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Summary and direction
We have seen that

spreading ⇒ separating ⇒ synchronizing ⇒ basic

while, by the O’Nan–Scott Theorem, basic groups
are affine, diagonal, or almost simple.

In this section, I will examine two families of al-
most simple groups, to see where they fit in this
part of the hierarchy:

• the symmetric group Sn acting on k-sets;

• classical groups acting on their associated po-
lar spaces.

We will see that

• the techniques are combinatorial and geomet-
ric rather than group-theoretic;

• we reach very hard problems very quickly.

Of course there are many more classes of groups
to study!

Sn on k-sets
Let G = Sn, and let Ω be the set of all k-subsets

of {1, . . . , n}.

We may assume that n ≥ 2k, since the actions of
Sn on k-sets and on (n− k)-sets are isomorphic.

In fact we may assume that n ≥ 2k + 1, since the
action of Sn on k-sets is imprimitive if n = 2k: the
relation “equal or disjoint” is a congruence.

Now G has k orbits on the 2-element subsets of
Ω, namely,

Ol = {S1, S2 : |S1 ∩ S2| = l}

for l = 0, 1, . . . , k− 1. These k graphs together with
the relation of equality form a combinatorial struc-
ture known as an association scheme, specifically the
Johnson scheme J(n, k).

All these graphs are connected (this is an exer-
cise), so G is primitive on Ω. Since its socle is sim-
ple, it is basic.

If k = 1, then G is 2-transitive. We ignore this
case.

The case k = 2
We begin by recalling the result for k = 2.

Theorem 1. Let G = Sn acting on the set of 2-subsets
of {1, . . . , n}, with n ≥ 5. Then G is non-spreading.
Moreover, the following are equivalent:

• G is separating;

• G is synchronizing;

• n is odd.

Baranyai’s Theorem
Let F be a set of k-subsets of {1, . . . , n}, where k

divides n. A 1-factorization of F is a partition of F
such that each part is a partition of {1, . . . , n} (that
is, a set of n/k pairwise disjoint subsets).
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Theorem 2. If k divides n, then there is a 1-
factorization of the set of all k-subsets of {1, . . . , n}.

The theorem was proved by Baranyai in 1973.
The proof is a beautiful application of the Max-Cut
Min-Flow Theorem for networks.

As a corollary we have:

Theorem 3. If k divides n, then Sn acting on k-sets is
not synchronizing.

For the set of all k-sets containing a fixed ele-
ment (say 1) is a section of the Baranyai partition,
which is thus section-regular.

The case k = 3
We now consider the case k = 3, and resolve

completely the question of synchronization and
separation.

Theorem 4. Let G = Sn acting on the set of 3-subsets
of {1, . . . , n}, with n ≥ 7. Then the following are
equivalent:

• G is synchronizing;

• G is separating;

• n is congruent to 2, 4 or 5 (mod 6), and n 6= 8.

Note that synchronization and separation are
equivalent for this class of groups.

Teirlinck’s theorem
A Steiner triple system is a collection S of 3-

subsets of {1, . . . , n} with the property that every
pair of points of {1, . . . , n} is contained in a unique
member of S .

Kirkman proved in 1847 that a Steiner triple sys-
tem on n points exists if and only if n is congruent
to 1 or 3 mod 6.

A large set of Steiner triple systems is a partition
of the set of all 3-subsets of {1, . . . , n} into Steiner
triple systems. (Counting shows that there must
be n− 2 such systems.)

For n = 7, there is a unique Steiner triple sys-
tem, the Fano plane:
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We cannot find more than two disjoint copies
of the Fano plane. This fact goes back to Cayley.
However, Teirlinck showed:

Theorem 5. If n is congruent to 1 or 3 (mod 6) and
n > 7, then there exists a large set of Steiner triple
systems on n points.

Now let G be Sn acting on 3-sets, for n ≥ 7.

Baranyai’s theorem shows that G is non-
synchronizing if n is divisible by 3, that is, if n is
congruent to 0 or 3 (mod 6).

Teirlinck’s theorem shows that G is non-
synchronizing if n is congruent to 1 or 3 (mod 6)
and n 6= 7. (The set of triples through two given
points is a section for all images of the large set.)

