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The story so far
We have the following properties of permuta-

tion groups:

transitive ⇐ primitive ⇐ basic
⇐ 2-set transitive ⇐ 2-transitive.

Note in passing that each of these properties is
closed upwards: a supergroup of a permutation
group with the property also has the property.

We also said that a permutation group G on Ω
is synchronizing if, for any f : Ω → Ω which is
not a permutation, the monoid 〈G, f 〉 contains a
constant function.

Where does this concept fit into the hierarchy
above?

Section-regular partitions
We start with three ingredients:

• G is a permutation group on Ω;

• π is a partition of Ω;

• S is a subset of Ω.

We say that S is a section, or transversal, of π, if S
contains exactly one point of every part of π.

We say that π is section-regular for G, with sec-
tion S, if Sg is a section for π, for every g ∈ G.
(Here Sg is the set {sg : s ∈ S}.) Equivalently, S is
a section for πg, for all g ∈ G.

Synchronization and section-regularity

Theorem 1. The permutation group G on Ω is syn-
chronizing if and only if there is no non-trivial section-
regular partition for G.

Proof. Suppose that π is a non-trivial section-
regular partition. Let f map v ∈ Ω to the unique
point s of S in the same part of π containing v.
Then any map g1 f g2 f · · · gr f , for g1, . . . , gr ∈ G,
has image S; so G is not synchronizing.

Conversely, suppose that 〈G, f 〉 contains no con-
stant function, and, without loss, let f be an el-
ement of smallest possible rank in this monoid.
Then one can check that, if S is the image of f ,
and π the partition of Ω into inverse images of el-
ements of S, then π is section-regular with section
S.

Theorem 2. A synchronizing group is primitive, and
basic.

Proof. If π is a non-trivial partition fixed by G, then
π is section-regular for G, with any section S.

Now suppose that G is primitive but not basic,
so that Ω is identified with Γn for some n > 1. Let
π be the partition of Ω according to the element of
Γ which occurs in the first coordinate, and let S be
the diagonal {(x, x, . . . , x) : x ∈ Γ}. Now every
image of π under G is the partition according to
the element of Γ in the ith coordinate, for some i;
so S is a section for every such partition.
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The picture shows the structure for the non-
basic group G = S5 Wr S2. The rows and columns
are partitions which are section-regular for the
set of circled points; but no partition is fixed by
G, since it contains elements swapping rows and
columns.

Theorem 3. A 2-set transitive group is synchronizing.

Proof. Let G be 2-set transitive. Let π be any non-
trivial partiton, and S a subset with |S| > 1. If
a, b ∈ S and c, d belong to the same part of π, there
is an element g ∈ G mapping {a, b} to {c, d}; then
Sg is not a section for π.

Theorem 4. The property of synchronization is closed
upwards.

Proof. If G1 ≤ G2, then any section-regular parti-
tion for G2 is clearly section-regular for G1.

An example
Let Ω be the set of all 2-element subsets of

{1, . . . , n}, and let G be the permutation group on
Ω induced by the action of Sn on {1, . . . , n}. As-
sume that n ≥ 4.

Now G is primitive if and only if n ≥
5. For if n = 4, then the partition
{{12, 34}, {13, 24}, {14, 23}} is preserved by G,
and G is imprimitive. (Some braces have been
omitted for clarity.)

Suppose that n ≥ 5, and let B be a block of im-
primitivity containing 12. If B contains a pair dis-
joint from 12, say 34, then it contains every such
pair, since the setwise stabiliser of 12 is transitive
on these pairs. Then B contains 34 and 35, and as
before contains every pair containing 3. We find in
this manner that B = Ω. A similar argument ap-
plies if B contains a pair intersecting 12, such as 13.
So no non-trivial block exists, and G is primitive.

It is also easy to see that G is basic for n ≥ 5.

Theorem 5. The above group G is synchronizing if
and only if n is odd.

If n is even, we use the fact that the complete
graph Kn can be edge-coloured with n− 1 colours;
that is, there is a partition π of Ω into n − 1 sets
of size n/2 with the property that any two pairs in
the same part are disjoint. Now the set of all pairs
containing 1 is a section for πg for any g ∈ G; so
G is not synchronizing. (This gives us examples of
groups which are basic but not synchronizing.)

Suppose that π is a section-regular partition
with section S. Since S meets every part of π in
a unique point, there are two possibilities:

• pairs in the same part of π intersect, while
pairs in S are disjoint;

• pairs in the same part of π are disjoint, while
pairs in S intersect.

The maximum number of intersecting pairs is n −
1, while the maximum number of disjoint pairs is
bn/2c. If n is odd, the product of these numbers
is smaller than n(n − 1)/2 = |Ω|; so no section-
regular partition can exist.

