Rainer Klages

Queen Mary University of London, School of Mathematical Sciences

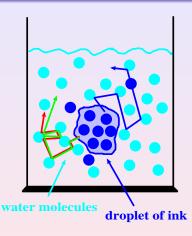
University of Nottingham
Theoretical & Mathematical Physics Seminar
7 November 2011

Outline

Introduction

- Motivation: random walks, diffusion and deterministic chaos
- A simple model for deterministic diffusion with a fractal diffusion coefficient
- From simple models towards experiments: particle billiards and nanopores

Microscopic chaos in a glass of water?

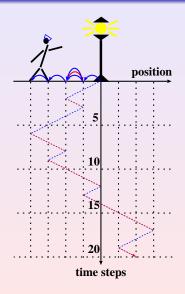


- dispersion of a droplet of ink by diffusion
- assumption: chaotic collisions between billiard balls

microscopic chaos macroscopic transport

J.Ingenhousz (1785), R.Brown (1827), L.Boltzmann (1872), P.Gaspard et al. (Nature, 1998)

The drunken sailor at a lamppost



simplification:

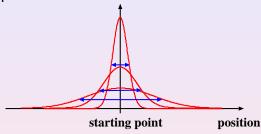
random walk in one dimension:

- steps of *length* s to the left/right
- sailor is completely drunk,
 i.e., the steps are uncorrelated
 (cp. to coin tossing)

K. Pearson (1905)

The diffusion coefficient

consider a large number (ensemble) of sailors starting from the same lamppost: concentration



define the **diffusion coefficient** by the width of the distribution: it is a quantitative measure of how quickly a droplet spreads out

$$D := \lim_{n \to \infty} \frac{\langle x^2 \rangle}{2n} \text{ with } \langle x^2 \rangle := \int dx \ x^2 \rho_n(x)$$

as the second moment of the particle density ρ at time step nA. Einstein (1905)

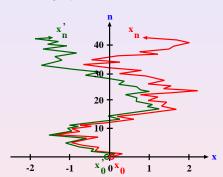
Basic idea of deterministic chaos

drunken sailor with memory? modeling by deterministic chaos

simple equation of motion

$$\mathbf{x}_{n+1} = \mathbf{M}(\mathbf{x}_n)$$

for position $x \in \mathbb{R}$ at discrete time $n \in \mathbb{N}_0$ with chaotic map M(x)



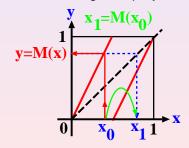
- the starting point determines where the sailor will move
- sensitive dependence on initial conditions

Dynamics of a deterministic map

goal: study diffusion on the basis of deterministic chaos

key idea: replace **stochasticity** of drunken sailor by **chaos why? determinism** preserves all **dynamical correlations**!

model a single step by a **deterministic map**:



steps are iterated in discrete time according to the equation of motion

$$\mathbf{x}_{n+1} = \mathbf{M}(\mathbf{x}_n)$$

with

$$M(x) = 2x \mod 1$$

Bernoulli shift

Quantifying chaos: Ljapunov exponents

Bernoulli shift dynamics again: $x_n = 2x_{n-1} \mod 1$

$$x_n = 2x_{n-1} \bmod 1$$

what happens to small perturbations $\Delta x_0 := x_0' - x_0 \ll 1$? use equation of motion: $\Delta x_1 := x_1' - x_1 = 2(x_0' - x_0) = 2\Delta x_0$ iterate the map:

$$\Delta x_n = 2\Delta x_{n-1} = 2^2 \Delta x_{n-2} = \dots = 2^n \Delta x_0 = e^{n\ln 2} \Delta x_0$$

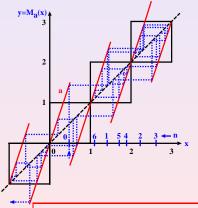
 $\lambda := \ln 2$: Ljapunov exponent; A.M.Ljapunov (1892)

rate of exponential growth of an initial perturbation

here $\lambda > 0$: Bernoulli shift is **chaotic**

A deterministically diffusive model

continue the Bernoulli shift on a **periodic lattice** by *coupling* the single cells with each other; Grossmann, Geisel, Kapral (1982):



$$x_{n+1} = M_a(x_n)$$

equation of motion for non-interacting point particles moving through an array of identical scatterers

slope $a \ge 2$ is a **parameter** controlling the step length

challenge: calculate the diffusion coefficient D(a)

rewrite Einstein's formula for the diffusion coefficient as

$$D_n(a) = \frac{1}{2} \langle v_0^2 \rangle + \sum_{k=1}^n \langle v_0 v_k \rangle \to D(a) \quad (n \to \infty)$$

Taylor-Green-Kubo formula

with velocities $v_k := x_{k+1} - x_k$ at discrete time k and equilibrium density average $< \ldots > := \int_0^1 dx \, \varrho_a(x) \ldots \,, \, x = x_0$

- **1. inter-cell dynamics:** $T_a(x) := \int_0^x d\tilde{x} \sum_{k=0}^\infty v_k(\tilde{x})$ defines fractal functions $T_a(x)$ solving a (de Rham-) functional equation
- **2. intra-cell dynamics:** $\varrho_a(x)$ is obtained from the Liouville equation of the map on the unit interval

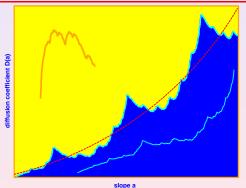
structure of formula:

first term yields **random walk**, others higher-order **correlations** see, e.g., Knight, R.K., Nonlinearity and PRE (2011)