The cases n = 7 and n = 8 require special treat-
ment.

The case n = 7
For each line L of the Fano plane, let S(L) be

the set of 3-sets equal to or disjoint from L. Then
|S(L)| = 5.

Since no two lines of the Fano plane are disjoint,
and no 3-set is disjoint from more than one line, we
see that the sets S(L) are pairwise disjoint. Since
5 · 7 = 35 = (7

3), they form a partition of Ω.

Now 3-sets in the same S(L) meet in 0 or 2
points. So any image of the Fano plane meets each
S(L) in at most (and hence exactly) one set. Thus
the partition is section-regular, the Fano plane be-
ing the section.

So S7 acting on 3-sets is not synchronizing.

The case n = 8
Take a Fano plane on {1, . . . , 7}. For each line

L of the Fano plane, partition the eight points into
L ∪ {8} and the rest, and take the set T(L) of eight
triples contained in a part of this partition. This
gives a partition of all the (8

3) = 56 = 7 · 8 3-sets
into seven subsets of size 8.

Once again we find that this partition is section-
regular, with the Fano plane as a section.
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The separating cases
We have now shown that, in the cases not stated

in the theorem, G is non-synchronizing and hence
non-separating. We have to show that, in the re-
maining cases, G is separating, and hence synchro-
nizing.

There are 23 − 2 graphs to consider. We denote
them by XI , for ∅ ⊂ I ⊂ {0, 1, 2}; the vertices are
the 3-sets, and two vertices are adjacent if and only
if the cardinality of their intersection belongs to I.

We have to find the clique number of each of
these graphs, and check whether ω(XI)ω(XI∗) =
(n

3), where I∗ = {0, 1, 2} \ I.

The Erdős–Ko–Rado theorem
The following theorem finds the clique number

of some of these graphs. A family F of k-subsets
of {1, . . . , n} is t-intersecting if |A ∩ B| ≥ t for all
A, B ∈ F .

Theorem 6. For n ≥ n0(k, t), the maximum size of
a t-intersecting family of k-sets of {1, . . . , n} is (n−t

k−t),
with equality realised only by the family of all k-sets
containing a fixed t-set.

The correct value of n0(k, t) is known. We need
only that the assertion of the theorem is true for
k = 3, n ≥ 7, and t = 1 or t = 2.

The cases I = {0} and I = {1, 2}
Clearly ω(X{0}) = bn/3c.

By Erdős–Ko–Rado, ω(X{1,2}) = (n−1
2 ). The

product of these numbers is (n
3) if and only if n is a

multiple of 3; but this case is excluded.

The cases I = {0, 1} and I = {2}
By Erdős–Ko–Rado, ω(X{2}) = n− 2.

A clique in X{0,1} has the property that two
points lie in at most one set in the clique; so
ω(X{0,1}) ≤ n(n − 1)/6, with equality if and only
if there is a Steiner triple system of order n, that is,
n is congruent to 1 or 3 (mod 6). But these cases
are excluded.

The cases I = {1} and I = {0, 2}
It is easy to show that a maximum clique in

X{0,2} is obtained by dividing most of {1, . . . , n}
into disjoint 4-sets and taking all the 3-subsets of
these 4-sets. In particular, ω(X{0,2}) ≤ n.

A maximum clique in X{1} is obtained by taking
bn/2c triples through a fixed point but having no
further point in common, provided that n ≥ 17.
For smaller values, a Fano plane may be better.

A little calculation shows that the product of
these bounds is strictly smaller than (n

3) except for
n = 7 and n = 8; but these cases are excluded.

Spreading

Theorem 7. The symmetric group Sn acting on k-sets
is always non-spreading.

Proof. Let d be the greatest common divisor of n
and k. Let H be a cyclic group of order n per-
muting the elements of {1, . . . , n} in the natural
way. Now choose a k-subset of {1, . . . , n} which is
a union of k/d orbits of the subgroup of order d of
H, and let A be the H-orbit (in Ω) containing this
set; so |A| = n/d. Let B consist of all k-sets con-
taining the element 1. Since A is invariant under
a transitive group, |A ∩ Bg| is constant for g ∈ G.
Also, clearly A and B are sets.

