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Abstract

Under certain conditions, the rate of increase of the statistical entropy of a simple, fully chaotic, conservative system is
known to be given by a single number, characteristic of this system, the Kolmogorov–Sinai entropy rate. This connection is
here generalized to a simple dissipative system, the logistic map, and especially to the chaos threshold of the latter, the edge
of chaos. It is found that, in the edge-of-chaos case, the usual Boltzmann–Gibbs–Shannon entropy is not appropriate.
Instead, the non-extensive entropy S ' 1yÝW pq qy1 , must be used. The latter contains a parameter q, theŽ .Ž .q is1 i

) Ž .entropic index which must be given a special value q /1 for qs1 one recovers the usual entropy characteristic of the
edge-of-chaos under consideration. The same q) enters also in the description of the sensitivity to initial conditions, as well
as in that of the multifractal spectrum of the attractor. q 2000 Published by Elsevier Science B.V.

PACS: 05.45.-a; 05.45.Df; 05.70.Ce

The connection between chaos and thermodynam-
ics has been receiving increased attention lately. A

w xreview of the central ideas can be found in 1 .
Recent studies have focused on both conserÕatiÕe
Žclassical long-range interacting many-body Hamil-

w xtonians 2–5 , low-dimensional conservative maps
w x. Ž w x6 and dissipatiÕe low-dimensional maps 7–11 ,
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w xmany-body self-organized criticality 12–15 , sym-
w x. w xbolic sequences 16 systems. In Ref. 6 the connec-

Ž .tion between the Kolmogorov–Sinai KS entropy
Žrate and the statistical entropy or thermodynamic

.entropy was brought out for simple conservative
w xsystems. In Refs. 7,8 the non-extensive entropy

w x1introduced some years ago by one of us 17–19
was shown to be the relevant quantity at the chaos

1 A regularly updated bibliography on the subject is accessible
at http:rrtsallis.cat.cbpf.brrbiblio.htm.
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Ž .threshold the edge of chaos . This entropy contains
a parameter q which has been called the entropic
index and it reduces to the usual Boltzmann–

Ž .Gibbs–Shannon BGS entropy when qs1. In Refs.
w x7–11 q was determined in two completely different
ways: from the sensitivity to initial conditions and

Ž Ž .from the multifractal spectrum using 1r 1yq s
1ra y1ra , where a and a are respec-min max min max

tively the lower and upper values where the multi-
Ž . . w xfractal function f a vanishes 30–38 .

The purpose of this Letter is to extend the work of
w x6 to a dissipative case and to focus especially on

.the edge of chaos. The results are: 1 In the chaotic
regime the linear rate of the BGS entropy gives the

.KS entropy; 2 At the edge of chaos, the non-exten-
sive entropy for one particular value q/1 grows

w x .linearly with time, as did the usual entropy in 6 ; 3
The value of q thus determined at the edge of chaos
is identical with that found with the two other inde-

w xpendent methods respectively used in Refs. 7,8 and
w x9–11 .

The dissipative system chosen is the simplest
possible: the logistic map, a nonlinear one-dimen-
sional dynamical system described by the iterative

w xrule 1 :

x s1yax 2
tq1 t

y1Fx F1; 0FaF2; ts0,1,2, . . . . 1Ž . Ž .t

ŽIt has chaotic behavior with a positive Lyapunov
.exponent for most of the values of the control

parameter a above the critical value a 'c

1.40115519 . . . . This critical value marks the edge of
chaos.

For convenience, we recall here the definition of
w xthe non-extensive entropy 17–19 . If the phase space

R has been divided into W cells of equal measure,
and if the probability of being in cell i is p , wei

define the entropy S byq

W
q1y pÝ i

is1S ' qgR . 2Ž . Ž .q qy1

For qs1 this is S syÝW p ln p , the usual1 is1 i i

entropy. This generalized entropy was proposed a
w xdecade ago 17–19 to allow statistical mechanics to

Ž .cover certain anomalies due to a possible multi -
Žfractal structure of the relevant phase space for

example, whenever we have long-range interactions,
long-range microscopic memory, multifractal bound-

.ary conditions, some dissipative process, etc . A
review of the existing theoretical, experimental and
computational evidence and connections is now

w x Žavailable 20,21 very recent verifications in fully
developed turbulence and in electron-positron anni-
hilation producing hadronic jets are exhibited in Ref.
w x w x w x .22 , see also Refs. 23,24 and 25 respectively .

w xWe also recall the two main results of Refs. 7–11 .
w xThe first 7,8 concerns the sensitivity to initial con-

ditions. In a truly chaotic system, the separation
between nearby trajectories, suitably averaged over

Ž .phase space, j t diverges in time like the exponen-
Ž .tial exp l t , where l )0 is the Lyapunov expo-1 1

nent. At the edge of chaos, on the other hand, the
upper bound growth of the separation follows a
power law which may be written

1

1yq
j t A 1q 1yq l t qgR 3Ž . Ž . Ž . Ž .q

in terms of a certain parameter q. The exponential is
recovered in the limit qs1. For the logistic map at
the edge of chaos, the Lyapunov exponent l is1

found to vanish, but the growth of the separation is
2 Ž . )fitted well by Eq. 3 with qsq '0.2445 . . . .

