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Today, the human brain can be studied as a whole. Electroencephalography, magnetoencephalog-
raphy, or functional magnetic resonance imaging (fMRI) techniques provide functional connec-
tivity patterns between different brain areas, and during different pathological and cognitive
neuro-dynamical states. In this tutorial, we review novel complex networks approaches to unveil
how brain networks can efficiently manage local processing and global integration for the trans-
fer of information, while being at the same time capable of adapting to satisfy changing neural
demands.
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1. Introduction

In recent years, complex networks have provided
an increasingly challenging framework for the study
of collective behaviors in complex systems, based
on the interplay between the wiring architec-
ture and the dynamical properties of the coupled
units [Newman, 2003; Boccaletti et al., 2006]. Many
real networks were found to exhibit small-world fea-
tures. Small-world (SW) networks are characterized
by having a small average distance between any two
nodes, as random graphs, and a high clustering coef-
ficient, as regular lattices [Watts & Strogatz, 1998;
Tononi et al., 1998; Sporns et al., 2000; Latora &
Marchiori, 2001]. Thus, a SW architecture is an

attractive model for brain connectivity because it
facilitates distributed neural assemblies to be inte-
grated into a coherent process with an optimized
wiring cost [Latora & Marchiori, 2003; Buzsáki
et al., 2004; Sporns et al., 2004].

Another property observed in many networks
is the existence of a modular organization in the
wiring structure. Examples range from RNA struc-
tures, to biological organisms and social groups.
A module is currently defined as a subset of units
within a network such that connections between
them are denser than connections with the rest of
the network. It is generally acknowledged that mod-
ularity increases robustness, flexibility and stability
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of biological systems [Barabási & Oltvai, 2004;
Solé & Valverde, 2008]. The widespread character
of modular architecture in real-world networks sug-
gests that a network’s function is strongly ruled by
the organization of their structural subgroups.

Recent studies have attempted to character-
ize the functional connectivity (patterns of statisti-
cal dependencies) observed between brain activities
recorded by electroencephalography (EEG), mag-
netoencephalography (MEG), or functional mag-
netic resonance imaging (fMRI) techniques [Egúıluz
et al., 2005; Achard et al., 2006, 2007; Basset et al.,
2006; Stam et al., 2007]. Surprisingly, functional
connectivity patterns obtained from MEG and EEG
signals during different pathological and cognitive
neuro-dynamical states, were found to display SW
attributes [Basset et al., 2006; Stam et al., 2007];
whereas functional patterns of fMRI often display
a structure formed by highly connected hubs, yield-
ing an exponentially truncated power law in the
degree distribution [Egúıluz et al., 2005; Achard
et al., 2006, 2007]. For a complete review of these
issues, readers can refer to [Reijneveld et al., 2007;
Bullmore & Sporns, 2007].

In functional networks, two different nodes
(representing two electrodes, voxels or source
regions) are supposed to be linked if some defined
statistical relation exceeds a threshold. Regard-
less of the modality of recording activity (EEG,
MEG or fMRI), topological features of functional
brain networks are currently defined over long peri-
ods of time, neglecting possible instantaneous time-
varying properties of the topologies. Nevertheless,
evidence suggests that the emergence of a unified
neural process is mediated by the continuous forma-
tion and destruction of functional links over multi-
ple time scales [Varela et al., 2001; Engel et al.,
2001; Honey et al., 2007].

Empirical studies have lead to the hypothesis
that transient synchronization between distant and
specific neural populations underlies the integration
of neural activities as unified and coherent brain
functions [Engel et al., 2001]. Brain regions would be
partitioned into a collection of modules, represent-
ing functional units, separable from — but related
to — other modules. Thus, specialized brain regions
would be largely distributed and linked to form a
dynamical web-like structure of the brain [Varela
et al., 2001]. Characterizing the dynamical modular
structure of the brain may be crucial to understand
its organization during different pathological or cog-
nitive states. An important question is whether the

modular structure has a functional role on brain
processes such as the ongoing awareness of sensory
stimuli or perception.

To find the brain areas involved in a given cog-
nitive task, clustering is a classical approach that
takes into account the properties of the neurophysi-
ological time series. Previous studies over the mam-
malian and human brain networks have successfully
used different methods to identify clusters of brain
activities. Some classical approaches, such as those
based on principal components analysis (PCA) and
independent components analysis (ICA), make very
strong statistical assumptions (orthogonality and
statistical independence of the retrieved compo-
nents, respectively) with no physiological justifi-
cation [Biswal & Ulmer, 1999; McKeown et al.,
2003].

