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@ ‘Normal’ fluctuation relations:
motivation and warm-up

@ Gaussian stochastic dynamics:

check transient fluctuation relations for generalized
(correlated) Langevin dynamics

@ Relations to experiments:
glassy dynamics and cell migration

@ Other anomalous dynamics:

normal / anomalous fluctuation relations for Lévy flights
and time-fractional kinetics (CTRW)
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Motivation: Fluctuation relations

Consider a (classical) particle system evolving from some initial
state into a nonequilibrium steady state.

Measure the probability distribution p(&;) of entropy production
& during time t: (&)

n p(=&t)

Transient Fluctuation Relation (TFR)
Evans, Cohen, Morriss (1993); Gallavotti, Cohen (1995)

=&

why important? of very general validity and
© generalizes the Second Law to small noneg. systems
@ connection with fluctuation dissipation relations
© can be checked in experiments (Wang et al., 2002)
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Fluctuation relation and the Second Law

meaning of TFR in terms of the Second Law:

o6

&t

1 <th <ty

(&) = p(=&) exp(&) |2 p(—&) (&2 0) = <& >>0

sample specifically the tails of the pdf (large deviation result)
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Fluctuation relation for Langevin dynamics

warmup: check TFR for the overdamped Langevin equation
x =F 4+ ((t) (setallirrelevant constants to 1)
with constant field F and Gaussian white noise ((t).

entropy production & is equal to (mechanical) work W; = Fx(t)
with p(W;) = F ~1p(x,t); remains to solve corresponding
Fokker-Planck equation for initial condition x(0) = 0:

the position pdf is Gaussian,

_ 2
o8 = e (~E5T)

straightforward:

(work) TFR holds if < x >= /2|

and ‘ 3 fluctuation-dissipation relation 1 (FDR1) = TFR ‘

see, e.g., van Zon, Cohen, PRE (2003)
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Gaussian stochastic dynamics

goal: check TFR for Gaussian stochastic processes defined by
the (overdamped) generalized Langevin equation

/t dt’x(t)K(t —t') = F +¢(t)
° e.g., Kubo (1965)

with Gaussian noise ((t) and memory kernel K (t)

such dynamics can generate anomalous diffusion:
02 ~ 1 with a # 1 (t — o)

examples of applications:  polymer dynamics (Panja, 2010);
biological cell migration (Dieterich et al., 2008)
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TFR for correlated internal Gau53|an noise

consider two generic cases:

1. internal Gaussian noise defined by the FDR2,
< ((B)¢(t) >~ K(t —t),
with non-Markovian (correlated) noise; e.g., K (t) ~ t=8

solving the corresponding generalized Langevin equation in
Laplace space yields

FDR2 = ‘FDRY’
and since p(W;) ~ o(x,t) is Gaussian

‘FDR1’ = TFR|

| for correlated internal Gaussian noise 3 TFR|
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Correlated external Gaussian noise

2. external Gaussian noise for which there is no FDR2,
modeled by the (overdamped) generalized Langevin equation
X =F +((t)

consider two types of Gaussian noise correlated by
9(1) =< C()C(t') >rmt_v~ (A/T)P fOr 7> A, 3> 0:

glt)

g(c)

A
\\
0

persistent

anti-persistent
itis <x >=Ftand o2 = ZfS dr(t — 7)g(7)
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TFRs for correlated external Gaussian noise |

persistent noise:

. : W
results for o2 and the fluctuation ratio R(W;) = In p(Wh)
p(—=Wt)

e 0< <1
superdiffusion o2 ~ t2=# with anomalous TFR R ~ »[Ttd
o 3=1

. : t .
weak superdiffusion o2 ~ tin (A) with weakly anomalous TFR

t
R~W/In| —

/()

el < (< o

normal diffusion ¢ ~ 2Dt with D = [;° drg(r) and anomalous

. W,
(generalized) TFR R~E
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TFRs for correlated external Gau35|an noise Il

antipersistent noise:
/ drg(7) > 0 yields normal diffusion with a generalized TFR
0

fort > A, for ‘pure’ antipersistent case with / drg(r) =0:
0

e The regime 0 < 8 < 1 does not exist (spectral density <0)

el < <2
subdiffusion o2 ~ t2~# with anomalous TFR R ~ W;t#~1

o3 =2:
weak subdiffusion o2 ~ In(t/A) with anomalous TFR
R ~ W;t/In(t/A)

