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e theme of this talk:
) generate . i
dynamical system ————=— diffusion

N

¢ two questions:
@ what type of diffusion is generated by a dynamical system?
@ can it be reproduced by some stochastic model?

o two examples: successes and limitations

1. diffusion in a soft Lorentz gas (parts 1 - 3)
2. a random dynamical system (part 4)
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1. The soft Lorentz gas

Stochastic



Lorentz (1905)

point particle of unit mass with unit
velocity scatters elastically with
hard disks of unit radius on a
triangular lattice

only nontrivial control parameter:
gap size w, cf. density of scatterers

paradigmatic example of a chaotic

\ Hamiltonian particle billiard:

3 positive Lyapunov exponent;
4 diffusion in certain range of w
Bunimovich, Sinai (1980)

‘ Question: How does the diffusion coefficient D(w) look like? ‘

tochastic modeling of diffusion in dynamical systems
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Diffusion coefficient for theﬂ beriodic Lorentz gas

diffusion coefficient D(w) = lim_,o < (r(t) —r(0))? > /(4t)
computer simulation results:
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e dots (left): random walk approx. by Machta, Zwanzig (1983),
Dyiz(w) = 2 /47 with ¢ distance between ‘traps’, T escape time
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Diffusion coefficient for the periodic Lorentz gas

diffusion coefficient D(w) = lim_,o, < (X(t) — x(0))? > /(4t)
computer simulation results: residua for large w:
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e dots (left): random walk approx. by Machta, Zwanzig (1983),
Dyiz(w) = ¢2 /47 with ¢ distance between ‘traps’, T escape time

e dirregularities on fine scales; RK, Dellago (2000)
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Diffusion in soft Lorentz gases

‘Question: What happens to D(w) if one softens the scatterers?

Motivation: model diffusion of electrons in artificial graphene,
here between CO molecules on a copper surface:

Carbon monoxide
molecule Electrons

Gomes et al., Natur

o
™
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Soft Lorentz gas
[ ]

Our model

We choose overlapping Fermi potentials

1
1+ exp (L;fo

with softness parameter ¢ and total energy E

3 parameters: w, E, o; diffusion coefficient D(w, E) computed
with software package bill2d by Solanpaa et al. (2016)
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Diffusion coefficient D(w) for o = 0.05 and E=1/2

0.30
—— Simulation
0.24 4 Dy
I DB,nurn
3 0.18 1 /./\,//
& 3(c)
o 0.12 1 3(d) -
0.06 + 3(a) 3(b)
0.00 T T T T
0.1 0.2 0.3 0.4 0.5
w (a.u.)

@ D(w) is a highly irregular function of w

@ the coarse form matches to a Boltzmann approximation
(orange analytical, red numerical)

@ there are parameter regions exhibiting superdiffusion
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Boltzmann approximation for dlffu3|on

Dg(w) =

47'0

where /. is the collision length of a particle hitting the
equipotential line and 7 the collision time
@ 7. calculated by a simple (MZ) phase space argument
@ /. eliminated by defining an average speed v = /. /7¢
yielding 5

v
Dp(w) = 4TC

@ two approximations for v when leaving a trap:

1. analytical by an average potential
2. numerical by the correct average speed
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Crossover between dlfferent random walks

comparison between a MZ approximation Dy, suitably adapted

to the soft Lorentz gas and Dg:
0.30 5

gl(w’ Vnum -

num
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0
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w

D)z better at the onset of diffusion with crossover to Dg for
larger w; general feature (RK, 1997; RK, Dellago, 2000)
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Anomalous diffusion and periodic orbits
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@ extrema in D(w) related to islands of periodicity in mixed
phase space (Geisel et al., 1987ff; Zaslavsky, 2002)

@ two types: ballistic orbits lead to superdiffusion, localised
orbits decrease normal diffusion

@ mathematical conjecture that islands are dense in
parameters under smoothing (Turaev, Rom-Kedar, 1998)
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Bifurcations

@ complicated bifurcation scenarios determine the size of the
anomalous parameter regions
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Periodic orbits in parameter space
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blue: localised; red ballistic periodic orbits

@ there is a very regular structure of periodic orbits
underlying the highly irregular D(W)

@ no fit with simple functional forms

@ open question to build a theory for these tongues
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D(w) for larger w?