In this tutorial, we review an approach that
allows to characterize the dynamic evolution of
functional brain networks [Valencia et al., 2008;
Valencia et al., 2009]. We illustrate this approach
on connectivity patterns extracted from MEG data
recorded during a visual stimulus paradigm. Results
reveal that the brain connectivity patterns vary
with time and frequency, while maintaining a small-
world structure. Further, we are able to reveal a
nonrandom modular organization of brain networks
with a functional significance of the retrieved mod-
ules. This modular configuration might play a key
role in the integration of large scale brain activity,
facilitating the coordination of specialized brain sys-
tems during a cognitive brain process.

2. Materials and Methods

To illustrate our approach, we consider the brain
responses recorded during the visual presentation
of nonfamiliar pictures. Although our approach is
applicable to any of the functional methods avail-
able (EEG, fMRI, MEG), here we use magnetoen-
cephalography. This modality of acquisition has the
major feature that collective neural behaviors, as
synchronization of large and sparsely distributed
cortical assemblies, are reflected as interactions
between MEG signals [Hämäläinen et al., 1993].
Here, we study the functional connectivity patterns
associated with dynamic brain processes elicited
by the repetitive application (trials) of a exter-
nal visual stimulus [Regan, 1989]. For this exper-
iment, a collection of 48 simple structural images
and scrambled images were randomly shown to
epileptic patients for a period of 150 ms with an
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inter-stimulus interval of 2 s. Patients were required
to respond by pressing a button each time an image
was perceived. The event-related brain responses
were recorded (from two patients) with a whole-
head MEG system (151 sensors; VSM MedTech,
Coquitlam, BC, Canada) digitized at 1.25 kHz with
a bandpass of 0−200 Hz.

The basic steps of our approach are schemat-
ically illustrated in Fig. 1. Each of the signals
is decomposed into time-frequency components, as
shown in panel (a). The relations between two sig-
nals j and k are firstly defined in time-frequency
space, as shown in panel (b). A statistical crite-
rion is then used to define a functional connectivity
matrix for each time-frequency point, panel (c). The
details of the statistical criterion we adopted are
reported in Sec. 2.1. In panel (d), topological met-
rics are extracted from the connectivity patterns to

obtain a time-frequency characterization of brain
networks. The metrics investigated are analyzed in
Sec. 2.2. Finally, in panel (e), at a given frequency,
or time instant of interest, the modular structure
is characterized as discussed in Secs. 2.3 and 2.4.
To evaluate the features of brain connectivity, the
obtained functional networks are compared with
equivalent regular and random networks.

2.1. Estimation of functional
connectivity

A unified definition of brain connectivity is diffi-
cult from the fact that the recorded dynamics reflect
the activities of neural networks at different spatial
and temporal resolutions. Three types of connectiv-
ity are currently considered: anatomical (descrip-
tion of the physical connections between two brain
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Fig. 1. General scheme for the extraction of the time-varying brain networks: (a) signals are decomposed into time-frequency
components to compute (b) pair-wise relations; (c) functional connectivity matrices are extracted at each point of the time-
frequency space, defining (d) the functional brain networks used to extract the topological attributes (color codes the nodes
degree) and the (e) modular structure (brain sites belonging to each module are arbitrarily colored). See details in the text.
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sites), functional (defined by a temporal correla-
tion between distant neurophysiological events) and
effective (causal influence that a neural system may
exert over another). Here, we consider the func-
tional links in brain signals defined via the phase-
locking value (PLV) computed between all pairs of
sensors [Lachaux et al., 1999]. To compute the PLV
values, we used a complex Morlet’s wavelet function
defined as w(t, f0) = A exp(−t2/2σ2

t )×exp(i2πf0t).
Normalization factor A was set to A = (σt

√
π)−1/2.

σt = m/2πf0, m is a constant that defines the com-
promise between time and frequency resolution, and
f0 is the center frequency of the wavelet. Hence,
in time domain, its real and imaginary parts are a
cosine and a sine, respectively, of which the ampli-
tude envelope is a Gaussian with a standard devia-
tion of σt. In frequency domain, the Morlet wavelet
is also a Gaussian with a standard deviation σf

given m = f0/σf . Here, m was chosen to be 7. By
means of this complex wavelet transform an instan-
taneous phase φtrial

i (t, f) is obtained for each fre-
quency component of signals i = 1, . . . ,M at each
repetition of the stimulus (trial). The PLV between
any pair of signals (i, k) is inversely related to the
variability of phase differences across trials:

PLVi,k(t, f)

=
1

Ntrials

∣∣∣∣∣

Ntrials∑

trial=1

expj(φtrial
i (t,f)−φtrial

k (t,f))

∣∣∣∣∣ ,

where Ntrials is the total number of trials. If the
phase difference varies little across trials, its distri-
bution is concentrated around a preferred value and
PLV ∼ 1. In contrast, under the null hypothesis of
a uniformity of phase distribution, PLV values are
close to zero.

