nian motion Experimental results Theoretical modeling conc

Anomalous dynamics of cell migration

P. Dieterich! R. Klages?> R.Preuss® A.Schwab*

Linstitute for Physiology, Dresden University of Technology
2School of Mathematical Sciences, Queen Mary University of London
3Center for Interdisciplinary Plasma Science, MPI for Plasma Physics, Garching

4Institute for Physiology Il, University of Miinster

University of Potsdam, 7 June 2010
&
Y Queen Mary

University of London

Rainer Klages Queen Mary University of London 1



Cell migration ian motion Experimental results Theoretical modeling Conclusions

Outline

© Cell migration: motivation and some biological details
© Brownian motion: theory in a nutshell

© Experimental results: statistics of cell migration

© Theoretical modeling: fractional stochastic equation

© Conclusions: physical and biological interpretations?
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Setting the scene

l. Cell migration

animation: ‘ Brownian motion vs. cell migration

J. Ingenhousz (1785)
R. Brown (1827)
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Brownian motion of migrating cells?

Brownian motion
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_ _ _ single biological cell crawling on
3 colloidal particles of radius a substrate (Dieterich, R.K. et
0.53um; positions every 30 al., PNAS, 2008)
seconds, joined by straight Brownian motion?

lines (Perrin, 1913)
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Brownian motion of migrating cells?

yes: Dunn, Brown (1987); Stokes et al. (1991)

not quite: Hartmann et al. (1994); Upadhyaya et al. (2001);
T.-Norrelykke, Julicher (2007); H.Takagi et al. (2008)
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Why cell migration?

motion of the primordium in developing zebrafish (Gilmour,
2008):

positive aspects: negative aspects:

@ morphogenesis @ tumor metastases
@ immune defense @ inflammation reactions
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How do cells migrate?

@ membrane protrusions and
retractions ~ force generation:

o lamellipodia (front)
@ uropod (end)
@ actin-myosin network
@ formation of a polarized state
front/end

@ cell-substrate adhesion

note: here we do not study the
microscopic origin of cell migration,
which is a highly complex process
involving a huge number of proteins
and signaling mechanisms
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Our cell types and some typical scales

@ renal epithelial MDCK-F (Madin-Darby canine kidney) cells;
two types: wildtype (NHE ™) and NHE-deficient (NHE 7)

@ observed up to 1000 minutes: here no limitt — oo!

@ cell diameter 20-50:m; mean velocity ~ 1m/min;
lamellipodial dynamics ~ seconds

movies: ‘NHE+: t=210min, dt=3min‘ ‘NHE-: t=171min, dt=1min‘
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Sequences of mlcroscoplc phase contrast
|mage segmented to obtain the cel

image processing e

http://www.amiravis.com
(~100-1000 MB)

perimeter, area,
structure index
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[l. Brownian motion
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The Langevin equation

‘microscopic understanding of Brownian motion: Einstein (1905)‘

simple theory suggested by Langevin (1908):

Newton’s law for a particle of mass m and « °, .°
velocity v immersed in a fluid ° e o o
My = Fq(t) + F,(t) L ‘.
with total force of surrounding particles % -
decomposed into viscous damping F 4(t) and ° c °

random kicks F, (t)

suppose F4(t)/m = —xv and F(t)/m = /C £(t) as Gaussian
white noise of strength /C:

V+ kv =+/C£(t)| Langevin equation

‘Newton'’s law of stochastic physics’: apply to cell migration?
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Solving the Langevin equation

calculate three important quantities (in d dimensions):

1. the diffusion coefficient‘ D :=lim{_. msd(t)/(2dt) ‘

with mean square displacement msd (t) :=< [x(t) — x(0)]* >
over ensemble average < ... >; for Langevin eq. one obtains

msd (t) = 2dvg (t — x (1 — exp (—~xt))) /x

with vZ = KT /m; note that msd(t) ~ t2 (t — 0) and
msd(t) ~t (t — oc0) = 3D

2. the velocity autocorrelation function ‘vac(t) =< v(t)-v(0) > ‘
for Langevin eq. one finds
Vac(t) = V2 exp (—rt)
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Fokker Planck equations and the like

3. the probability distribution function P(x, v, t) (ff in one

dimension):

e Langevin dynamics obeys (for x > 1) the diffusion equation
N
ot ox?

solution for initial condition P(x, 0) = §(x) yields position
distribution P(x,t) = exp(—2&-)/v/4xDt

o for velocity distribution P (v, t) of Langevin dynamics one can
derive the Fokker-Planck equation

L R +V23_2 P

ot |ov th Hv2

stationary solution is P(v) = exp(—‘(/—z)/\/27rvth
th
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e Fokker-Planck equation for position and velocity distribution
P(x,v,t) of Langevin dynamics is the Klein-Kramers equation

ok __ 9
o ox

o,
VP] + K |:8—VV +Vthm:| P

the above eqns. can be derived from it as special cases
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lll. Experimental results

Rainer Klages een Mary University of London 15



© ~H migration ian motion Experlmental results Theoretical modeling Conclusions

Mean square displacement

e msd (t) :=< [x(t) — x(0)]? >~ t? with 3 — 2 (t — 0) and
B — 1 (t — oo) for Brownian motion; 3(t) = d Inmsd(t)/d Int
e solid lines: (Bayes) fits from our model

1 |- dataiNHE"
data NHE™ .
E 1000 b EKK modelNHE" —— o .
= FKK modelNHE™ —— 7~ <r>> NHE!
s i <r*> NHE
T 100
=
10
| I 11
1
2.0 : :
1.0 ; : ‘
100

