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We study the topological properties of functional connectivity patterns among cortical areas in
the frequency domain. The cortical networks were estimated from high-resolution EEG record-
ings in a group of spinal cord injured patients and in a group of healthy subjects, during the
preparation of a limb movement. We first evaluate global and local efficiency, as indicators of
the structural connectivity respectively at a global and local scale. Then, we use the Markov
Clustering method to analyze the division of the network into community structures. The results
indicate large differences between the injured patients and the healthy subjects. In particular,
the networks of spinal cord injured patient exhibited a higher density of efficient clusters. In the
Alpha (7–12Hz) frequency band, the two observed largest communities were mainly composed of
the cingulate motor areas with the supplementary motor areas, and of the premotor areas with
the right primary motor area of the foot. This functional separation strengthens the hypothesis
of a compensative mechanism due to the partial alteration in the primary motor areas because
of the effects of the spinal cord injury.
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1. Introduction

Over the last years, there has been an increasingly
large interest in finding significant features from
human brain networks. In particular, the concept of
functional connectivity plays a central role to under-
stand the organized behavior of anatomical regions
in the brain during activity. This organization is
thought to be based on the interaction between dif-
ferent specialized areas of cortical sites. Indeed, sev-
eral methods have been proposed and discussed in
the literature, with the aim of estimating the func-
tional relationships among the physiological sig-
nals [David et al., 2004; Lee et al., 2003] obtained
from different neuro-imaging devices such as the
functional Magnetic Resonance Imaging (fMRI)
scanner, electroencephalography (EEG) and mag-
netoencephalography (MEG) apparatus [Horwitz,
2003]. Recently, a multivariate spectral technique
called Directed Transfer Function (DTF) has been
proposed [Kaminski et al., 2001] to determine direc-
tional influences between any given pair of channels
in a multivariate data set. This estimator is able to
characterize at the same time direction and spec-
tral properties of the brain signals, requiring only
one multivariate autoregressive (MVAR) model to
be estimated from all the EEG channel recordings.
The DTF index has been demonstrated [Kaminski
et al., 2001] to rely on the key concept of Granger
causality between time series — an observed time
series x(n) leads to another series y(n) if the knowl-
edge of past x(n)s significantly improves the pre-
diction of y(n) — [Granger, 1969]. However, the
extraction of salient characteristics from brain con-
nectivity patterns is an openly challenging topic,
since often the estimated cerebral networks have a
relative large size and complex structure. Conse-
quently, there is a wide interest in the development
of mathematical tools that could describe in a con-
cise way the structure of the estimated cerebral net-
works [Tononi et al., 1994; Stam, 2004; Salvador,
2005; Sporns, 2002].

Functional connectivity networks estimated
from EEG or magnetoencephalographic (MEG)
recordings can be analyzed with tools that have
been already proposed for the treatments of com-
plex networks as graphs [Strogatz, 2001; Wang &
Chen, 2003; Sporns et al., 2004; Stam et al., 2006a].
Such an approach can be useful, since the use of
mathematical measures summarizing graph prop-
erties allows for the generation and the testing
of particular hypothesis on the physiologic nature

of the functional networks estimated from high-
resolution EEG recordings. However, first results
have been obtained for a set of anatomical brain
networks [Strogatz, 2001; Sporns et al., 2002]. In
these studies, the authors have employed two char-
acteristic measures, the average shortest path L and
the clustering index C, to extract respectively the
global and local properties of the network struc-
ture [Watts & Strogatz, 1998]. They have found that
anatomical brain networks exhibit many local con-
nections (i.e. a high C) and a shortest separation
distance between two randomly chosen nodes (i.e.
a low L). Hence, anatomical brain networks have
been designated as small-world in analogy with the
concept of the small-world phenomenon observed
more than 30 years ago in social systems [Milgram,
1967].

Many types of functional brain networks have
been analyzed in a similar way. Several studies
based on different imaging techniques like fMRI
[Salvador et al., 2005; Eguiluz et al., 2005; Achard &
Bullmore, 2007], MEG [Stam et al., 2006a, 2006b;
Bassett et al., 2006; Bartolomei et al., 2006] and
EEG [Micheloyannis et al., 2006; Stam et al., 2007]
have shown that the estimated functional networks
can indeed exhibit the small-world property. In the
functional brain connectivity context, these prop-
erties have been demonstrated to reflect an opti-
mal architecture for the information processing and
propagation among the involved cerebral structures
[Lago-Fernandez et al., 2000; Sporns et al., 2000]. In
particular, a high clustering index C is an indica-
tion of the presence in the network of a large num-
ber of triangles. However, this index alone does not
return detailed information on the presence of larger
connected clusters of nodes. This fact makes up a
real obstacle in the analysis of the network proper-
ties especially in the field of the Neuroscience where
the correlated behavior of different cortical regions
plays a fundamental role in the correct understand-
ing of cerebral systems. Methods to detect the com-
munity structures in a graph, i.e. tightly connected
group of nodes, are now available in the market
[Harary & Palmer, 1973]. Communities (or clusters
or modules) are groups of vertices that probably
share common properties and/or play similar roles
within the graph [Boccaletti et al., 2006]. Hence,
communities may correspond to groups of pages of
the World Wide Web dealing with related topics
[Flake et al., 2002], to functional modules such as
cycles and pathways in metabolic networks [Guimer
& Amaral, 2005; Palla et al., 2005], to groups of



March 16, 2009 17:30 02302

Cluster Structure of Functional Networks Estimated from High-Resolution EEG Data 667

affine individuals in social networks [Girvan & New-
man, 2002; Lusseau & Newman, 2004], to compart-
ments in food webs [Pimm, 1979; Krause et al.,
2003] and so on. Finding the communities within
a cerebral network allows identifying the hierarchy
of functional connections within a complex architec-
ture. This opportunity would represent an interest-
ing way to improve the basic understanding of the
brain functioning. Indeed, some cortical regions are
supposed to share a large number of functional rela-
tionships during the performance of several motor
and cognitive tasks. This characteristic leads to the
formation of highly connected clusters within the
brain network. These functional groups consist of a
certain number of different cerebral areas that are
cooperating more intensively in order to complete a
task successfully.

In the present paper, we focus on a study of
the structural properties of functional networks esti-
mated from high-resolution EEG signals in a group
of spinal cord injured patients during the prepa-
ration of a limb movement. In particular, we first
investigate some indicators of the connectivity at
a global and local scale. Then we analyze the net-
works by studying their structure in communities,
and we compare the results with those obtained
from a group of healthy subjects.

2. Methods

2.1. High-resolution EEG
recordings in SCI patients and
healthy subjects

All the experimental subjects participating in the
study were recruited by advertisement. Informed
consent was obtained for each subject after the
explanation of the study, which was approved by
the local institutional ethics committee. The spinal
cord injured (SCI) group consisted of five patients
(age 22–25 years; two females and three males).
Spinal cord injuries were of traumatic aetiology and
located at the cervical level (C6 in three cases, C5
and C7 in two cases, respectively); patients had
not suffered from a head or brain lesion associated
with the trauma leading to the injury. The con-
trol (CTRL) group consisted of five healthy volun-
teers (age 26–32 years; five males). They had no
personal history of neurological or psychiatric dis-
order; they were not taking medication, and were
not abusing alcohol or illicit drugs. For EEG data
acquisition, subjects were comfortably seated on a
reclining chair, in an electrically shielded, dimly lit

room. They were asked to perform a brisk pro-
trusion of their lips (lip pursing) while they were
performing (healthy subjects) or attempting (SCI
patients) a right foot movement. The choice of this
joint movement was suggested by the possibility to
trigger the SCIs attempt of foot movement. In fact,
patients were not able to move their limbs; how-
ever they could move their lips. By attempting a
foot movement associated with a lips protrusion,
they provided an evident trigger after the volitional
movement activity. This trigger was recorded to
synchronize the period of analysis for both the con-
sidered populations. The task was repeated every
6–7 seconds, in a self-paced manner, and the 100
single trials recorded will be used for the estimate
of functional connectivity by means of the Directed
Transfer Function (DTF, see following paragraph).
A 96-channel system (BrainAmp, Brainproducts
GmbH, Germany) was used to record EEG and
EMG electrical potentials by means of an electrode
cap and surface electrodes, respectively. The elec-
trode cap was built accordingly to an extension
of the 10–20 international system to 64 channels.
Structural MRIs of the subjects head were taken
with a Siemens 1.5T Vision Magnetom MR system
(Germany).