The second result concerns the geometrical descrip-
tion of the multifractal attractor existing at a . Seec

w xRefs. 9–11 for details. This gives a different method
for finding a special value of q which fits the
results, and this value turns out to be again 0.2445.

The power-law sensitivity to the initial conditions
w xhas already been noticed in the literature 26–28 .

We shall refer to it as weak sensitiÕity, as opposed to
the exponential law which we call strong sensitiÕity.
The weak case is characteristic of the edge of chaos.
The conclusion which seems to emerge from our
work is that the various manifestations of the edge of

2 At the chaos threshold the separation has a very fluctuating
behavior. The time series is a set of scattered points organized in a

Ž .regular but complicated way. Eq. 3 describes the upper bound of
this complicated structure, i.e. the quickest possible mixing. See

w xdetails in Refs. 7,8 .
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chaos all contain in their description a certain param-
eter q) , which has the same value for all of them;
and that moreover this q) is the entropic index

Ž .which must be used instead of the usual value 1 in
a thermodynamic description of an edge-of-chaos
system.

We shall now present the numerical work we
have done, in which q) is calculated in a third,
completely different way, which involves rates of
increase of entropies. We use the analysis devel-

w xlopped in Ref. 6 for conservative systems. In order
to do so we partition the interval y1FxF1 into W

Ž .equal cells; we choose randomly or not one of
Ž .them and we select randomly or uniformly N val-

Ž .ues of x inside that cell which will be considered
as initial conditions for the logistic map at a given
value of a. As t evolves, the N points spread within

w xthe y1,1 interval in such a way that we have a set
� Ž .4 W Ž .N t with Ý N t sN ; t, and a set of proba-i is1 i

� Ž . Ž . 4 w xbilities p t 'N t rN . Differently from Ref. 6 ,i i
Ž .we consider here the general entropy 3 , which for

w xqs1 reduces to the entropy used in 6 .
At ts0, all probabilities but one are zero, hence
Ž . Ž .S 0 s0. And, as t evolves, S t tends to increase,q q

1yq Žin all cases bounded by W y1 1yq lnWŽ . Ž .
.when qs1 , which corresponds to equiprobability.

Fluctuations are of course present and can be re-
duced by considering averages over the initial condi-
tions. As last step, we define the following rate of
increase

S tŽ .q
k ' lim lim lim 4Ž .q tt™` W™` N™`

where k , in the case of chaotic conservative sys-1

tems, is expected to coincide with the standard KS
w xentropy rate 6 . Our expectations, based on the work

w xof Refs. 7,8,39 , are:

Ž . ) Ž .
)i A special value q exists such that S tq

increases linearly with time. k is then fi-q

nite for qsq) , Õanishes for q)q) and
diÕerges for q-q).

Ž .ii When the system is strongly sensitiÕe to
Ž . )initial conditions l )0 , q is 1 and the1

w xresults of Ref. 6 can be extended to dissi-
patiÕe systems.

Ž . Žiii At the edge of chaos l s0, weakly sensi-1
. )tiÕe systems , q is different from 1 and

coincides with the value determined from
Ž Ž ..the sensitivity to initial conditions Eq. 3

and from the multifractal spectrum.

The following results confirm these expectations.
In Fig. 1 we present the case as2, for which the

Ž .system is chaotic with l s ln2 , and then we ex-1

pect q) s1. We show the time evolution of S forq

three different values of q. Only the curves for qs1
show a clear linear behavior before we reach the
asymptotic constant value which characterizes the
equilibrium distribution in the available part of phase
space. The slope in the intermediate time stage does
not depend on W and it is equal to the KS entropy

Žrate ln 2 for any one-dimensional system the KS
entropy is given by the positive Lyapunov exponent
w x. Ž .29 . This is clear in Fig. 2 which shows S t for1

two different cases as2 and as1.6 . In both cases
the fitted slope agrees with the predicted KS entropy
rates, respectively ln 2 and 0.3578 .

Fig. 1. Time evolution of S for as2. The interval y1F xF1 isq

partitioned into W equal cells. The initial distribution consists of
Ns106 points placed at random inside a cell picked at random
anywhere on the map. We consider three different values of q and
the two cases W s104 and W s105. Results are averages over
100 runs.
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Fig. 2. Time evolution of S for as2 and as1.6; W s105 and1

averages of 100 runs. The slopes of the fits shown are respectively
equal to the averaged Lyapunov exponents.

