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Outline

1 Cell migration: motivation and some biological details

2 Brownian motion: theory in a nutshell

3 Experimental results: statistics of cell migration

4 Theoretical modeling: fractional stochastic equation

5 Conclusions: physical and biological interpretations?
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Setting the scene

I. Cell migration

animation: Brownian motion vs. cell migration

J. Ingenhousz (1785)
R. Brown (1827)
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Brownian motion of migrating cells?

Brownian motion

3 colloidal particles of radius
0.53µm; positions every 30
seconds, joined by straight
lines (Perrin, 1913)

single biological cell crawling on
a substrate (Dieterich, R.K. et
al., PNAS, 2008)

Brownian motion?
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Brownian motion of migrating cells?

yes: Dunn, Brown (1987); Stokes et al. (1991)

not quite: Hartmann et al. (1994); Upadhyaya et al. (2001);
T.-Norrelykke, Jülicher (2007); H.Takagi et al. (2008)
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Why cell migration?

motion of the primordium in developing zebrafish (Gilmour,
2008):

positive aspects:

morphogenesis

immune defense

negative aspects:

tumor metastases

inflammation reactions
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How do cells migrate?

membrane protrusions and
retractions ∼ force generation:

lamellipodia (front)
uropod (end)
actin-myosin network

formation of a polarized state
front/end

cell-substrate adhesion

note: here we do not study the
microscopic origin of cell migration,
which is a highly complex process
involving a huge number of proteins
and signaling mechanisms
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Our cell types and some typical scales

renal epithelial MDCK-F (Madin-Darby canine kidney) cells;
two types: wildtype (NHE+) and NHE-deficient (NHE−)

observed up to 1000 minutes: here no limit t → ∞!

cell diameter 20-50µm; mean velocity ∼ 1µm/min;
lamellipodial dynamics ∼ seconds

movies: NHE+: t=210min, dt=3min NHE-: t=171min, dt=1min
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Measuring cell migration
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II. Brownian motion
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The Langevin equation

microscopic understanding of Brownian motion: Einstein (1905)

simple theory suggested by Langevin (1908):

Newton’s law for a particle of mass m and
velocity v immersed in a fluid

mv̇ = F d (t) + F r (t)
with total force of surrounding particles
decomposed into viscous damping Fd (t) and
random kicks F r (t)

suppose F d (t)/m = −κv and F r (t)/m =
√

ζ ξ(t) as Gaussian
white noise of strength

√
ζ:

v̇ + κv =
√

ζ ξ(t) Langevin equation

‘Newton’s law of stochastic physics’: apply to cell migration?
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Solving the Langevin equation

calculate three important quantities (in d dimensions):

1. the diffusion coefficient D := limt→∞ msd(t)/(2dt)

with mean square displacement msd(t) :=< [x(t) − x(0)]2 >
over ensemble average < . . . >; for Langevin eq. one obtains

msd(t) = 2dv2
th

(

t − κ−1(1 − exp (−κt))
)

/κ

with v2
th = kT/m; note that msd(t) ∼ t2 (t → 0) and

msd(t) ∼ t (t → ∞) ⇒ ∃D

2. the velocity autocorrelation function vac(t) :=< v(t) · v(0) >

for Langevin eq. one finds
vac(t) = v2

th exp (−κt)
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Fokker-Planck equations and the like

3. the probability distribution function P(x , v , t) (ff in one
dimension):
• Langevin dynamics obeys (for κ ≫ 1) the diffusion equation

∂P
∂t

= D
∂2P
∂x2

solution for initial condition P(x , 0) = δ(x) yields position
distribution P(x , t) = exp(− x2

4Dt )/
√

4πDt

• for velocity distribution P(v , t) of Langevin dynamics one can
derive the Fokker-Planck equation

∂P
∂t

= κ

[

∂

∂v
v + v2

th
∂2

∂v2

]

P

stationary solution is P(v) = exp(− v2

2v2
th
)/
√

2πvth
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• Fokker-Planck equation for position and velocity distribution
P(x , v , t) of Langevin dynamics is the Klein-Kramers equation

∂P
∂t

= − ∂

∂x
[vP] + κ

[

∂

∂v
v + v2

th
∂2

∂v2

]

P

the above eqns. can be derived from it as special cases
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III. Experimental results
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Mean square displacement

• msd(t) :=< [x(t) − x(0)]2 >∼ tβ with β → 2 (t → 0) and
β → 1 (t → ∞) for Brownian motion; β(t) = d ln msd(t)/d ln t

• solid lines: (Bayes) fits from our model
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Velocity autocorrelation function

• vac(t) :=< v(t) · v(0) >∼ exp(−κt) for Brownian motion
• solid lines: fits from our model; same parameter values as
msd(t)
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Position distribution function