2.2. Cortical activity and functional
connectivity estimation

Cortical activity from high-resolution EEG record-
ings was estimated by using realistic head mod-
els and cortical surface models with an average
of 5.000 dipoles, uniformly disposed. Estimation of
the current density strength, for each one of the
5.000 dipoles, was obtained by solving the Linear
Inverse problem, according to techniques described
in previous papers [Babiloni et al., 2005; Astolfi
et al., 2006]. By using the passage through the
Tailairach coordinates system, twelve Regions Of
Interest (ROIs) were then obtained by segmenta-
tion of the Brodmann areas on the accurate cortical
model utilized for each subject. The ROIs consid-
ered for the left ( L) and right ( R) hemispheres are:
the primary motor areas for foot (MF L and MF R)
and lip movement (ML L and ML R); the proper
supplementary motor area (SM L and SM R); the
standard premotor area (6 L and 6 R); the cingu-
lated motor area (CM L and CM R) and the asso-
ciative Brodmann area 7 (7 L and 7 R). For each
EEG time point, the magnitude of the five thousand
dipoles composing the cortical model was estimated
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by solving the associated Linear Inverse problem
[Grave de Peralta & Gonzalez Andino, 1999]. Then,
the average activity of dipoles within each ROI was
computed. In order to study the preparation to
an intended foot movement, a time segment of 1.5
seconds before the lips pursing was analyzed; lips
movement was detected by means of an EMG. The
resulting cortical waveforms, one for each prede-
fined ROI, were then simultaneously processed for
the estimation of functional connectivity by using
the Directed Transfer Function. The DTF is a full
multivariate spectral measure used to determine the
directed influences between any given pair of sig-
nals in a multivariate data set [Kaminski et al.,
2001]. In order to be able to compare the results
obtained for data entries with different power spec-
tra, the normalized DTF was adopted. It expresses
the ratio of influence of element j to element i with
respect to the influence of all the other elements on
i. Details on the DTF equations in the treatment of
EEG signals have been largely described in previous
papers [Astolfi et al., 2005; Babiloni et al., 2005]. In
the present study, we selected four frequency bands
of interest (Theta 4–7 Hz, Alpha 8–12 Hz, Beta 13–
29 Hz and Gamma 30–40 Hz) and we gathered the
respective cortical networks by averaging the val-
ues within the respective range. In order to consider
only the functional links that are not due to chance,
we adopted a Monte Carlo procedure. In particu-
lar, we contrasted each DTF value with a surrogate
distribution of one thousand DTF values obtained
by shuffling the signal samples in the original EEG
data set. Then, we considered a threshold value by
computing the 99th percentile of the distribution
and we filtered the original DTF values by remov-
ing the edges with intensity below the statistical
threshold.

2.3. Evaluation of global and local
efficiency

A graph is an abstract representation of a net-
work. A graph G consists of a set of vertices (or
nodes) V and a set of edges (or connections) L
indicating the presence of some sort of interaction
between the vertices. A graph can be described in
terms of the so-called adjacency matrix A, a square
matrix such that, when a weighted and directed
edge exists from the node i to j, the correspond-
ing entry of the adjacency matrix is Aij != 0; other-
wise, Aij = 0. Two measures are frequently used
to characterize the local and global structure of

unweighted graphs: the average shortest path L and
the clustering index C [Watts & Strogatz, 1998;
Newman, 2003; Grigorov, 2005]. The former mea-
sures the average distance between two nodes, the
latter indicates the tendency of the network to form
highly connected clusters of nodes. Recently, a more
general setup has been proposed to study weighted
(also unconnected) networks related to efficiency
[Latora & Marchiori, 2001, 2003]. The efficiency eij

in the communication between two nodes i and j
is defined as the inverse of the shortest distance
between the vertices. Note that in weighted graphs
the shortest path is not necessarily the path with
the smallest number of edges. In the case when the
two nodes are not connected, the distance is infinite
and eij = 0. The average of all the pair-wise efficien-
cies eij is the global-efficiency Eg of the graph G:

Eg(G) =
1

N(N − 1)

∑

i"=j∈V

1
dij

(1)

where N is the number of vertices composing the
graph. The local properties of the graph can be
characterized by evaluating for every vertex i the
efficiency of Gi, which is the subgraph induced by
the neighbors of the node i [Latora & Marchiori,
2001]. Thus, we defined the local-efficiency El of
graph G as the average:

El(G) =
1
N

∑

i

Eg(Gi). (2)

Since node i does not belong to subgraph Gi,
the local efficiency measures how the communica-
tion among the first neighbors of i is affected by
the removal of i [Latora & Marchiori, 2005, 2007].
Hence, the local efficiency is an indicator of the level
of fault-tolerance of the system. Separate ANOVAs
were conduced for each of the two variables Eg and
El. Statistical significance was fixed at 0.05, and
main factors of the ANOVAs were the “between”
factor GROUP (with two levels: SCI and CTRL)
and the “within” factor BAND (with four levels:
Theta, Alpha, Beta and Gamma). Greenhouse &
Geisser correction has been used for the protection
against the violation of the sphericity assumption
in the repeated measure ANOVA. Besides post-hoc
analysis with the Duncan’s test and significance
level at 0.05 has been performed.

2.4. Detection of community structures

In order to detect the community structures, we
have implemented the Markov Clustering (MCl)



March 16, 2009 17:30 02302

Cluster Structure of Functional Networks Estimated from High-Resolution EEG Data 669

algorithm [Vandongen, 2000; Enright et al., 2002].
It is one algorithm of a few available that works
even with directed graphs and it is based on the
properties of the dynamical evolution of random
walkers moving on the graph. This approach is also
useful since it manages to achieve reliable results
when the graph contains self-loops, i.e. edges con-
necting a node to itself. Since a community is a
group of densely connected nodes, a random walker
that started in a node of a given community will
leave this cluster only after having visited a large
number of the community’s nodes. Hence, the basic
idea implemented in the algorithm is to favor the
random motion within nodes of the same commu-
nity. This is obtained by alternating the applica-
tion of two operators on the transition matrix of the
random walk: the expansion operator and the infla-
tion one. The expansion operator applied on a given
matrix returns its square power, while the inflation
operator corresponds to the Hadamard power of the
same matrix, followed by a scaling step. In practice,
the algorithm works as follows:

1. Take the adjacency matrix A and add a self-loop
to each node, i.e. set Aii = 1 for i = 1, 2, . . . ,N ;

2. Obtain from A the transition probability matrix
W that describes the random motion: Wij =
Aij/

∑
k Akj. Every element Wij expresses the

probability to go from j to i in one step. W is
a stochastic matrix i.e. a matrix of non-negative
elements and where the sum of elements of each
column is normalized to one:

∑N
i=1 Wij = 1;

3. Take the square of W (expansion step);
4. Take the rth power (r > 1) of every element of

W 2 and normalize each column to one to obtain
a new stochastic matrix W ′: W ′ = [(W 2)ij ]r/
(
∑

k [(W 2)kj]r) (inflation step);
5. Go back to step 3.

Step 3 corresponds to computing random walks
of “higher-lengths”, that is to say random walks
with many steps. Step 4 will serve to enhance the
elements of a column having higher values. This
means, in practice, that the most probable tran-
sition from node j will become even more proba-
ble compared to the other possible transitions from
node j. The algorithm converges to a matrix invari-
ant under the action of expansion and inflation. The
graph associated to such matrix consists of differ-
ent star-like components; each of them constitutes a
community (or cluster) and its central node can be
interpreted as the basin of attraction of the com-
munity. For a given r > 0, MCl always converges

to the same matrix; for this reason it is classified
as a parametric and deterministic algorithm. The
parameter r tunes the granularity of the clustering,
meaning that a small r corresponds to a few big
clusters, while a big r returns smaller clusters. In
the limit of r → 1 only one cluster is detected. In
the present study, an analysis at different levels of
granularity has been performed in order to find the
value of r which better fits with the experimental
data. Then we have represented how the average of
the number of clusters changes as a function of r
(Fig. 3). Finally the value r = 1.5 has been chosen
to study in detail how the nodes are organized in
clusters.

3. Results

Figure 1 shows the realistic head model obtained
for a representative subject. The twelve ROIs used
in the present study are illustrated in color on the
cortex model that is gray colored. At the bottom of
Fig. 1, we report the adjacency matrices represent-
ing the cortical networks estimated, in the Alpha
frequency band, from the two analyzed populations
during the movement preparation. Note that such
networks are directed. Consequently, the obtained
adjacency matrix is not symmetric. The level of gray
within each matrix in figure encodes the number of
subjects that hold the functional connection identi-
fied by row i and column j.