So far we have shown that q) is 1 for all the
cases in which the logistic curve is chaotic, i.e.
strongly sensitive to the initial conditions. Now we
want to study the same system at its chaos threshold
asa s1.40115519 . . . for which we expect q) sc

q s0.2445 . . . . For this value of a, considerablec

fluctuations are observed which require an efficient
and careful averaging over the initial conditions.
Consider that the attractor occupies only a tiny part

Ž 5of phase space 844 cells out of the Ws10 of our
.partition . We adopt the following criterion: we

Ž 6choose the initial distribution made of Ns10
. 5points in one of the Ws10 cells of the partition

and we study the number of occupied cells during
the time evolution; the integrated number of occu-
pied cells, i.e., the sum of the numbers of occupied
cells for all time steps from iteration 1 to iteration
50, is a measure of how good this initial condition is
at spreading itself. We repeat the same study for
each one of the Wr2 cells in the interval 0FxF1
and, in Fig. 3, we plot the integrated number of
occupied cells versus the position of the initial distri-
bution. The cells for which this number is larger than

Ž .a fixed cutoff s 5000 in Fig. 3 are selected for
Žinclusion in the averaging process in Fig. 3 this is

5.1251 cells, out of a total 10 . In Fig. 4 we plot
Ž .S t for four different values of q; the curves are anq

average over the 1251 initial cells selected by Fig. 3 .
Ž .The growth of S t is found to be linear whenq

Ž .qsq s0.2445, while for q-q q)q the curvec c c
Ž .is concave convex . This behavior is similar to the

one in Fig. 1, with a major difference: the linear

Ž .Fig. 3. Integrated number of occupied cells vs. position of the initial cell. The horizontal line selects the best initial conditions see text . If
Ž . )we increase or decrease the value of this numerically convenient, but dispensable cut-off, the value for q remains the same; what

changes is the proportionality coefficient between S ) and time.q
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5 Ž .Fig. 4. Time evolution of S for asa . We consider four different values of q and Ws10 . The case qs1 is reported in the inset aq c
Ž .with a different scale. Results are averages over 1251 runs. We show the coefficient of nonlinearity R versus q in the inset b . See text.

) Ž .The 4-digit precision for q was not attained through the present numerical procedure, but using the scaling 1r 1yq s1ra y1ra .min max

The present procedure does not provide higher precision than q) s0.24 . . . .

Ž Ž . .growth is not at qs1 see inset a in Fig. 4 , but at
a particular value of the entropic index, which hap-
pens to coincide with q) s0.2445. In order to make
this result much more convincing, we fitted the

Ž . w xcurves S t in the time interval t ,t with theq 1 2
Ž . 2 3 < <polynomial S t saqbtqct . We define Rs c

Ž .P t q t rb as a measure of the importance of the1 2

nonlinear term in the fit: if the points were on a
perfect straight line, R should be zero. We choose
t s15 and t s38 for all q’s, so that the factor1 2
Ž . Ž .t q t is just a normalizing constant. Fig. 4 b1 2

shows the minimum of R for qsq s0.2445. Thesec

results are not sensitive to small changes in t and1

t .2

Precisely the same behavior, in all of its aspects,
that we find here for the standard logistic map has

3 This method is more sensitive than the standard correlation
coefficient of the linear regression analysis in determining the best
linear slope among different values of q.

w xalso been found recently 40 for its extended version
2 < < z Ž .where the term x is generalized into x zgRR .t t

As expected from well known universality class
considerations for this family of maps, it was found

) ) Ž .that q depends on z. The same values for q z
w xwere also found 40 for a periodic family of maps

which belongs to the same universality class as the
logistic-like family. Finally, for the usual logistic
map, the value q) s0.24 . . . was found through a

w xdifferent algorithm 41 , closer in fact to the original
definition of the Kolmogorov–Sinai entropy.

To summarize, we have illustrated for the logistic
map the connections between the sensitivity to initial
conditions, the geometrical support in phase space,
and the linear growth in time of the entropy S . Inq

Žthe case of strong sensitivity exponential divergence
.between trajectories , the geometrical support is Eu-

clidean, and the relevant entropy with linear growth
is S , the usual entropy. In the case of weak sensitiv-1

Ž .ity power-law divergence , the geometrical support
is multifractal, and the relevant entropy whose growth
is linear is the non-extensive entropy S , with aq
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special value q) /1 of the entropic index. This q)

is the same parameter which enters also in the
power-law divergence and in the multifractal sup-
port: the same q) describes all three phenomena.
Thus strong sensitivity and weak sensitivity to initial
conditions become unified in a single description, the

Ždifference residing in the particular value of q s1
.for the strong case . The KS entropy rate, which is

an average loss of information, is also indexed by q.
We believe that the scenario herein exhibited is valid
for vast classes of nonlinear dynamical systems,
whose full and rigorous characterization would be
very welcome. We conclude, as a final remark, that
the still unclear foundation of statistical mechanics
on microscopic dynamics seems more than ever to

w xfollow along the lines pioneered by Krylov 42 .
Indeed, the crucial concept appears to be the mixing
Ž .and not only ergodicity : if the mixing is exponen-

Ž .tial strong mixing , then qs1 and the standard
thermodynamical extensivity is the adequate hypoth-
esis for those physical phenomena, whereas at the
edge of chaos the mixing is only algebraic
Ž .weak mixing and then q/1 and thermodynamical
nonextensivity is expected to emerge.
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