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Outline

1 Galilean invariance in classical mechanics: brief review

2 Galilean invariance for stochastic systems: deriving

Langevin dynamics

3 (weak) Galilean invariance for anomalous stochastic

processes: CTRW and beyond
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Galilean invariance

G.Galilei (1632): ship travelling at constant velocity on a smooth

sea; any observer doing experiments below the deck would not

be able to tell whether the ship was moving or stationary.

C.Huygens (≃1650): derivation of laws for elastic collisions
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Inertial frames

more precisely: Galilean invariance (GI) means the laws of

motion are the same in all inertial frames (IFs).

An inertial frame is a reference frame describing a closed

system where the frame-internal physics is not affected by

frame-external forces.

Meaning as there is no net force, particles remain at rest or

move at constant velocity: Newton’s 1st Law.

Newton’s Laws are valid in all inertial frames.
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Example of a non-inertial frame

Coriolis force:

Non-inertial frames should be avoided, if possible, as the laws

of physics are not simple in them (Einstein, 1905). Otherwise

you need to identify the resulting fictitious forces.
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Galilean transformation

convert measurements in two IFs into each other by a Galilean

transformation:

Let S and S̃ be two different IFs. Denote by (x , v , t) and

(x̃ , ṽ , t̃ ) their coordinates for position, velocity and time,

respectively, in 1d.

S̃ is moving with uniform velocity v0 with respect to S and

coincides with S at t = 0. Clocks are synchronized, t̃ = t .

Galilean transformation:

x̃ = x − v0 t , ṽ = v − v0

If GI holds, Newton’s equations of motion F = m ẍ (his Second

Law) remain the same under a GT.
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Galilean invariance for stochastic diffusive dynamics?

How does GI carry over when deriving stochastic equations via

coarse graining from classical mechanical equations of motion?

not too much literature on this:

GI for Navier-Stokes (Forster et al., 1977; Berera et al.,

2007)

KPZ equation (Wio et al., 2010)

molecular dynamics simulations via Langevin equations

(Dünweg, 1993)
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Galilean transformation for Hamilton’s equations

Hamiltonian for a classical system of N interacting particles:

H(x1, v1; . . . ; xN , vN) =
N∑

i=1

mi

2
v2

i (t) +
∑

i<j

U(xi(t), xj(t))

with position-velocity coordinates (xi , vi) of the i-th particle and

interaction potential U; Hamilton’s equations:

ẋi(t) = vi(t) , mi v̇i(t) = −
∂

∂xi

∑

i<j

U(xi(t), xj(t))

GT into S̃:

˙̃x i(t)= ṽi(t) and mi
˙̃v i(t)=−

∂

∂x̃i

∑

i<j

U(x̃i(t), x̃j(t))

GI if U depends only on the relative difference between the

particles’ positions, x̃i(t)− x̃j(t)=xi(t)− xj(t), cf. Newton’s

Third Law.
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The Kac-Zwanzig model for a tracer in a heat bath

tracer particle (X (t),V (t)) interacting with a heat bath

consisting of (xj(t), vj(t)), j =1, ...,N harmonic oscillators at

angular frequency ωj and coupling strength γj :

MẌ (t) =
N∑

j=1

γj

[
xj(t)−

γj

mω2
j

X (t)

]
,

mẍj(t) = −mω2
j

[
xj(t)−

γj

mω2
j

X (t)

]
.

with (X (0),V (0))=(0, 0) and (xj(0), vj(0))=(xj0, vj0).

note: GI only if γj =mω2
j , as discussed before
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Eliminating the bath variables

solving for xj and plugging into the equation for X yields

MẌ (t) = −

∫ t

0

Ω(t − t ′)Ẋ (t ′) dt ′ + ξ(t)

with memory kernel

Ω(t) =
N∑

j=1

ωj cos (ωj t)

and

ξ(t) =
N∑

j=1

ωjvj0 sin (ωj t) +
N∑

j=1

ω2
j xj0 cos (ωj t) .