As a measure of global and local perfor-
mances of the network structure we have evalu-
ated the global-efficiency Eg and the local-efficiency
El indices obtained for each frequency band and
for each subject. The average values of Eg and El

derived from the healthy group (CTRL) and from
the group of patients (SCI) are illustrated for each
band in the scatter plot in Fig. 2. We have per-
formed an Analysis of Variance (ANOVA) of the
obtained results. The Eg variable showed no sig-
nificant differences for the main factors GROUP
and BAND. In particular, the “between” factor
GROUP was found having an F value of 0.83,
p = 0.392 while the “within” factor BAND showed
an F value of 0.002 and p = 0.99. The ANOVA per-
formed on the El variable revealed a strong influ-
ence of the between factor GROUP (F = 32.67,
p = 0.00045); while the BAND factor and the inter-
action between GROUP X BAND was found not
significant (F = 0.21 and F = 0.91, respectively,
p values equal to 0.891 and 0.457). Post-hoc tests
revealed a significant difference between the two
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Fig. 1. (Top) Reconstruction of the head model from magnetic resonance images. The twelve regions of interest (ROIs) are
illustrated in color on the gray cortex and labeled according to previously defined acronyms. (Bottom left) Adjaceny matrix
for the control group (CTRL) in the Alpha (7–12 Hz) band. The level of gray encodes the number of subjects that hold the
functional connection identified by the row i and column j. (Bottom right) Adjacency matrix for the patients group (SCI) in
the Alpha band. Same conventions as above.

examined experimental groups (SCI, CTRL) in the
Alpha and Beta band (p = 0.01, 0.03, respectively).
In particular, the average local-efficiency of the SCI
networks was significantly higher than the CTRL
networks for all these bands.

The identification of functional clusters within
the cortical networks estimated in the control sub-
jects and in the spinal cord injured patients during
the movement preparation was addressed through
the MCl algorithm (see Methods — Detection of
Community Structures (2.4)). In Fig. 3 the average
number of clusters detected in the CTRL and SCI
networks is reported as a function of the granular-
ity parameter r. As it can be observed, for every
value of r, and for both the Alpha and Beta bands,

the average number of clusters is greater for the
SCI group than for the CTRL one. One of the main
problems with the MCl algorithm is the choice of
the value of the granularity parameter to be used.
Usually good values of r are in the range ]1, 3[ [Van-
dongen, 2000; Enright et al., 2002]. For the case
under study here, the presence of a plateau in Fig. 3
indicates that there is a region of values such that
the number of clusters does not strongly depend on
r. We have decided to adopt the granularity r = 1.5
that is a value in the plateau. For this value of r,
the average number of clusters in the Alpha band
is equal to 3.2 for the cortical networks of the con-
trol subjects, while it is equal to 5 for the spinal
cord injured patients. In the Beta band, the average
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Fig. 2. Scatter plot of the average efficiency indexes
obtained from the estimated cortical networks. Global-
efficiency is on the x-axis; local-efficiency is on the y-axis.
The Greek symbol encodes the frequency band (θ Theta, α
Alpha, β Beta and γ Gamma) and it represents the average
of the values computed from the control (CTRL, blue-colored
font) and spinal cord injured group (SCI, red-colored font).

number of cluster is 3.4 for the CTRL networks and
4.6 for the SCI networks, as can be observed at the
bottom in Fig. 3.

Figure 4 illustrates the partitioning of the cor-
tical networks estimated in the Alpha band for a
representative subject of the control (CTRL) group
and for a representative patient of the spinal cord
injured (SCI) group.

Functional networks are represented as three-
dimensional graphs on the realistic head model
of the experimental subjects. The color of each
node, located in correspondence to each cortical
area (ROI), encodes the cluster to which the node
belongs. The functional clusters detected within the
cortical networks in all the subjects and patients
participating in the present study are listed in
the following tables. Table 1 presents the results
obtained in the Alpha band while Table 2 presents
the results obtained in the Beta band.