It remains only to show that |A| = n/d divides
|Ω| = (n

k). The stabiliser in H of any k-set has order
dividing k and also dividing n, hence dividing d;
so the size of any H-orbit in Ω is a multiple of n/d.
The assertion follows.

Classical groups and polar spaces
Now we turn to the other family of examples

discussed here: classical (symplectic, unitary and
orthogonal groups) acting on the associated polar
spaces.

I will give a brief introduction to these groups
and geometries; more detail is available in several
places, including my notes on Projective and Polar
Spaces and Don Taylor’s book The Geometry of the
Classical Groups.

We are only interested in finite classical groups;
this makes the theory simpler in several respects.

A classical group acts on a vector space and pre-
serves a form of some type:
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• for symplectic groups, an alternating bilinear
form;

• for unitary groups, a Hermitian sesquilinear
form;

• for orthogonal groups, a quadratic form, and
the symmetric bilinear form obtained from it
by polarization.

The basic form should be non-degenerate or non-
singular. The reason for separating cases is that
strange things happen with quadratic forms in
characteristic 2. I shall ignore this complication!

There are three parameters associated with a
classical group:

• q, the order of the field over which the matri-
ces are defined;

• r, the Witt index, the dimension of the largest
subspace on which the form vanishes identi-
cally;

• ε, a parameter defined on the next slide.

We denote the dimension of the underlying vector
space by n.

We divide the classical groups into six families:

• symplectic: PSp(2r, q), n = 2r

• unitary: PSU(2r, q), n = 2r, and PSU(2r +
1, q), n = 2r + 1;

• orthogonal: PΩ+(2r, q), n = 2r; PΩ(2r + 1, q),
n = 2r + 1; and PΩ−(2r + 2, 1), n = 2r + 2.

Note that for the unitary groups, the field order
must be a square, say q = q2

0, and there is a field
automorphism x 7→ xq0 of order 2. We use the
group-theorists’ notation PSU(n, q0), but the field
of definition is Fq.

We need not consider orthogonal groups of odd
dimension over fields of characteristic 2, since they
turn out to be isomorphic to symplectic groups of
one dimension less.

The values of the parameter ε are given in the

table:
Type ε

PSp(2r, q) 0
PSU(2r, q0) − 1

2
PSU(2r + 1, q0) 1

2
PΩ+(2r, q) −1

PΩ(2r + 1, q) 0
PΩ−(2r + 2, q) 1

Polar spaces
The polar space associated with a classical group

acting on a vector space V is the geometry of totally
isotropic subspaces of V, those on which the form
vanishes identically. We abbreviate this to t.i.

In the case of orthogonal groups, we should re-
ally use the term totally singular or t.s. instead; but
we will ignore this distinction.

Subspaces of (vector space) dimension 1 or 2 are
called points and lines, as usual in projective ge-
ometry. Subspaces of maximum dimension r are
called maximal subspaces.

Numerical information
Numerical information about polar spaces can

be expressed in terms of the parameters q, r, ε:

Theorem 8. • The number of points of the polar
space is (qr − 1)(qr+ε + 1)/(q − 1); each max-
imal subspace contains (qr − 1)/(q− 1) points.

• The number of points not collinear with a given
point is q2r+ε−1.

• The number of maximal subspaces is

r

∏
i=1

(1 + qi+ε).

Witt’s Lemma
Witt’s Lemma asserts that the action of the clas-

sical group on a polar space is “homogeneous”,
in the sense that any linear isometry between sub-
spaces of the vector space is induced by an element
of the group.

In particular, the group acts transitively on
points, on collinear pairs of points, and on non-
collinear pairs of points.
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So the graph of the polar space (whose ver-
tices are the points, two vertices joined if they are
collinear) is a rank 3 graph.

In the case r = 1, there are no lines, so the graph
of the polar space is null; Witt’s lemma implies
that the action of the group is 2-transitive. We will
ignore this case.

An example
The polar space of type PΩ+(4, q) is the familiar

ruled quadric:
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Combinatorially this structure is just a grid, so
the classical group is non-basic. We will also ig-
nore this case.