D(w) story not yet complete:

1 T T T T T '
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w (gap size)

e after MZ and Boltzmann a third diffusive regime for larger w
e diffusion highly correlated therein: complicated scattering

e microscopic explanation by correlated random walk
approximation (RK, Korabel, 2002)

Rainer Klages 15
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Energy dependent diffusion coeff|0|ent D(E)

Aotivation \(

keep w = 0.05 constant at = 0.01 and vary the energy E:

10°
10* t
10% t
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log(D(E))

10-2 L
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10°¢

-8
10 :
10° 10!

log(E)
There exist three different diffusive regimes for small,
intermediate and large energies (plus superdiffusive regions, cf.
red dots).
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A suitably worked out Boltzmann approximation Dg(E) (here
also for a maximum velocity) reproduces the low energy
diffusion regime:
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D(E) for mtermedlate energies

for energy E = 1 a particle can for the first time fly over the top
of a potentlal

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

o full suppression of diffusion
atE =1

e each potential maximum
becomes a trap, where the
particle loses (all) kinetic

102 105 108 L1 114 117 12 energy
E

D(E)

reproduced by a random walk approximation

Ds(E) = (2/(47(E))
with distance ¢ between potential maxima and escape time 7
from a trap, calculated again by a phase space argument;
yields Ds =~ +/E — 1, cf. blue line above
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D(E) for hlgh energies

10"

D(E)

3 L L n
10
110" 210! 310! 410"
E

e D(E) increases as a power law with exponent 2.5

e predicted by high energy random walk approximation where
particles travel over long distances before slightly changing
direction (Aguer et al., 2010)

o for large energies superdiffusive parameter regions become
ubiquituous
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2. A random dynamical system
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e upper left: deterministic
tdynamical system D yielding
normal diffusion

e upper right: deterministic
dynamical system L where all
particles localize in space.

e bottom: random dynamical
system R that mixes these two
types of dynamics at time t with
probability p; the result is
intermittent motion
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Our modeI
y=Mjy(x) d

equation of motion : :
Xt41 = Ma(x;) with discrete time | 4. ;
teNg, a>0and 2 7|;
one-dimensional piecewise [i 3¢ 3
linear map i v j

ax
Ma(X):{ 6 1 54 2 3<=n

ax+1-a, ’ PEEEa

lift Ma(x + 1) = Ma(x) +

Lyapunov exponent \(a

random map R = Mj,(x): at any t choose a iid with probability
p € [0,1] from a = 1/2 and with 1 — p from a = 4
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10° 10* 10°
t

o left: <xt2> for p=0.6,...,0.7 (top to bottom); subdiffusion with
zero Lyapunov exponent at p = 2/3

e right: (x?) at p. with same random sequence for each particle
(colors), cp. to different random sequence (black); MSD is a
random variable breaking self-averaging and ergodicity
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o left: (x?) at p. by starting the computations after different
ageing times t; = 0,102,103, 10* (top to bottom) displays
ageing, cp. to CTRW theory (Barkai, 2003; bold lines)

e right: corresponding waiting time distribution 7(t) (for particles
leaving a unit cell at t;), again matching to CTRW theory

¢ both results imply weak ergodicity breaking (Bouchaud, 1992)
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Connectlon wit dynamlcal systems theory

@ mixing ‘expanding’/chaotic with contracting/non-chaotic
dynamics randomly in time generates intermittent motion

@ the underlying microscopic mechanism is called on-off
intermittency (Pikovsky (1984), Fujisaka et al. (1985));
transition called blowout bifurcation (Ott et al. (1994))
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@ diffusion in a soft Lorentz gas:

@ even at minimal softening the diffusion coefficient becomes
a highly irregular curve under parameter variation with
regions of superdiffusion

o different diffusive regimes all reproduced by simple random
walk approximations; fine structure related to periodic orbits

@ rigorous theory? measurements in experiments?

© random dynamical system:

@ can generate subdiffusion at a zero Lyapunov exponent
similar to CTRW theory

@ generality of this mechanism to generate anomalous
diffusion?
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Summary
(] J

Summary

e R.Klages et al., Normal and anomalous diffusion in soft
Lorentz gases, in print for PRL

e S.S.Gil-Gallegos et al., Energy-dependent diffusion in a soft
periodic Lorentz gas, to be published in EPJ-ST Special Issue
(Feb. 2019)

¢ Y.Sato, R.Klages, Anomalous diffusion in random dynamical
systems, to be resubmitted to PRL

all available on arXiv
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