In the Alpha band, the CTRL networks do
not present a particularly complicated division into
clusters, since for each subject the large part of the
cortical areas belong to a unique large community
(Cluster 1). In general, the SCI networks organized
in a larger number of clusters are more clustered,
and two main communities can be observed (Clus-
ters 1 and 2). The first community is mostly com-
posed of the cingulate motor areas (CM L and
CM R), the supplementary motor areas (SM L and
SM R) and the left primary motor area (MF L).
The second community is predominantly composed
of the left premotor areas (6 L) and the right pri-
mary motor area of the foot (MF R). The remaining
ROIs tend to form isolated groups.

In the Beta band both the cortical networks of
the control and spinal cord injured group tend to
get organized in two main modules (Clusters 1 and
2). In particular, while for both the populations the
first cluster is principally composed of the cingulate
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Fig. 3. Representation of the mean number of clusters for CTRL (blue circles) and SCI (red squares) groups as a function of
r, granularity parameter of the MCl algorithm, in both the Alpha (top) and Beta bands (bottom).
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Fig. 4. Graphical representation of the identified clusters of ROIs within the functional networks estimated from a represen-
tative control (CTRL) subject and spinal cord injured (SCI) patient during the movement preparation in the Alpha band. The
functional network is illustrated as a three-dimensional graph on the realistic cortex model. Spheres located at the barycenter
of each ROI represent nodes. Black directed arrows represent edges. The graph partitioning is illustrated through the nodes
coloring. Nodes with same colors belong to the same cluster.

Table 1. Cortical network partitioning in the Alpha frequency band.

CTRL

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

ALFA CM L,CM R,6 L,6 R, SM R 0 0 0 0
SM L,ML L,ML R,MF L,

MF R,7 L,7 R
ARGI CM L,CM R,6 L,6 R, SM L SM R ML L 0 0

ML R,MF L,MF R,7 L,
7 R

CIFE CM L,CM R,6 L,6 R, ML L 7 L 0 0 0
SM L,SM R,ML R,MF L,

MF R,7 R
MADA CM L,CM R,6 L,SM R, 6 R,SM L,ML R, 0 0 0 0

ML L,7 L,7 R MF L,MF R
MAMA CM L,CM R,6 L,6 R, ML R 7 L 7 R 0 0

SM L,SM R,ML L,
MF L,MF R

SCI

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

BARO CM L,CM R,6 R 6 L,SM R, SM L,ML L, 7 R 0 0
ML R,MF L,MF R 7 L

IRIO CM L,CM R,SM L, 6 L 6 R ML L MF R 7 R
SM R,ML R,MF L,7 L

MASI CM L,CM R,6 L,SM L, 6 R,MF R,7 R 7 L 0 0 0
SM R,ML L,ML R,MF L

POAL CM L,CM R,6 R,SM R 6 L, SM L, ML L ML R MF L 7 R
MF R,7 L

TRDA CM L,CM R,SM L,SM R, 6 L 6 R ML R 7 L 7 R
ML L,MF L,MF R
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Table 2. Cortical network partitioning in the Beta frequency band.

CTRL

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

ALFA CM L,CM R,6 L,6 R, 7 L 7 R 0 0
SM L,SM R,ML L,ML R,

MF L,MF R
ARGI CM L,CM R,6 R,ML L, 6 L,SM L,MF R SM R 7 R 0

ML R,MF L,7 L
CIFE CM L,CM R,6 L,SM L, 6 R,ML R 7 L 0 0

SM R,ML L,MF L,
MF R,7 R

MADA CM L,CM R,SM L,SM R, 6 L,6 R,MF L ML L 7 R 0
ML R,MF R,7 L

MAMA CM L,6 R,ML L,MF R CM R,6 L,SM L, 7 L 7 R 0
SM R,ML R,MF L

SCI

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

BARO CM L,CM R,6 L,6 R, SM R,ML L 7 L 7 R 0
SM L,ML R,MF L,MF R

IRIO CM L,CM R,6 L,SM L, 6 R ML R 7 L 7 R
SM R,ML L,MF L,MF R

MASI CM L,CM R,6 L,SM L, 6 R ML L MF L 7 R
SM R,ML R,MF R,7 L

POAL CM L,CM R,SM L, 6 L,ML R,MF R 7 L,7 R 6 R ML L
SM R,MF L

TRDA CM L,CM R,SM L,SM R, 6 R,ML R 6 L ML L 0
MF L,MF R,7 L,7 R

motor areas CM L and CM R, the SM L and SM R
and the MF L and MF R, the second cluster does
not present a common set of ROIs across the exper-
imental subjects neither in the CTRL or the SCI
group.