Finally, to assess whether two different sen-
sors are functionally connected, we calculated the
significance probability of the PLV values by a
Rayleigh test of uniformity of phase. According to
this test, the significance of a PLV value deter-
mined from Ntrials can be calculated as p =
exp(−NtrialsPLV2) [Fisher, 1989]. To correct for
multiple testing, the False Discovery Rate (FDR)
method was applied to each matrix of PLV val-
ues [Benjamini & Hochberg, 1995]. With this
approach, the threshold of significance PLVth was
set such that the expected fraction of false positives
is restricted to q ≤ 0.05.

In the construction of the networks, a func-
tional connection between two brain sites was
assumed as an undirected and unweighted edge

(Aij = 1 if PLVij > PLVth; and zero otherwise).
Although topological features can also be straight-
forwardly generalized to weighted networks [Barrat
et al., 2004], we obtained qualitative similar results
(not reported here) for weighted networks with
a functional connectivity strength between nodes
given by wij = PLVij. More refined statistical
tools can also be used to estimate time-varying
and directed brain networks [De Vico Fallani et al.,
2008].

2.2. Time-varying structure
of brain networks

A set of metrics can be used to characterize the
topological properties of the functional networks we
have constructed [Newman, 2003; Boccaletti et al.,
2006]. Here, we use three key parameters: mean
degree 〈K〉, clustering index C and global efficiency
E. Briefly, the degree ki of node i denotes the num-
ber of functional links incident with the node and
the mean degree is obtaining by averaging ki across
all nodes of the network. The clustering index quan-
tifies the local density of connections in a node’s
neighborhood. The clustering coefficient ci of a node
i is calculated as the number of links between the
node’s neighbors divided by all their possible con-
nections and C is defined as the average of ci taken
over all nodes of the network [Watts & Strogatz,
1998]. The global efficiency E provides a measure
of the network’s capability for information trans-
fer between nodes and is defined as the inverse of
the harmonic mean of the shortest path length Lij

between each pair of nodes [Latora & Marchiori,
2001]. The node-efficiency Ei of the ith node is like-
wise defined as the inverse of the harmonic mean of
the minimum path length between node i and all
other nodes in the network.

To asses the small-world behavior of functional
networks, we perform a benchmark comparison
of the functional connectivity patterns [Watts &
Strogatz, 1998]. For this, the clustering and effi-
ciency coefficients of functional networks are com-
pared with those obtained from equivalent random
and regular configurations. Regular networks were
obtained by rewiring the links of each node to
its nearest (in the sensors space) neighbors, yield-
ing a nearest-neighbor connectivity with the same
degree distribution as the original network. To cre-
ate an ensemble of equivalent random networks we
use the algorithm described in [Watts & Strogatz,
1998]. According to this procedure, each edge of the
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original network is randomly rewired avoiding self
and duplicate connections. The obtained random-
ized networks preserve thus the same mean degree
as the original network whereas the rest of the
wiring structure is random.

2.3. Network modularity

Many real networks have a modular structure,
i.e. their associated graphs are in general globally
sparse but locally dense. In these networks, modules
are defined as groups of vertices linked such that
connections between them are denser than connec-
tions with the rest of the network. It is currently
accepted that a partition P = {C1, . . . , CM} repre-
sents a good division in modules if the portion of
edges inside each module Ci (intra-modular edges) is
high compared to the portion of edges between them
(inter-modular edges). The modularity Q(P), for a
given partition P of a network is formally defined
as [Newman & Girvan, 2004]:

Q(P) =
M∑

s=1

[
ls
L

−
(

ks

2L

)2
]

, (1)

where M is the number of modules, L is the total
number of connections in the network, ls is the
number of connections between vertices in module
s, and ks is the sum of the degrees of the vertices
in module s.