Neumann’s separation lemma
We get further insight into synchronization from

the following result which was first proved in the
context of finitary permutation groups and has
since found a variety of other uses.

Theorem 6. Let G be a permutation group on a set Ω,
and let A and B be finite subsets of Ω.

• If all G-orbits are infinite, then there exists g ∈ G
such that Ag ∩ B = ∅.

• If G is transitive on Ω and |Ω| > |A| · |B|, then
here exists g ∈ G such that Ag ∩ B = ∅.

We will need the finite part of this theorem; so
we give the proof.

Proof. Suppose that |A| = k, |B| = l, and |Ω| =
n > kl. If G is transitive on Ω, then the order of the
stabiliser of a point is |G|/n; and, for any a, b ∈ Ω,
the set of elements g ∈ G satisfying ag = b is a
right coset of the stabiliser of a (or a left coset of
the stabiliser of b), so also has cardinality |G|/n.

Now the number of triples (a, b, g) with a ∈ A,
b ∈ B and ag = b is kl|G|/n < |G| (by assump-
tion); so there is some element g ∈ G lying in no
such triple, so that Ag ∩ B = ∅.
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Separating groups
Let G be a transitive permutation group on Ω,

with |Ω| = n. We say that G is non-separating if
there exist subsets A, B of Ω, with |A|, |B| > 1 and
|A| · |B| = n, such that, for all g ∈ G, Ag ∩ B = ∅;
and G is separating otherwise (that is, if any pair A
and B of subsets satisfying these conditions can be
“separated” by an element of G).

So, for example, a transitive permutation group
on a prime number of points is separating (vac-
uously, since no sets A, B can satisfy the require-
ments).

Theorem 7. • A separating group is synchroniz-
ing.

• A 2-set transitive group is separating.

Proof. (a) If π is section-regular with section S,
then S and a part of π cannot be separated.

(b) Use the same argument that showed that a
2-set transitive group is synchronizing, replacing
S and a part of π by A and B.

Examples
The group induced by the symmetric group Sn

on 2-element subsets of {1, . . . , n} for odd n ≥ 5
is separating but not 2-set transitive. The proof is
virtually the same as the argument showing that
this group is synchronizing.

Another example of a separating group which
is not 2-set transitive is the cyclic group of prime
order p > 3, acting regularly.

So, in our hierarchy

transitive ⇐ primitive ⇐ basic
⇐ synchronizing ⇐ separating
⇐ 2-set transitive ⇐ 2-transitive,

no arrows reverse except possibly that from sepa-
rating to synchronizing.

Examples are more difficult to find; we will see
some later.

A generalisation

Theorem 8. Let G be a transitive permutation group
on Ω, and let A and B be subsets of Ω, satisfying
|A| · |B| = λ|Ω| for some positive integer λ. Then
the following are equivalent:

• for all g ∈ G, |Ag ∩ B| = λ;

• for all g ∈ G, |Ag ∩ B| ≥ λ;

• for all g ∈ G, |Ag ∩ B| ≤ λ;

The proof is an exercise.
We ssy that G is λ-separating if no such sets A, B

with |A|, |B| > λ exist.
It will turn out that a slightly different concept

is better adapted to the study of synchronization,
however.

Section-regular partitions are uniform
First we apply the above theorem. A partition π

of Ω is uniform if all its parts have the same size.

Theorem 9. Let G be transitive on Ω. Then any
section-regular partition for G is uniform.

Proof. Let π be section-regular with section S. If
A is any part of π, we have |Ag ∩ S| = 1. By the
theorem, |A| · |S| = |Ω|.

Multisets
A multiset of Ω is a function from Ω to the nat-

ural numbers (including zero). If A is a multiset,
we call A(i) the multiplicity of i in A. The set of el-
ements of Ω with non-zero multiplicity is the sup-
port of A. We can regard a set as a special multiset
in which all multiplicites are zero and one (identi-
fying the set with its characteristic function).

The cardinality of A is

|A| = ∑
i∈Ω

A(i);

this agrees with the usual definition in the case of
a set.

The product of two multisets A and B is the mul-
tiset A ∗ B defined by

(A ∗ B)(i) = A(i)B(i).

This is a generalisation of the usual definition of
intersection of sets; but the “intersection” of mul-
tisets is defined differently in the literature.

• The product of two sets is their intersection.

• The product of a multiset A and a set B is
the “restriction of A to B”, that is, points of
B have the same multiplicity as in A, while
points outside B have multiplicity zero.
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• if we identify a multiset A with a vector vA
of non-negative integers with coordinates in-
dexed by Ω, then we have |A ∗ B| = vA · vB
for all multisets A and B. In particular, |A| =
vA · j, where j is the all-one vector.

The image of a multiset A under a permutation
g is defined by

Ag(i) = A(ig−1).