4. Discussion

The evaluation of the estimated cortical networks
was addressed by means of a set of measures typi-
cal of complex network analysis [Boccaletti et al.,
2006; Micheloyannis et al., 2006; Stam & Reijn-
eveld, 2007; Hilgetag et al., 2000]. We have first
computed global (Eg) and local efficiency (El), two
measures that allow characterizing the organiza-
tion of the functional flows in both the inspected
populations [De Vico Fallani et al., 2007b]. The
results indicate that spinal cord injuries signifi-
cantly (p < 0.05) affect only the local proper-
ties of the functional architecture of the cortical
network in the movement preparation. The global
property of long-range integration between the
ROIs within the network did not differ significantly

(p > 0.05) from the healthy behavior. The higher
average value of local efficiency in the SCI group
suggests a larger level of the internal organization
and a higher tendency to form modules. In partic-
ular, this difference can be observed in the two fre-
quency bands Alpha (7–12 Hz) and Beta (13–29 Hz)
that are already known for their involvement in elec-
trophysiological phenomena related to the prepa-
ration and to the execution of limbs movements
[Pfurtscheller & Lopes da Silva, 1999]. Although
the efficiency indexes describe the network topol-
ogy concisely, they are not able to give information
about the number of modules and their composition
within the network. For this reason, the detection
of community structures was addressed by means of
the Markov Clustering (MCl) algorithm [Vandon-
gen, 2000; Enright et al., 2002]. The same method
has already been used successfully to detect clus-
ters in sequence similarity networks [Enright et al.,
2002] and in configuration space networks derived
from free-energy landscapes [Gfeller et al., 2007].
The obtained results reveal a different average num-
ber of clusters for the functional networks of the
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spinal cord injured patients and the control sub-
jects in both the main spectral contents. In parti-
cular, in the Alpha band the SCI network presents
an average number of modules equal to five, while
the CTRL network appears to be divided into three
groups. This outcome is in accordance with the sig-
nificant (p < 0.05) higher level of local-efficiency
found in the functional networks of the SCI patients
with respect to the control subjects. A high El value
reflects a high clustering index C and therefore a
high density of network communities. The corti-
cal areas of the control subjects do not present a
clear partitioning in different modules. They rather
appear to belong to a unique community, mean-
ing that they are all involved, in the same way, in
the exchange of information during the movement
preparation. The analysis of the functional commu-
nities within the networks obtained for the spinal
cord patients revealed a higher tendency to form
separate clusters. The premotor areas (Brodmann
6 L and 6 R), the associative regions (Brodmann
7 L and 7 R) and the right primary motor area of
the foot (MF R) break away from the large module
that was found in the networks of the CTRL group.
In particular, the area MF R and the region 6 L
belong to the same cluster in at least three experi-
mental patients. This result reveals the necessity of
the SCI networks to hold a more efficient commu-
nication between these frontal premotor and pri-
mary motor structures, which are already known
to be active during the successful execution of a
simple movement [Ohara et al., 2001]. In the Beta
band, the average number of identified clusters in
the SCI networks and in the CTRL networks is
less different. Moreover, the ROIs that appeared to
belong to different clusters in the Alpha band are in
this case functionally tied in the same community.
In summary, while in the Alpha band the control
group mostly presented a unique large cluster; the
spinal cord injured patients mainly exhibited two
clusters. These two largest communities are mainly
composed of the cingulate motor areas with the sup-
plementary motor areas and of the premotor areas
with the right primary motor area of the foot. This
functional separation is thought to be responsible
for the highest level of internal organization in the
estimated networks and strengthens the hypothe-
sis of a compensative mechanism due to the partial
alteration in the primary motor areas because of
the effects of the spinal cord injury [De Vico Fallani
et al., 2007a].
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Notes

In the current work, all the estimated functional
networks are treated as unweighted and directed
graphs. They all have the same number of con-
nections representing the 25% (for the community
structure analysis) and the 30% (for the efficiency
indexes analysis) most powerful links within the
network. These particular values belonged to an
interval of thresholds (from 0.1 to 0.5), for which
results remained significantly stable [De Vico Fal-
lani et al., 2007a].
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