent or not for sets of larger cardinalities.
The answer might depend on the choice of set-
theoretic axioms.

Example 5. The Axiom of Choice implies that there
is a well-ordering of R, a total ordering in which ev-
ery non-empty subset has a least element. Choose
such a well-ordering <. Now form a graph by
joining v and w if < and the usual order < agree
on {v, w}, and not if they disagree.

We claim that there is no uncountable clique. Let
Y be a clique; then Y is well-ordered by the usual
order on R. In a well-order, each non-maximal el-
ement v has an immediate successor v’; choose a
rational number ¢(v) in the interval (v,7v). The
chosen rationals are all distinct.

Reversing the usual order shows that the com-
plementary graph has the same form; so the graph
we constructed has no uncountable independent
set either.

Hulls

The definition of cores in the infinite case is
probematic, since it is not clear what “minimal”
means. However, hulls can be defined as usual:

Let X be on the vertex set (). The hull of X is the
graph Gr(End(X)); that is, two vertices v, w are
joined in Hull(X) if and only if there is no endo-
morphism f of X satisfying vf = wf.

Theorem 6. Any countable graph containing an infi-
nite clique is a hull.

This follows just as in our previous argument
using Ramsey’s theorem.

What happens for graphs with finite clique
size?

Finite clique number
Here are two results on graphs with finite clique
number.

Theorem 7. Let X be a graph having an endomor-
phism of finite rank. Then the clique number and chro-
matic number of Hull(X) are equal (and finite).

Proof. Without loss, X is a hull. Now if f is an en-
domorphism of minimum rank, then the image of
fisaclique, and f is a proper colouring. O

The following result is due to Nick Gravin, a stu-
dent of Dima Pasechnik.

Theorem 8. Let X be an infinite hull with finite clique
number. Then the chromatic number of X is equal to
the cliqgue number.

Proof. Given a finite subgraph Y of X, if Y is not
complete, then there is an endomorphism f; of
X collapsing a non-edge of Y; if Yf; is not com-
plete, there is an endomorphism f, collapsing a
non-edge of Yf1; and so on. We end with a ho-
momorphism of Y to a complete graph of size at
most w(X). S0 x(Y) < w(X) for any finite sub-
graph Y. A compactness argument shows that
X(X) < w(X), so equality holds. O