Zwanzig (1973)
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GI of the deterministic KZ model

Under GT we have

∫ t

0

Ω(t − t ′)Ẋ (t ′) dt ′ =

∫ t

0

Ω(t − t ′)
˙̃
X (t ′) dt ′ + v0

∫ t

0

Ω(t ′) dt ′

and

ξ(t) = ξ̃(t) + v0

N∑

j=1

γj

mωj
sin (ωj t)

yielding

M
¨̃
X (t) = −

∫ t

0

Ω(t − t ′)
˙̃
X (t ′) dt ′ + ξ̃(t)

GI persists after eliminating the bath degrees of freedom.
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Deriving the stochastic Langevin equation

We had the fully deterministic tracer dynamics

MẌ (t) = −

∫ t

0

Ω(t − t ′)Ẋ (t ′) dt ′ + ξ(t)

first term yields friction, second term collisions with bath

particles depending on initial conditions (xj0, vj0)

now specify ξ(t) as a random force by choosing a suitable initial

distribution of the bath particles

assume the heat bath is at equilibrium in S: velocity distribution

is Maxwellian at bath temperature T implying 〈ξ(t)〉=0 and

fluctuation-dissipation relation 〈ξ(t1)ξ(t2)〉=kBTΩ(|t1 − t2|)

⇒ generalized Langevin equation
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Breaking of GI in stochastic Langevin dynamics

note: thermal equilibrium in S is not frame invariant! a proper

heat bath must be infinite violating the closedness of IFs

⇒ the stationary reference frame S is singled out for calibrating

the noise ξ

under GT the noise was

ξ̃(t) = ξ(t)− v0

N∑

j=1

γj

mωj
sin (ωj t)

acquiring a different statistics than ξ(t)

The noise ξ̃(t) cannot be defined independently, thus inevitably

GI is broken.
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Deriving GT rules for stochastic dynamics

solve the Langevin equation both in S and S̃: (X ,V ) and (X̃ , Ṽ )
are still related via the ordinary GT

this implies for the probability distribution functions (PDFs)

P(x , v , t) = 〈δ(x − X (t))δ(v − V (t))〉

=
〈
δ(x − X̃ (t)− v0t)δ(v − Ṽ (t)− v0)

〉

= P̃(x − v0t , v − v0, t)

note: in both IFs 〈. . .〉 is with respect to the same heat bath

defined in S
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Summary

We define weak Galilean invariance (WGI) for stochastic

coarse-grained diffusive dynamics as:

1 stochastic equations of motion transform via a GT on their

position and velocity processes only

2 Fokker-Planck and Klein-Kramers equations also transform

via a GT on their independent variables

3 PDFs transform as P(x , v , t) = P̃(x − v0t , v − v0, t)
(cf. also Meztler et al., 1998, 2000)
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Weak GI for anomalous processes
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GT for Continuous Time Random Walk

In the simplest case a (subdiffusive) CTRW in 1d is governed

by a waiting time and a jump length distribution leading to the

generalized diffusion equation

∂

∂t
P(x , t) = LDtP(x , t) , L = σ

∂2

∂x2

with DtP(x , t)= ∂

∂t

∫ t
0

dt ′K (t − t ′)P(x , t ′); for power law memory

kernel we recover the Riemann-Liouville fractional derivative

How to incorporate a constant drift here ‘mimicking’ GT?

two attempts:

1.
∂

∂t
P̃ =

[
v0

∂

∂x
+ L

]
Dt P̃

2.
∂

∂t
P̃ = v0

∂

∂x
P̃ + LDt P̃ Metzler et al. (1998, 2000)
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No WGI for CTRW

both versions violate WGI:

solve 1. in Fourier-Laplace space: violates rule 3 of WGI, which

reads P(k , λ) = P̃(k , λ− iv0k)

similarly 2. violates rule 3 and, even worse, violates positivity of

the PDFs; analytical results for power law memory kernel:

⇒ generally, do NOT try to implement GT by arbitrarily adding a

drift term
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A WGI CTRW

correct WGI eq. by implemeting rule 3 in (solution of) diffusion

equation in frame S:
∂

∂t
P̃(x , t) = v0

∂

∂x
P̃(x , t) + LD

(v0)
t P̃(x , t)

with fractional substantial derivative

D
(v0)
t P̃(x , t) =

[
∂

∂t
− v0

∂

∂x

] ∫ t

0

dt ′K (t − t ′)P̃(x + v0(t − t ′), t ′)

modeling a retardation effect (Sokolov, Metzler, 2003; Friedrich

et al., 2006)

note: a corresponding WGI Langevin equation can be derived

by using the ‘ξ-process’ (Cairoli, Baule, 2015)
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Summary

detailed analysis of the Kac-Zwanzig model shows where

and how GI is broken for deriving the stochastic Langevin

equation

but GI survives in the form of three selection rules, which

we called weak Galilean invariance

weak GI particularly tricky for spatio-temporally correlated

(anomalous) stochastic processes

A.Cairoli, RK, A.Baule, Weak Galilean invariance as a selection

principle for stochastic coarse-grained diffusive models, under

review for PNAS
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