1 10" time [min]

anomalous diffusion if § # 1: here superdiffusion for t — oo
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VeIOC|ty autocorrelatlon function

o Vac(t) :=< v(t) - v(0) >~ exp(—~t) for Brownian motion
e solid lines: fits from our model; same parameter values as
msd (t)

data NHE E
FKK model NHE® ——

-
T

Vac(®) [um?/min?]
o
[N

0,01 b : :
g 10" time [min] 2ol
« LlE : : data NHE- E
E v FKK model NHE™ —
N\ N .
3 ‘ ;
S 01t ; ; 1
= ! !
> | ; I ; 11
0.01 b ‘ :
1 10 time [min] 100

= crossover from stretched exponential to power law behavior
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. a 0 ; N ; — ; —
e P(x,t) — Gaussian (t — co0) " fwe [y Ciomndf | t-4gomind
and kurtosis PN
K(t) == <X2 = —3(t — ) = m ik
0 & 0 -100 0 100 -200 0 200
for Brownlan motion (green X [ xfar]
||nes1 In 1d) t 120‘m|n ‘ t=‘480‘min?
ou 3
e other solid lines: fits from . e
our model; parameter values />\\ \

as before -io “x “é)m]\ 10 -1oox[3m]100 - -22)0)( [Smlzoo
¢ g’ ‘ ‘ ‘ da:aNH‘E*
remark: model does not yet E é e
explain short-time distributions = : Pk model NHE”
- l; 100 200 3(‘)0 460 500
time [min]

= crossover from peaked to broad non-Gaussian distributions
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. 1 2 . s
P(v) = o exp(—z‘(/?) for Brownian motion;
fit by stretched exponential: P(v) = c exp(—%(i)a)

Vth
linear plot semi-log plot
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IV. Theoretical modeling
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"I"he” modelw

Fractional Klein-Kramers equation  (Barkai, Silbey, 2000):

P 9 oo T9 02
E:—a—x VP]+ml€|: V+Vthm:|P

ov

with probability distribution P = P(x,v,t), damping term &,
thermal velocity vy, and Riemann-Liouville fractional derivative
of order 1 — « defined by

P {% , y=m
Topy ) oM 1 t P(t)
8t’Y &—m[m fodtlw 9 m—1<'}’<m

with m € N; for o = 1 ordinary Klein-Kramers equation
recovered
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Fractional derivative

interlude — what is a fractional derivative?

letter from Leibniz to LHG6pital (1695): a2 9

dxl/2
one way to proceed: we know that for integer m, n

dm

_ r 1 _
dxmxn: nl_yn-m _ (n+1) xn—m.

(n—m)! — I(n—m+1) z
assume that this also holds form =1/2, n=1

a2, _ 2 ,1/2
a2k = X
extension leads to the Riemann-Liouville fractional derivative,
which yields power laws in Fourier (Laplace) space:

g F (x) = (ik)7F (k)
d well-developed mathematical theory of fractional calculus

see Sokolov, Klafter, Blumen, Phys. Today 2002 for a short intro

=
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Solutlons for thIS model

analytical solutions (Barkai, Silbey, 2000):

® mean square displacement:
msd (t) = 2VZ2t?E,, 3(—xt%) — 2% (t — o0)
with D, = vt%//-@ and generalized Mittag-Leffler function
note that El,l(z) = exp(z) E.3(z) is a generalized
exponential function
@ velocity autocorrelation function:

Vac(t) = V{Ea1(—Kt*) = rptaye (t — )

@ for kK — oo fractional Klein-Kramers reduces to a fractional
diffusion equation yielding P(x,t) in terms of a Fox
function (Schneider, Wyss, 1989)
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note:
3 fit parameters vy, a ~ 0.7, x plus another one by adding
“biological noise” of variance n? to msd,
MSdnoise(t) := msd(t) + 2772;
mimicks measurement errors and cytoskeleton fluctuations
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V. Conclusions
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Possible physical interpretation

e physical meaning of the fractional derivative?

fractional Klein-Kramers equation is approximately related to
the generalized Langevin equation

V[t s(t - U)v(t) = VEE(t)
e.g., Mori, Kubo, 1965/66; Lutz, 2001

with time-dependent friction coefficient x(t) ~ t=¢

cell anomalies might originate from soft glassy behavior of the
cytoskeleton gel, where power law exponents are conjectured
to be universal (Fabry et al., 2003; Kroy et al., 2008)

note: anomalous dynamics observed for 6 different cell types
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Possible biological interpretation

¢ biological meaning of the anomalous cell migration?

experimental data and theoretical modeling suggest slower
diffusion for small times while long-time motion is faster

compare with intermittent optimal search strategies of foraging
animals (Bénichou et al., 2006)

% Non reactlve (—\f
/

) Reactive Reactive

note: 3 current controversy about modeling the migration of
foraging animals (albatross, bumblebees, fruitflies,...)
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Conclusions
Thanks and literature

e Thanks to A.V.Chechkin and E.Lutz for helpful discussions.

e reference to this talk:

P.Dieterich, R.K., R.Preuss, A.Schwab, Anomalous Dynamics
of Cell Migration, PNAS 105, 459 (2008) H——

Ediled by DWILEVCH
R. Kager, G. Radons, and 1 M. Sokolay - s

e as a general reference: Anomalous
Transport

R.K., G.Radons, I.M.Sokolov (Eds.),
Anomalous transport (Wiley-VCH,
July 2008)

see www.maths.gmul.ac.uk/"klages
for further information
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