To partition the functional networks in
modules, we used a random walk-based algo-
rithm [Latapy & Pons, 2006], because of its ability
to manage very large networks, and its good perfor-
mances in benchmark tests [Latapy & Pons, 2006;
Danon et al., 2005]. Similar theoretical frameworks
have been recently proposed for spectral coarse-
graining [Allefeld & Bialonski, 2006; Gfeller & De
Los Rios, 2007]. The algorithm is based on the intu-
ition that a random walker on a graph tends to
remain into densely connected subsets correspond-
ing to modules. Let Pij = Aij/ki be the transition
probability from node i to node j, where Aij denotes
the adjacency matrix and ki is the degree of the ith
node. This defines the transition matrix (P t)ij for a
random walk process of length t (denoted here P t

ij
for simplicity). One notices that, if two vertices i
and j are in the same community, the probability
P t

ij is high, and P t
ik ( P t

jk∀ k.
The metric used to quantify the structural sim-

ilarity between vertices is given by

ρij =

√√√√
N∑

l=1

(P t
il − P t

jl)2

kl
(2)

This distance has several advantages: it quantifies
the structural similarity between vertices and it
can be used in an efficient clustering algorithm to
maximize the network modularity Q. Further, using
matrix identities, the distance ρ can be written as
ρ2

ij =
∑n

α=2 λ
2t
α (vα(i) − vα(j))2; where (λα)1≤α≤n

and (vα)1≤α≤n are the n eigenvalues and right eigen-
vectors of the matrix P , respectively [Latapy &
Pons, 2006]. This relates the random walk algo-
rithm to current methods using spectral properties
of the graphs [Newman, 2006; Gfeller & De Los
Rios, 2007]. The random-walk based approach, how-
ever, need not explicitly compute the eigenvectors
of the matrix; a computation that rapidly becomes
intractable when the size of the graphs exceeds some
thousands of vertices.

To find the modular structure, the algorithm
starts with a partition in which each node in the
network is the sole member of a module. Mod-
ules are then merged by an agglomerative approach
based on a hierarchical clustering method [Ward,
1963]. The algorithm stops when all the nodes are
grouped into a single component. At each step the
algorithm evaluates the quality of partition Q. The
partition that maximizes Q is considered as the par-
tition that better captures the modular structure of
the network. In the calculation of Q, the algorithm
excludes small isolated groups of connected vertices
without any links to the main network. However,
these isolated modules are considered here as part
of the network for the calculation of the topological
parameters.

2.4. Comparison of network
partitions

To evaluate the agreement between modules assign-
ments at a given time instant or frequency, one can
use the adjusted Rand index Ra [Hubert & Arabie,
1985], which is a traditional criterion for compar-
ison of different results provided by classifiers and
clustering algorithms, including partitions with dif-
ferent number of classes or clusters. For two parti-
tions P and P ′ the original Rand index is defined
as [Rand, 1971] R = (a + d)/(a + b + c + d); where
a is the number of pairs of data objects belonging
to the same class in P and to the same class in P ′, b
is the number of pairs of data objects belonging to
the same class in P and to different classes in P ′, c
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is the number of pairs of data objects belonging to
different classes in P and to the same class in P ′,
and d is number of pairs of data objects belonging
to different classes in P and to different classes in
P ′. Thus the index R has a straightforward inter-
pretation as a percentage of agreement between the
two partitions and it yields values between 0 (if
the two partitions are randomly drawn) and 1 (for
identical partition structures).

The Rand index, however, has a bias if a
partition is composed of many clusters, and it
can take a non-null value for two completely ran-
dom partitions. The index R can be straightfor-
wardly corrected for the expected value under the
null hypothesis according to the following general
scheme: Ra = (R − E{R})/(max{R}− E{R}).
Using the generalized hypergeometric distribution
as the null hypothesis, the adjusted Rand index
that corrects for the expected number of nodes pairs
placed in the same module under two random par-
titions is given by [Hubert & Arabie, 1985]

Ra =
a − (a + c)(a + b)

a + b + c + d
2a + b + c

a + b + c + d
− (a + c)(a + b)

a + b + c + d

(3)

which has an expected value of zero under the null
hypothesis, and it takes a maximum value of one
for a perfect agreement of the two partitions. Thus,
the adjusted Rand index is a statistics on the level
of agreement or correlation between two partitions.

3. Results

3.1. Time-frequency dependence of
brain networks

Figure 2 shows the topological attributes of func-
tional networks elicited by the — unexpected —
images. Pictures show the values of the mean degree,
clustering index and efficiency of networks between,
calculated at each point of the time-frequency
space, 600 ms before and 1 s after the onset of
the stimulus.