• P(x , t) → Gaussian (t → ∞)
and kurtosis

κ(t) := <x4(t)>
<x2(t)>2 → 3 (t → ∞)

for Brownian motion (green
lines, in 1d)

• other solid lines: fits from
our model; parameter values
as before

remark: model does not yet
explain short-time distributions
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Velocity distribution functions

P(v) = 1√
2πvth

exp(− v2

2v2
th
) for Brownian motion;

fit by stretched exponential: P(v) = c exp(−b
2 ( v

vth
)a)

linear plot semi-log plot
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IV. Theoretical modeling
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The model

Fractional Klein-Kramers equation (Barkai, Silbey, 2000):

∂P
∂t

= − ∂

∂x
[vP] +

∂1−α

∂t1−α
κ

[

∂

∂v
v + v2

th
∂2

∂v2

]

P

with probability distribution P = P(x , v , t), damping term κ,
thermal velocity vth and Riemann-Liouville fractional derivative
of order 1 − α defined by

∂γP
∂tγ

:=

{

∂mP
∂tm , γ = m
∂m

∂tm

[

1
Γ(m−γ)

∫ t
0 dt ′ P(t ′)

(t−t ′)γ+1−m

]

, m − 1 < γ < m

with m ∈ N; for α = 1 ordinary Klein-Kramers equation
recovered
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Fractional derivative

interlude – what is a fractional derivative?

letter from Leibniz to L’Hôpital (1695): d1/2

dx1/2 =?

one way to proceed: we know that for integer m, n
dm

dxm xn = n!
(n−m)!x

n−m = Γ(n+1)
Γ(n−m+1)xn−m;

assume that this also holds for m = 1/2 , n = 1

⇒ d1/2

dx1/2 x = 2√
π

x1/2

extension leads to the Riemann-Liouville fractional derivative,
which yields power laws in Fourier (Laplace) space:

dγ

dxγ F (x) ↔ (ik)γ F̃ (k)

∃ well-developed mathematical theory of fractional calculus ,
see Sokolov, Klafter, Blumen, Phys. Today 2002 for a short intro
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Solutions for this model

analytical solutions (Barkai, Silbey, 2000):

mean square displacement:
msd(t) = 2v2

tht2Eα,3(−κtα) → 2Dαt2−α

Γ(3−α) (t → ∞)

with Dα = v2
th/κ and generalized Mittag-Leffler function

Eα,β(z) =
∑∞

k=0
zk

Γ(αk+β) , α , β > 0 , z ∈ C;

note that E1,1(z) = exp(z): Eα,β(z) is a generalized
exponential function

velocity autocorrelation function:
vac(t) = v2

thEα,1(−κtα) → 1
κΓ(1−α)tα (t → ∞)

for κ → ∞ fractional Klein-Kramers reduces to a fractional
diffusion equation yielding P(x , t) in terms of a Fox
function (Schneider, Wyss, 1989)
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note:
3 fit parameters vth, α ≃ 0.7, κ plus another one by adding
“biological noise” of variance η2 to msd ,

msdnoise(t) := msd(t) + 2η2;
mimicks measurement errors and cytoskeleton fluctuations
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V. Conclusions
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Possible physical interpretation

• physical meaning of the fractional derivative?

fractional Klein-Kramers equation is approximately related to
the generalized Langevin equation

v̇ +
∫ t

0 dt ′ κ(t − t ′)v(t ′) =
√

ζ ξ(t)

e.g., Mori, Kubo, 1965/66; Lutz, 2001

with time-dependent friction coefficient κ(t) ∼ t−α

cell anomalies might originate from soft glassy behavior of the
cytoskeleton gel, where power law exponents are conjectured
to be universal (Fabry et al., 2003; Kroy et al., 2008)

note: anomalous dynamics observed for 6 different cell types
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Possible biological interpretation

• biological meaning of the anomalous cell migration?

experimental data and theoretical modeling suggest slower
diffusion for small times while long-time motion is faster

compare with intermittent optimal search strategies of foraging
animals (Bénichou et al., 2006)

note: ∃ current controversy about modeling the migration of
foraging animals (albatross, bumblebees, fruitflies,...)

Rainer Klages Queen Mary University of London 27



Cell migration Brownian motion Experimental results Theoretical modeling Conclusions

Thanks and literature

• Thanks to A.V.Chechkin and E.Lutz for helpful discussions.

• reference to this talk:

P.Dieterich, R.K., R.Preuss, A.Schwab, Anomalous Dynamics
of Cell Migration, PNAS 105, 459 (2008)

• as a general reference:

R.K., G.Radons, I.M.Sokolov (Eds.),
Anomalous transport (Wiley-VCH,
July 2008)

see www.maths.qmul.ac.uk/˜klages
for further information
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