This agrees with the usual image of a set under a
permutation.

Theorem 10. Let G be a transitive permutation group
on Ω, and let A and B be multisets of Ω. Then the
average cardinality of the product of A and Bg is given
by

1
|G| ∑

g∈G
|A ∗ Bg| =

|A| · |B|
|Ω| .

Proof. We count triples (a, g, b) with a ∈ A, g ∈
G, b ∈ B, and bg = a. (Points of A or B are
counted according to their multiplicity.) There are
|A| choices for a and |B| choices for b. Then the set
of elements of G mapping b to a is a right coset of
the stabiliser Gb (since G is transitive), so there are
|G|/|Ω| such elements.

On the other hand, for each element g ∈ G, if
bg = a, then this element belongs to A ∗ Bg. The
number of choices of a is equal to the sum of mul-
tiplicities in A, and for each one, the number of
choices of b is the multiplicity of ag−1 in B, that is,
of a in Bg. So the product counts the multiplicities
correctly.

Equating the two sides gives the result.

Spreading
Let G be a transitive permutation group on Ω,

and A and B multisets of Ω. Consider the follow-
ing four conditions:

(1)λ: |A ∗ Bg| = λ for all g ∈ G.

(2): A is a set.

(3): B is a set.

(4): |A| divides |Ω|.

Note that

• (1)λ is symmetric in A and B.

• (1)λ with λ = 1 implies (2), (3) and (4). For, if
A(i) > 1, the choosing g to map a point in the
support of B to i, we would have |A∩ Bg| > 1;
so (2) holds, and (3) is similar. Finally, if (1)λ

holds with λ = 1 then |A| · |B| = |Ω|.

• If (2) and (3) hold, then we can replace prod-
uct by intersection in (1)λ.

We will call a multiset trivial if either it is con-
stant or its support is a singleton.

The transitive permutation group G on Ω is non-
spreading if there exist non-trivial multisets A and
B and a positive integer λ such that (1)λ, (3) and
(4) hold, and is spreading otherwise.

Theorem 11. The permutation group G on Ω is
spreading if and only if, for any function t : Ω → Ω
which is not a permutation and any non-trivial subset
S of Ω, there exists g ∈ G such that |Sgt−1| > |S|.
Proof. Suppose that G is non-spreading, and let
the multiset A and set B be witnesses. Since |A|
divides |Ω|, there is a function t from Ω to Ω so
that |at−1| is proportional to the multiplicity of a in
A (the constant of proportionality being |Ω|/|A|).
Let S = B. Then for any g ∈ G, we have

|Sgt−1| = |A ∗ Sg| · |Ω|/|A| = |S|,

by the definition of non-spreading.

Conversely, suppose that there is a function t
and subset S for which the condition in the the-
orem is false. Let A be the multiset in which the
multiplicity of a is equal to |at−1|. Then we have
|A| = |Ω| and it is false that |A ∗ Sg| > |S| for any
g ∈ G; thus we have |A ∩ Sg| = |S| for all g ∈ G.
We conclude that (1)|S|, (3) and (4) hold, so that G
is non-spreading.

Spreading groups in the hierarchy

Theorem 12. • A spreading permutation group is
separating.

• A 2-set-transitive group is spreading.

Proof. (a) Witnesses to non-separation are also wit-
nesses to non-spreading (with λ = 1).

(b) The arguments are similar to those we have
seen before.
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We will see that neither implication reverses.

Spreading groups and the Černý conjecture

Theorem 13. Let G be a spreading permutation group
on Ω, and f a function from Ω to Ω which is not a
permutation. Then 〈G, f 〉 contains a reset word which
has at most n − 1 occurrences of f .

In other words, the property of being spreading
not only implies synchronization, but also realises
the first part of our programme for bounding the
length of the reset word.

Proof. Suppose that we have a set Sk with |Sk| ≥ k,
such that there is a word w in 〈G, f 〉 with at most
k − 1 occurrences of k which maps Sk to a single-
ton.

By the preceding theorem, there exists g ∈ G
such that Sk+1 = Skg f−1 satisfies |Sk+1| ≥ k + 1.
We have Sk = Sk+1 f g−1, so the word f g−1w with
at most k occurrences of f maps Sk+1 to a single-
ton.

By induction on k, the result is proved.

A non-spreading group
We have seen that Sn, acting on the set of 2-

subsets of {1, . . . , n}, is separating if n is odd and
n ≥ 5. We now show that it is not spreading.

Let A be a set of n pairs forming a cycle: A =
{{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}}.

Let B be the set of n − 1 pairs containing the
fixed element 1. Then

• |Ag ∩ B| = 2 for all g ∈ G;

• A and B are sets;

• |A| = n divides |Ω| = n(n − 1)/2 if n is odd.
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