02 < < o0
localization of = const. with anomalous TFR R~W;t
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FDR and TFR

relation between TFR and FDR 1,11 for correlated Gaussian
stochastic dynamics : (‘normal FR’= conventional TFR)

FDR2 = FDR1 = TFR|
| ATFR = A FDR2|

in particular:
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Experiments
Relations to experiments: A glassy lattice gas

R(Wt) =1n

p(Wh)
p(—Wh)

= fa(t)W

means by plotting R for different t the slope should change.

example 1: 5
=4
computer simulations ="},
for glassy lattice gas £
with external field E =~ Zo o
Sellitto, PRE (2009)  sf T « 3 o
= E=28,p=08
0[] 5 10 15 20 25
(©) EJ

similar simulation results for three other models exhibiting
glassy dynamics: Crisanti et al., PRL (2013)
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Biological cell migration

example 2:
single biological cell crawling on a substrate; trajectory
recorded with a video camera (Dieterich et al., 2008)
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Cell migration under chemical gradients

experiments on murine neutrophils under chemotaxis :

200 18
150 " N L6 - datat=5min 4
! N\ 14l data t = 10 min //
4 N - a
100 gradient S R 4% & data t =15 min P
) R g 12} /
50 T S /u/
B ~ e 1f
i o b \ § a/a
> g o8¢ ~
-50 g //1
X = 06 D/D
-100 : S 04l L
= - P
-150 a2 /
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X [um] X [um]

Dieterich et al. (2013)
e linear drift in the direction of the gradient, < x(t) >~t

e 02 ~tA with 3 > 1 (long t): AFDR1
e some relation to the generalized Langevin equation with
external noise and 0 < (8 < 1 discussed before
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TFR for Lévy flights

Second type of anomalous dynamics: consider the Langevin
equation X =F +((t)
with white Lévy noise p(¢) ~ [¢| 71 (¢ - ), 0< a < 2
examples of applications: fluid dynamics (Solomon et al.,
1993); Lévy flights for light (Barthelemy, 2008)
by solving the corresponding Fokker-Planck equation
6,0 op o0“p
— F
ot ox T oxpe
with Riesz fractional derivative in Fourler space
F{0%/0Ix|*} = —|k[*"F {p}
and using the scaled variable w; = W; /(F?t) we recover
lim W) _ =il
w00 p(—Wi)
i.e., large fluctuations are equally possible
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TFR for tlme fractional klnetlcs

Third type of anomalous dynamics: via subordinated Langevin
' d d
equation >(<j( ) —F 4+ C(u) t(u = (u)
with Gaussian white noise ((u) and whlte Levy stable noise
7(u) > 0; leads to the time-fractional Fokker-Planck equation
dp 0 [ OF &
ox " oxz|”

ot otl-e
with Riemann-Liouville fractional derivative
ol om t
8t'€ = oM |:r(m ) fodt/t t/)(v‘zl m:| form—l<'y<m meN
and %Zé’ = %tré’ for v = m, which preserves a generalized FDR1

examples of applications: photo current in copy machines
(Scher et al., 1975) and related systems modeled by
Continuous Time Random Walk theory (Metzler, Klafter, 2004)

for this dynamics we recover the conventional TFR
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Summary

@ TFR tested for three fundamental types of anomalous
stochastic dynamics

© correlated Gaussian stochastic dynamics:
|FDR2 = FDR1 = TFR]
TFR holds for internal noise, violations for external
persistent / anti-persistent noise

@ strong violation of TFR for space-fractional (Lévy) dynamics
© TFR holds for time-fractional (CTRW) dynamics

@ anomalous TFRs appear to be important for glassy
dynamics : cf. computer simulations on various glassy
models and experiments on (‘gel-like’) cell migration
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Open questions

@ derive anomalous Jarzynski, Crooks, Seifert relations

@ derive nonlinear response relations for anomalous
dynamics

@ compare anomalous fluctuation relations to experiments
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