Cliques and cocliques
We must now look at cliques and cocliques in

the graph X of a polar space.

A clique is a set of 1-dimensional subspaces on
which the form vanishes and which are pairwise
orthogonal; so its span is also a clique. Thus the
cliques of maximal size are just the maximal sub-
spaces, of size (qr − 1)/(q− 1).

Two points are non-adjacent if and only if no
maximal subspace contains both; so a coclique is
a set of points meeting every maximal subspace in
at most one point.

Hence a coclique contains at most qr+ε + 1
points, with equality if and only if it meets every
maximal in exactly one point.

A coclique meeting this bound is called an
ovoid.

We need one further definition: a spread is a fam-
ily of maximal subspaces which partitions the set
of points.

Theorem 9. • A classical group is non-separating
if and only if its polar space possesses an ovoid.

• A classical group is non-synchronizing if and only
if its polar space possesses either

– an ovoid and a spread; or

– a partition into ovoids.

Ovoids, spreads and partitions
You might expect at this point to be told that

the question of which polar spaces contain ovoids,
spreads, or partitions into ovoids has been com-
pletely solved by finite geometers.

Unfortunately, despite a lot of effort, this is not
the case.

I will summarise some of the results which have
been obtained.

Ovoids

PSp(2r, q) Yes for r = 2 and q even; no in all
other cases

PSU(2r, q0) Yes for r = 2
PSU(2r + 1, q0) No

PΩ+(2r, q) Yes for r = 2, 3; yes for r = 4 and
q even, or q prime, or q ≡ 3 or 5
mod 6; no for r ≥ 4 and q = 2 or
q = 3

PΩ(2r + 1, q) Yes for r = 2; yes for r = 3 and
q = 3h

PΩ−(2r + 2, q) No

Spreads

PSp(2r, q) Yes
PSU(2r, q0) No

PSU(2r + 1, q0) No for r = 2, q0 = 2
PΩ+(2r, q) No if r is odd; yes if r = 2, or

r = 4 with q prime or q ≡ 3 or 5
mod 6; yes if r and q are even

PΩ(2r + 1, q) No if r is even (and q odd); yes if
r = 3 with q prime or q ≡ 3 or 5
mod 6

PΩ−(2r + 2, q) Yes if r = 2, or if q is even
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Some conclusions
We conclude that PSp(2r, q), PSU(2r + 1, q0),

and PΩ−(2r + 2, q) are separating for all r ≥ 2,
except for PSp(4, q) with q even. Cases where the
group is not separating can also be read off from
the first table. However, less is known about parti-
tions into ovoids, so results about synchronization
are less clear.

Example 10. The polar space of the group PΩ(5, q),
for q odd, possesses ovoids but no spreads. For
q = 3, 5, 7, these ovoids are all classical; that is, they
consist of the set of points lying in a non-singular
4-dimensional space of type PΩ−(4, q) (this polar
space has Witt index 1, so contains no lines). Any
two such spaces meet in a 3-dimensional space,
so two such ovoids meet in a conic. In particular,
there are no partitions into ovoids.

So the group PΩ(5, q), for q = 3, 5, 7, is synchro-
nizing but not separating. This is our first example
of such a group.

Spreading

Theorem 11. Let G be a classical group of Witt in-
dex at least 2, acting on the points of its polar space.
Suppose that there exists a non-degenerate hyperplane
which has Witt index smaller than that of the whole
space. Then G is non-spreading.

Proof. We take A to be a maximal subspace, and B
to be the set of points lying in the assumed hyper-
plane. Then |A ∩ Bg| = (qr−1 − 1)/(q − 1) for all
g ∈ G, and A and B are both sets with |A| dividing
|Ω|.

This theorem covers the classical groups
PSU(2r, q0), PΩ+(2r, q), and PΩ(2r + 1, q), but
not PSp(2r, q), PSU(2r + 1, q0), or PΩ−(2r + 2, q).

Conclusions
We have found examples of groups which are

synchronizing but not separating.

But we have failed to find examples of groups
which are spreading but not 2-set transitive.

We turn to this in the next lecture.
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