The first crucial observation is that functional
connectivity patterns are not time-invariant, but
instead they exhibit a rich time-frequency structure
during the neural processing. All the topological
features (specially 〈K〉 and C) exhibit high val-
ues in a frequency band close to 10 Hz, which is a
spectral component mostly involved in the process-
ing of visual information [Regan, 1989]. Whereas
the functional networks in the frequency range
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Fig. 2. Time-frequency maps of topological features extracted from brain networks associated to a visual stimulus presenta-
tion (arriving at t = 0). (a) mean degree 〈K〉, (b) clustering index C and (c) efficiency E. The reported values refer to the
average over subjects. Dotted lines outline the regions revealing a significant change from the pre-stimulus region. Lower row:
topographic distribution of the local parameters for the 20 Hz activities (indicated by the thick dashed line) at three different
time instants.
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of 10–30 Hz display large patterns of synchroniza-
tion/desynchronization before the stimuli, a highly
connected pattern is induced by the stimulus at
about 250 ms and between 15 and 25 Hz, suggesting
a connectivity induced by the unexpected sensory
stimuli. This is followed by weak connected struc-
tures at frequency bands close to 7 and 15 Hz arising
during the post-stimulus activities and marking the
transition between the moment of perception and
the motor response of the subject. The topolog-
ical features of these connectivity patterns were
detected as statistically different from the pre-
stimulus epoch by a Z-test corrected by a FDR
at q ≤ 0.05. Brain activities above 30 Hz are
characterized by a poor global connectivity. Local
parameters, ki, ci and Ei, for each sensor of the net-
work are shown at three different time instants for
a frequency of 20 Hz. During the processing of the
stimulus, a time-space variability of connectivity is
observed. Before the onset of the stimulus, the net-
works are characterized by a very sparse connec-
tivity. Then, a clear clustered structure triggered
by the stimulus appears at t = 250 ms, defining
two main regions (frontal and occipital) with a high
density of connections. After the stimulus, the func-
tional wiring displays again a sparse structure.

3.2. Small-world behavior of brain
networks

The comparison of the brain networks against ran-
dom and regular configurations is shown Fig. 3.
Typically, small-world networks exhibit a Esw

greater than regular lattices, but less than ran-
dom wirings Elat < Esw < Ernd; while for
the mean cluster index, Crnd < Csw < Clat is
expected [Watts & Strogatz, 1998]. Results reveal
that, despite the variability observed, functional
networks display a topology different from regular

and random networks. Namely, C/(〈Crnd〉) > 1 and
C/(〈Clat〉) < 1, which indicates a SW structure
(〈. . .〉 stays for an average over the ensembles of
equivalent networks). Further, (〈Elat〉)/E < 1 and
(〈Ernd〉)/E > 1, supporting the hypothesis of a SW
connectivity.

It is important to emphasize that, in con-
trast with previous studies which have focused
on time-invariant networks [Egúıluz et al., 2005;
Achard et al., 2006, 2007; Basset et al., 2006;
Stam et al., 2007], our approach reveals a dynami-
cal small-world connectivity at multiple time scales.
This is a remarkable result, insofar as it sug-
gests that the processing of a stimulus involves an
optimized (in a SW sense) functional integration of
distant brain regions by a dynamic reconfiguration
of links.

3.3. Evolution of functional
modules

A potential modularity of brain-webs is suggested
by the fact that brain networks display a clustering
index larger than that obtained from random con-
figurations [Ravasz et al., 2002]. Indeed, the pres-
ence of modules is actually confirmed by the high
values of Q obtained for brain networks extracted
from brain activities at different time instants and
frequencies. Figure 4 shows the spatial distribu-
tion of the modules for different networks with the
following Q values: (a) Q = 0.55, (b) Q = 0.33,
(c) Q = 0.53, (d) Q = 0.53, (f) Q = 0.49 and
(g) Q = 0.53.