Parameter-dependent deterministic diffusion

exact analytical results for this model:

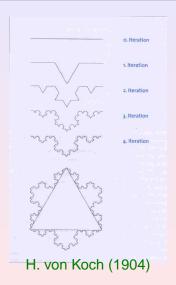
D(a) exists and is a fractal function of the control parameter

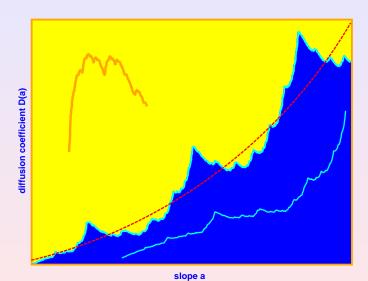


compare diffusion of drunken sailor with chaotic model:

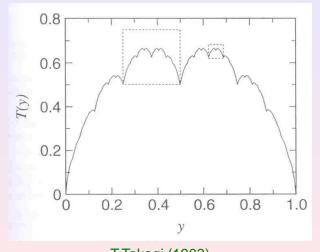
∃ fine structure beyond simple random walk solution R.K., Dorfman, PRL (1995)

Fractals 1: von Koch's snowflake

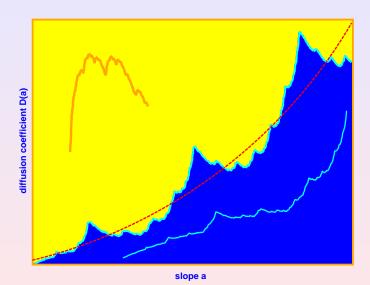




Fractals 2: the Takagi function



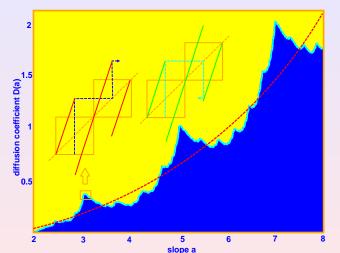
T.Takagi (1903)
example of a continuous but nowhere differentiable function



'Fractals 3': art meets science

K.Hokusai (1760-1849) The great wave of Kanagawa; woodcut

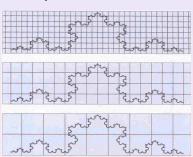
Physical explanation of the fractal structure



local extrema are related to specific sequences of (higher order) correlated microscopic scattering processes

Quantify fractals: fractal dimension

example: von Koch's curve; define a 'grid of boxes'



- count the number of boxes *N* covering the curve
- reduce the box size ϵ
- assumption: $N \sim \epsilon^{-d}$

$d = -\ln N / \ln \epsilon (\epsilon \rightarrow 0)$ box counting dimension

can be integer:

point: d = 0; line: d = 1; ...

can be fractal:

von Koch's curve: $d \simeq 1.26$

Takagi function: d = 1!

diffusion coefficient: d = 1 but $N(\epsilon) = C_1 \epsilon^{-1} (1 + C_2 \ln \epsilon)^{\alpha}$

with $0 \le \alpha \le 1.2$ locally varying

Keller, Howard, R.K. (2008)

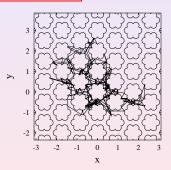
The flower-shaped billiard

deterministic diffusion in physically more realistic models:

Hamiltonian particle billiards

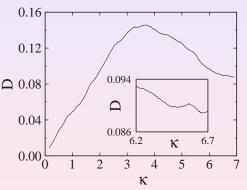
example:

flower-shaped hard disks on a two-dimensional periodic lattice moving point particles collide elastically with the disks *only*: Knudsen diffusion (1909)



similar settings for electrons in semiconductor antidot lattices, cold atoms in optical lattices, and diffusion in porous media

diffusion coefficient as a function of the curvature $\kappa = 1/R$ of the petals from simulations:



again a non-monotonic function of the control parameter with irregular structure on fine scales

Harayama, R.K., Gaspard (2002)

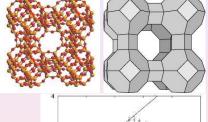
Molecular diffusion in zeolites

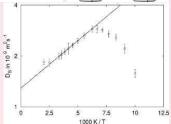
zeolites: nanoporous crystalline solids serving as molecular sieves, adsorbants; used in detergents and as catalysts for oil cracking

example: unit cell of Linde type A zeolite; strictly periodic structure built by a "cage" of silica and oxygen

Schüring et al. (2002): MD simulations with ethane yield non-monotonic temperature dependence of diffusion coefficient

$$D(T) = \lim_{t \to \infty} \frac{\langle [\mathbf{x}(t) - \mathbf{x}(0)]^2 \rangle}{6t}$$
due to dynamical correlations





Summary

- central theme: relevance of microscopic deterministic chaos for diffusion in periodic lattices
- main theoretical finding: existence of diffusion coefficients that are irregular (fractal) functions under parameter variation, due to memory effects expected to be typical for classical transport in low-dimensional, spatially periodic systems
- open question: clearcut verification in experiments? good candidates: nanopores, electronic transport in nanostructures, Josephson junctions, vibratory conveyors

Acknowledgements and literature

work performed with:

J.R.Dorfman (College Park, USA), P.Gaspard (Brussels), T.Harayama (Kyoto)

literature:

