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I. TECHNICAL DETAILS OF THE NUMERICAL SIMULATIONS

The numerical simulations were carried out with the bill2d software package [1] for classical dynamics. The time-
propagation was performed using the 4th order algorithm of Yoshida [2]. We employed a parallelogram, non-primitive
unit cell containing four Fermi potentials. The full potential was represented as a sum over all Fermi potentials Eq.(1)
in the unit cell and in its next and next-nearest neighboring unit cells. For the figures in the main part we performed
high precision computations with an ensemble size of ≥ 105 trajectories that guaranteed a vanishingly small standard
error of the mean in Eq.(2). The initial conditions were sampled uniformly in the coordinate space of the unit cell,
the initial speeds of the particles were fixed to satisfy the total energy condition (E = 1/2), and the initial launch
angles were randomized. A numerical estimate for the diffusion coefficient D Eq.(2) was obtained with a linear fit
to 〈(r(t) − r(0))2〉 as a function of time, where we skipped the initial transient region and instead made a fit at
t = 1000 . . . 5000. The two figures shown later in this Supplement were generated with less precision than in the main
part. In both cases we iterated up to time t = 5000 with a time step of 10−3. For Fig. 1 we chose an ensemble size of
10000 particles, for Fig. 2 we had 100000 particles.

II. RANDOM WALK APPROXIMATIONS FOR DIFFUSION

In order to understand the coarse scale parameter dependence of the diffusion coefficient D(w) depicted in Fig. 2
we employ a Boltzmann-type random walk approximation, which was put forward in Ref. [3], see Sec. 4 therein. As
briefly described in the main text, this approximation is based on the assumption that diffusion is governed by ‘flights’
of length ℓc = ℓc(w) over corresponding flight time intervals τc = τc(w) after which a particle experiences a ‘collision’.
However, in contrast to the standard Lorentz gas with hard walls studied in [3] our potential is soft. Hence, here we
define a collision as an event where a particle hits the contour line of a scatterer at E = 1/2 in the triangular unit
cell A displayed in Fig. 1 of the main text. By assuming that all collisions are uncorrelated the diffusion coefficient
can be approximated as

DB(w) =
ℓ2c
4τc

. (1)

In the hard Lorentz gas τc can be calculated using a phase space argument analogous to the one that was put forward
in Ref. [4] to compute the mean escape time τe of a particle out of a unit cell. The latter can be expressed in terms
of the probability to leave a trap within the time τe. This quantity is in turn given by the portion of the phase space
from which a particle can escape from a trap during time τe divided by the total phase space volume of a trap; for
details we refer to [4]. The only difference for computing τc is that here one replaces the flux across the exits of a trap
by the flux to the walls bounding the trap. Working this out for our soft Lorentz gas we get

τ−1
c =

v

A
. (2)

Here A = A(w) is the accessible area for the particle in position space, and v = |v(w)| defines the average constant
speed with which a particle travels between collisions. We now have everything at hand to boil down Eq.(1) to
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something computable: First, using lc = vτc in Eq.(1) we trivially obtain

DB(w) =
v2τc
4

. (3)

Substituting τc by Eq.(2) yields

DB(w) =
A

4
v . (4)

A is easily computed by geometric arguments leading to our central formula

DB(w) =

√
3L2/4− πr20/2

4
v , (5)

where L is the lattice spacing. It remains to calculate v. For this recall that a particle moves in the plane under the
influence of overlapping Fermi potentials, see Eq.(1) in the main text. This means the kinetic energy varies depending
on the position of the particle, consequently the speed fluctuates as well. However, as explained above, for Eq.(5) we
assume that a particle travels with an on average constant speed v. We define this speed in two ways by using the
following approximations:

1. We calculate analytically an approximate average speed vave = vave(w) at the moment when a particle leaves
A. For this we consider the contributions of the potential from two adjacent lattice points in the plane only.
Without loss of generality we may choose (0, 0) and (L, 0) located at the centres of two nearby potentials
V1(x) := V1(x, 0) and V2(x) := V2(L, 0) with L = 2r0 + w. Note that with the latter equation for the lattice
spacing we approximate the true gap size in the case of overlapping Fermi potentials by a gap size w derived
from using a single non-overlapping Fermi potential; see Ref. [5] for details. By considering the contributions
from these two potentials along the x-axis the joint potential Vj(x) reads

Vj(x) = V1(x) + V2(x) =
1

1 + exp((|x| − r0)/σ)
+

1

1 + exp(|x− L| − r0)/σ)
. (6)

We now define an average potential Vave over the approximate exit of a trap according to

Vave(w) =
1

w

∫ r0+w

r0

Vj(x)dx . (7)

Exploiting symmetry this integral can be calculated to

Vave(w) = 2 +
2σ

w
ln

(

2

1 + exp(w/σ)

)

. (8)

Conservation of energy yields v =
√

2(E − Vj(x)). Combining this with Eq. (8), an average exit speed can be
expressed as

vave(w) =
√

2(E − Vave(w)) . (9)

2. A second definition is based on calculating numerically the correct average speed vnum = vnum(w) while a particle
is leaving a trap. Using symmetry we have to compute the integral

vnum =
2

w

rǫ+w/2
∫

rǫ

√

2 (E − Vtot(x)) dx, (10)

where Vtot(x) := Vtot(x, 0) is the sum over the range of potentials as defined in Sec. I above. Note that this
requires us to compute rǫ defined by Vtot(rǫ) = 1/2 due to the overlapping potentials. This integral is not
solvable analytically, hence we compute it numerically.

Using these two approximations for the speed v in Eq.(5) yields our two approximations DB and DB,num plotted
in Fig. 2 of the main text.
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III. TRANSITION BETWEEN THE SOFT AND THE HARD LORENTZ GAS

In this section we discuss first qualitatively and then quantitatively the changes of the diffusive dynamics in the
hard disk Lorentz gas when softening the scatterers. In Subsec. A we outline generic dynamical systems properties
of both models by discussing their similarities and differences. Subsection B presents computer simulation results for
the diffusion coefficient as a function of the smoothness parameter σ exploring this transition in more depth when σ
is getting smaller.

A. The hard and the soft Lorentz gas: Similarities and differences in their diffusive dynamics

Diffusion in the conventional Lorentz gas consisting of a point particle scattering with hard disks has been studied
in a large number of works; see [6–10] for reviews. Pioneering mathematical research by Bunimovich and Sinai showed
rigorously that the Lorentz gas is a K-system, which implies that it is mixing and ergodic [11, 12]. It is furthermore
a hyperbolic chaotic dynamical system [13]. For the two-dimensional periodic Lorentz gas with scatterers situated
on a triangular lattice these strong chaos properties imply that diffusion is normal in the parameter regime of the
gap size w of 0 < w < w∞, in the sense that the mean square displacement (MSD) grows linearly with time in the
long-time limit, as was proven in Ref. [11]. In this regime the diffusion coefficient as a function of w was explored in
Refs. [3, 4, 14–16]. The result from simulations of D(w) is shown in the inset of Fig. 2 in the main text. While in
this plot D looks like a rather smooth function of w it was shown in Ref. [3] that there are irregularities in the form
of slight wiggles on very fine scales. The order of magnitude of these irregularities is by far smaller than in the soft
model, cp. Fig. 2 in the main text for the soft Lorentz gas with Fig. 1(b) in [3]. So far it is only known that these
irregularities exist in the conventional Lorentz gas, but they could not be explained, e.g., in terms of periodic orbits.
There are attempts in the literature, however, to compute D(w) for the hard periodic Lorentz gas in terms of unstable
periodic orbits [17–19].

Note that w∞ = 4
√
3 − 3 ≃ 0.3094 defines the onset of an infinite horizon in the periodic Lorentz gas, where a

particle can for the first time move ballistically along infinite channels across the entire lattice without colliding with
any scatterer. Accordingly, for w∞ > w diffusion becomes anomalous, and D as defined by Eq. (2) in the main text
does not exist anymore. This is reflected in our chart of periodic orbits in Fig. 4 (main part) as the big red tongue
of quasi-ballistic periodic orbits emerging from w ≃ 0.31 for small σ. More precisely, infinite horizon Lorentz gases
exhibit a special type of superdiffusion, where the MSD grows like t ln t. This is due to a family of strictly ballistic
periodic orbits which, however, occupy only zero volume in the whole phase space of the system [20–25].
In marked contrast to this hard Lorentz gas scenario of purely chaotic deterministic diffusion with a well-defined

diffusion coefficient for w < w∞, and superdiffusion for w > w∞ due to an infinite horizon, in our main text we have
shown that softening the hard disks by using overlapping Fermi potentials changes the diffusive dynamics profoundly:
Even a minimal softening of the potential yields a mixed phase space [26] composed of chaotic regions interrupted by
small ‘islands’ of periodic orbits, cf. Fig. 3 (main part). Note that in contrast to the hard Lorentz gas these islands
occupy non-zero volume and are stable in phase space. This implies a completely different type of non-hyperbolic
dynamics compared to the well-behaved hard Lorentz gas which, in turn, is reflected in profound changes of the
corresponding diffusive properties. In turn, it is well-known that islands of periodicity in phase space corresponding
to ‘propagating’ periodic orbits, also called accelerator modes, lead to superdiffusion, even if they are very tiny, while
parameter regions without any islands correspond to normal diffusion [27–32].
At first view this phenomenon may look similar to the infinite horizon case in the hard periodic Lorentz gas. But

in the soft model the orbits generating superdiffusion are not strictly ‘ballistic’ in the sense of being collision-free, as
is demonstrated by Fig. 3 (main text). Rather particles collide with the scatterers in intricate ways while they move
on average in one direction. Hence there are no infinite horizon channels in our soft system, as there is always a force
acting on a particle, therefore we call these trajectories quasi-ballistic. Secondly, in contrast to the hard Lorentz gas
the phase space of a quasi-ballistic island of periodicity is non-zero, due to the velocity now representing an additional
degree of freedom. This implies a generically different type of superdiffusion compared to the hard Lorentz gas infinite
horizon case with a MSD that grows like tα , α > 1 [20–25].

To our knowledge so far there are no works that study the transition from Hamiltonian particle billiards consisting
of hard walls, like Lorentz gases, to systems consisting of soft periodic potentials, like our model, as far as diffusion
is concerned. The only research we are aware of is a series of articles by Turaev and Rom-Kedar, who investigate in
mathematical depth the changes of the dynamics by softening the hard walls of billiards, however, without exploring
the impact on diffusive properties [33, 34]. There is a claim in these references that under softening hard walls islands
of periodicity become typical in parameter space, but this has not been observed in parameter space as shown in our
Fig. 4. We also remark that the theory by Turaev and Rom-Kedar predicts that for small σ the tongues of periodic
orbits depicted in Fig. 4 should grow linearly in parameter space, see Theorem 1 in Ref. [34]. But to verify this
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numerically is at present out of reach, as it is extremely difficult to find small islands of periodicity especially for σ
close to zero.

B. The diffusion coefficient as a function of the smoothness parameter

We now explore the transition between the hard and the soft Lorentz gas regarding their diffusive properties in
more depth. In the main text we have focused on the diffusion coefficient as a function of the gap size w between two
adjacent scatterers for fixed smoothness parameter σ, cf. Fig. 2. Here we first present results for the diffusion coefficient
D at fixed w under variation of σ. This supplements our previous analysis related to the chart of periodic orbits
shown in Fig. 4, main part: While so far we have explored the parameter space displayed therein along horizontal cuts
through this plane, in the following we elucidate what happens along vertical cuts. This sheds light on the transition
of diffusive properties between the soft and the hard scatterer case when σ is close to zero.
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FIG. 1: Diffusion coefficient D as a function of the smoothness parameter σ when the gap size is fixed to w = 0.235 (left) and
w = 0.31 (right). The black lines with symbols represent results from computer simulations. The peaks therein correspond
to parameter regions where the diffusion coefficient has not converged to a final value due to the existence of quasi-ballistic
periodic orbits. The (blue) dashed lines give the simple random walk approximation DMZ(σ) Eq. (11).

Figure 1 (a) and (b) depict results for D(σ) at two fixed values of w. These two figures correspond to vertical cuts
in Fig. 4 (main text) from top to bottom by showing what happens when σ approaches zero. We see that in both
cases D(σ) is an increasing function when decreasing σ. However, as in case of D(w) for fixed σ in Fig. 2 (main
text), we observe again irregularities on finer scales. They are supplemented by peaks representing parameter regions
where D has not converged to a final value, as it does not exist due to the existence of quasi-ballistic periodic orbits.
These peaks match to respective quasi-ballistic tongues in Fig. 4 (main text). Note, however, that in the left figure
the lowest tongue around σ ≃ 0.01 has been missed. This may be due to the chosen spacing between two adjacent
data points D(σ), or that our initial ensemble did not catch a respective tiny island of stability. The values of D(0)
correspond to the respective results for the hard Lorentz gas shown in the inset of Fig. 2 (main text).

The blue dashed lines are analytical results representing a simple random walk approximation put forward by
Machta and Zwanzig [4], suitably adapted to the soft Lorentz gas: The assumption is that particles hop from trap to
trap on a triangular lattice, cf. Fig. 1 (main text) for the trapping region A with an escape time τe from each trap,

where the centres of the traps are a distance ℓ = L/
√
3 apart. By assuming no memory between two jumps, similarly

to Eq. (1) above yielding our Boltzmann approximation the diffusion coefficient can be approximated to

DMZ(σ) =
ℓ2

4τe
. (11)

Again in analogy to the Boltzmann approximation τe is now given again by a phase space argument,

τ−1
e =

3wv

πA
, (12)

where, as explained in Sec. I in the Supplement, the only difference to the collision time τc in Eq. (2) is that for
calculating the escape time τe we consider the portion of phase space where a particle leaves a trap. Combining
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FIG. 2: Diffusion coefficient D(w) obtained from simulations for three different values of the smoothness parameter σ as given
in the figure.

Eq. (12) with Eq. (11) by plugging in the value for A as before yields

DMZ(σ) =
L2w

π(
√
3L2 − 2π)

v . (13)

In Fig. 1 above we have used this formula by replacing v with the average velocity calculated in Eqs. (8),(9) above,
v = vave, which yields the dashed blue lines. We see that this analytical random walk approximation matches
qualitatively to the numerical results by particularly explaining the increase of the (normal) diffusion coefficient when
the system approaches the hard Lorentz gas limit for small σ. Note that the quantitative mismatch between the data
and the approximation is increasing from σ → 0, as is analysed in detail in [3, 14]. What we can learn from Fig. 1
and its analysis is that the transition between diffusion in the soft and the hard Lorentz gas for σ close to zero looks
smooth on a coarse grained level as far as the diffusion coefficient is concerned when it exists, as is confirmed by
our random walk approximation. However, whenever quasi-ballistic islands of periodicity occur, they interrupt this
scenario. Increasing the numerical precision will reveal more and more superdiffusive parameter regions, probably
even an infinite set of them, thus severely disrupting any smooth transition scenario. This result is fully in line with
our chart of periodic orbits Fig. 4 (main text) by illustrating it in detail for D(σ).
We finish our discussion of the impact of the smoothness parameter on diffusion in the soft Lorentz gas by presenting

numerical results for D(w) at three different values of σ, see Fig. 2. The shift of the different peaks, where diffusion
is anomalous, to the left when σ is getting smaller is again fully in line with our chart of periodic orbits Fig. 4 (main
text). We see that the whole curve where the normal diffusion coefficient exists is slightly deforming under variation
of σ: Except in a tiny parameter region of 0.4 < w < 0.5 overall it is increasing when σ is getting smaller, i.e., when
the soft system is approaching the hard Lorentz gas limit. Within the parameter region of 0 < w < 0.31 eventually
it will converge to the known diffusion coefficient of the hard Lorentz shown in the inset of Fig. 2 (main text) while
the whole parameter region for w > 0.31 will gradually become superdiffusive.
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