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@ Motivation: random walks, diffusion and deterministic
chaos

@ A simple model for deterministic diffusion  with a fractal
diffusion coefficient

© From simple models towards experiments: particle
billiards and nanopores
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Mlcroscoplc chaos in a glass of Water’?

o dispersion of a droplet of ink
by diffusion

e assumption: chaotic collisions
between billiard balls

microscopic chaos

)

macroscopic transport

droplet of ink

J.Ingenhousz (1785), R.Brown (1827), L.Boltzmann (1872),
P.Gaspard et al. (Nature, 1998)
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The drunken sallor at a Iamppost

A\ A position simplification:

random walk in one dimension:

e steps of length s to the
left/right

e sailor is completely drunk
= IR i.e., the steps are uncorrelated
gl o1 (cp. to coin tossing)

K. Pearson (1905)

time steps
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The dlffu3|on coeff|C|ent

consider a large number (ensemble) of sailors starting from the
same lamppost: concentration

7 <
starting point position

define the diffusion coefficient by the width of the distribution:

it is a quantitative measure of how quickly a droplet spreads out

2
. < X* >
D := Ilim

n—oo

with < x2 >:= [dx x2pn(x)

as the second moment of the particle density p at time step n
A. Einstein (1905)
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BaS|c |dea of deterministic chaos

drunken sailor with memory? modeling by deterministic chaos

n
X X

n N <

simple equation of motion 40-;
—
Xn+1 = M(Xn) :

20T
for position x € R ;

at discrete time n € Np 101
with chaotic map M(x)

e the starting point determines where the sailor will move
e sensitive dependence on initial conditions
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Dynamics of a deterministic map

‘goal: study diffusion on the basis of deterministic chaos

key idea: replace stochasticity of drunken sailor by chaos
why? determinism preserves all dynamical correlations !

model a single step by a deterministic map

y
1“ ‘ steps are iterated in discrete time
y=M (x) /....,.,/ according to the equation of motion
/’ / Xn+1 = M(Xn)
/] ; with
'Y/
- X IM(x) =2x mod 1|

Bernoulli shift
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Quantlfylng chaos: Ljapunov exponents

Bernoulli shift dynamics again: ‘xn = 2Xp_1 mod 1‘

what happens to small perturbations Axgy := x§ — Xg < 1?
use equation of motion: Ax; :=X; — X1 = 2(X} — Xo) = 2AXg
iterate the map:
AXn = 2AXp_1 = 22AX%_5 = -+ - = 2"AXy = e""2Axq
A :=1In2: Ljapunov exponent ; A.M.Ljapunov (1892)
rate of exponential growth of an initial perturbation

here \ > 0: Bernoulli shift is chaotic
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[e]e] lele)]

A deterministically diffusive model

continue the Bernoulli shift on a periodic lattice by coupling the
single cells with each other; Grossmann, Geisel, Kapral (1982):

y:Ma(X?? .
Xn+1 = Ma(Xn) ‘

2 equation of motion for
. " non-interacting point

7 particles moving through an
/--; - array of identical scatterers
g

+ X slope a > 2 is a parameter
AT controlling the step length

i
2

s

R

‘ challenge: calculate the diffusion coefficient D(a)‘
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Computlng deterministic dlffu5|on coeff|C|ents

rewrite Einstein’s formula for the diffusion coefficient as

Dn(a) = 5 (v§)+ >k_1 (Vo%) — D(a) (n — c0)
Taylor-Green-Kubo formula

with velocities v := Xk 1 — Xk at discrete time k and equilibrium
density average < ... >:= fol dx ga(x)... , X =X

1. inter-cell dynamics:  Ta(x) := [ dX >3 v (X) defines
fractal functions T4(x) solvmg a (de Rham-) functional equation

2. intra-cell dynamics:  0a(X) is obtained from the Liouville
equation of the map on the unit interval

structure of formula:
first term yields random walk , others higher-order correlations

see, e.g., Knight, R.K., Nonlinearity and PRE (2011)
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Summary

Parameter dependent determlnlstlc diffusion

exact analytical results for this model:
‘ D(a) exists and is a fractal function of the control parameter

diffusion coefficient D(a)

slope a

compare diffusion of drunken sailor with chaotic model:
3 fine structure beyond simple random walk solution
R.K., Dorfman, PRL (1995)
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Fractals 1:

= o. Iteration

1. Iteration

2.Iteration

3. Iteration

4. Iteration

H. vonKoch (1904)
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diffusion coefficient D(a)

slope a




Fractals
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Fractals 2: the Takagi function
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T.Takagi (1903)
example of a continuous but nowhere differentiable function
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diffusion coefficient D(a)

slope a
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‘Fractals 3'; art meets science

,
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The great wave of Kanagawa; woodcut
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Physical explanation of the fractal structure

diffusion coefficient D(a)

2 3 4 5 6 7 8
slope a

local extrema are related to specific sequences of (higher
order) correlated microscopic scattering processes
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example: von Koch’s curve; define a ‘grid of boxes’

=

i CIERaREES T
| ' | (‘Jﬁ”}[ e

| f"m“a |
A ﬁmfam

e count the number of
boxes N covering the curve
e reduce the box size ¢

e assumption: N ~ ¢4

|[d=—InN/Ine (e —0)]
box counting dimension

e can be integer:

point: d = 0; line: d =1; ...

e can be fractal:

von Koch’s curve: d ~ 1.26

Takagi function: d = 1!

diffusion coefficient: d = 1 but
N(G) = Cle_l(l +CsyIn e)o‘

with 0 < o < 1.2 locally varying
Keller, Howard, R.K. (2008)

Deterministic chaos, fractals and diffusion

Rainer Klages 18



Introduction Diffusion and chaos Deterministic diffusion € Towards experiments Summary
g 00 g @ ©00 00

The flower-shaped billiard

deterministic diffusion in physically more realistic models:

‘ Hamiltonian particle billiards ‘

example:
flower-shaped hard disks on a
two-dimensional periodic lattice

moving point particles collide
elastically with the disks only:
Knudsen diffusion (1909)

similar settings for electrons in semiconductor antidot lattices,
cold atoms in optical lattices, and diffusion in porous media
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Diffusion in the flower-shaped billiard

diffusion coefficient as a function of the curvature x = 1/R of
the petals from simulations:

0.16

0.12

0 0.08

0.04

OOO L L L L L L

again a non-monotonic function of the control parameter with
irregular structure on fine scales
Harayama, R.K., Gaspard (2002)
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Molecular diffusion in zeolites

zeolites: nanoporous crystalline solids serving as molecular
sieves, adsorbants; used in detergents and as catalysts for oil
cracking

example: unit cell of Linde
type A zeolite; strictly

periodic structure built by a
“cage” of silica and oxygen

Schdring et al. (2002): MD
simulations with ethane yield Aoy
non-monotonic temperature

£ A
dependence of diffusion coefficient < __;/""
o< [x(t) = x(0)]? > D -
p(T) = lim <X =*(0)]
t_’OO H 6t . 1k . 4 " .
due to dynamical correlations o es 5 75 w0 ies

1000 K/ T
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Summary

@ central theme:
relevance of microscopic deterministic chaos for diffusion
in periodic lattices

@ main theoretical finding:
existence of diffusion coefficients that are irregular (fractal)
functions under parameter variation, due to memory effects

expected to be typical for classical transport in
low-dimensional, spatially periodic systems

@ open question: clearcut verification in experiments? good
candidates: nanopores, electronic transport in
nanostructures, Josephson junctions, vibratory conveyors
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