Results show that brain networks have a time-
varying structure with a number of modules that
changes with time and frequency. From plots one
can observe that, despite the spatial variability
observed at different time instants and frequen-
cies, functional modules fit well some known brain

40

15

20

25

30

35

10

5
-0.5 0 0.5 1

1

0.8

0.6

0.4

0.2

0

time (s)

fr
eq

ue
nc

y 
(H

z)

-0.5 0 0.5 1

6

7

8

5
4

3
2
1
0

time (s)
-0.5 0 0.5 1

0.9

0.95

1

0.85

0.75

0.8

0.7

time (s)
-0.5 0 0.5 1

1.3

1.4

1.5

1.2

1

1.1

time (s)

(a) (b) (c) (d)
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networks). For the sake of clarity, isolated nodes were colored in black. (d) Time-frequency maps of mean degree are plotted
to help the network’s localization in the time frequency space.

regions including visual, somatosensory and audi-
tory processing areas. Before the onset of the
stimulus, however, networks are characterized by
modular structures that define four main regions
(anterior and posterior for both left and right hemi-
spheres). We notice that the partitions of both net-
works present a relatively low agreement yielding
a Ra = 0.39. Then, the large connectivity trig-
gered by the stimulus is also accompanied by an
increase in the number of modules, yielding a more
complex modular structure. The observed changes
are directly related to the specific nature of the
task: the detection and low-level processing of the
stimulus that involve the visual system, but fur-
ther processing as the identification and percep-
tion of the picture requires the mediation of regions
as those located in frontal regions. Surprisingly
antero–posterior relations elicit a large and unique
module fitting fronto-occipital regions. Although a
one-to-one assignment of anato/functional roles to
each detected module is difficult to define, results
reveal some other interesting modules, as the ones
located over the motor cortex at f = 18.5 Hz. Then
the post-stimulus activities recovers again a sim-
pler spatial organization of modules. It is worthy
to notice that the pre- and post-stimulus networks
have a very similar modular architecture only for
the brain activities at the frequency band of 10 Hz.
This high agreement is confirmed by a high value of

the adjusted Rand index (Ra = 0.626), compared
with the values less than 0.38 obtained for other
frequencies.

These are remarkable results as they support
the hypothesis that brain dynamics relies on dif-
ferent modular organizations to integrate distant
specialized, but functionally related, brain regions.
Our findings suggest modularity as an organization
basis facilitating distributed groups of specialized
neural assemblies to be integrated into a coher-
ent process during different cognitive or pathologi-
cal states. A modular description of brain networks
might provide, more in general, meaningful insights
into the functional organization of brain activities
during other neural functions, such as attention and
consciousness.

4. Conclusion

In this tutorial, we have addressed a fundamental
problem in brain networks research: whether and
how brain behavior relies on the coordination of a
dynamic mosaic of functional brain modules dur-
ing cognitive states. We have proposed a method
to study the time-frequency dependencies of func-
tional brain networks, thus offering an instanta-
neous description of the brain architecture. Applied
to a visual stimulus paradigm, the method reveals
that the functional brain connectivity evolves in a
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small-world structure during the different episodes
of the neural processing. Furthermore, by using
a random walk-based analysis, we have identified
a nonrandom modular structure in the functional
brain connectivity.

The present analysis was performed on MEG
data in sensor space, which contains some inher-
ent spurious correlation between magnetic fields on
the surface of the brain. Although this caveat does
not affect the characterization of the global net-
work topology, accurate inferences about anatom-
ical locations needs a source reconstruction of the
activity in the cortex. In this study, we have reduced
the influence of spurious correlations by simply
excluding the nearest sensors from the computation
of PLV values.

Our approach may provide meaningful insights
into how brain networks can efficiently manage a
local processing and a global integration for the
transfer of information, while being at the same
time capable of adapting to satisfy changing neural
demands. Although the neurophysiological mech-
anisms involved in the functional integration of
distant brain regions are still largely unknown, a
dynamic SW organization is a plausible solution to
the apparently opposing needs of local specificity
of activity versus the constraints imposed by the
coordination of distributed brain areas. The mod-
ular structure constitutes therefore an attractive
model for the brain organization as it supports the
coexistence of a functional segregation of distant
specialized areas and their integration during brain
states [Tononi et al., 1998; Sporns et al., 2000]. We
suggest that this network description might provide
new insights into the understanding of human brain
connectivity during pathological or cognitive states.

Applied to other multivariate data, our app-
roach could provide new insights into the struc-
ture of the time-varying connectivity at a certain
time [Valencia et al., 2008]. A modular description
of brain networks might provide, more in general,
meaningful insights into the functional organization
of brain activities recorded with other neuroimag-
ing techniques (EEG, MEG or fMRI) during diverse
cognitive or pathological states [Valencia et al.,
2009]. In this study, the functional links have been
defined in MEG signals via the phase-locking value.
We notice, however, that other time-frequency
methods (e.g. wavelet cross-spectra) can also be
used to detect and characterize a time-varying
connectivity of spatially extended, nonstationary
systems (e.g. financial or epidemiological networks).
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