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Consider a chaotic dynamical system generating diffusionlike Brownian motion. Consider a second,
nonchaotic system in which all particles localize. Let a particle experience a random combination of both
systems by sampling between them in time. What type of diffusion is exhibited by this random dynamical
system? We show that the resulting dynamics can generate anomalous diffusion, where in contrast to
Brownian normal diffusion the mean square displacement of an ensemble of particles increases nonlinearly
in time. Randomly mixing simple deterministic walks on the line, we find anomalous dynamics
characterized by aging, weak ergodicity breaking, breaking of self-averaging, and infinite invariant
densities. This result holds for general types of noise and for perturbing nonlinear dynamics in bifurcation

scenarios.

DOI: 10.1103/PhysRevLett.122.174101

Many diffusion processes in nature and society were
found to behave profoundly different from Brownian
motion, which describes the random-looking flickering
of a tracer particle in a fluid [1-8]. Brownian dynamics
provided a long-standing powerful paradigm to understand
spreading in terms of normal diffusion, where the mean
square displacement (MSD) of an ensemble of particles
increases linearly in the long time limit, (x?) ~* with
a = 1. Anomalous diffusion is characterized by an expo-
nent o # 1 [1-4]. Subdiffusion with a < 1 is commonly
encountered in crowded environments as, e.g., for organ-
elles moving in biological cells and single-file diffusion in
nanoporous material [5,6]. Superdiffusion with @ > 1 is
displayed by a variety of other systems, like animals
searching for food and light propagating through disor-
dered matter [7,8].

Experimental data exhibiting anomalous diffusion are
often modeled successfully by advanced concepts of
stochastic theory, most notably subdiffusive continuous
time random walks (CTRW), superdiffusive Lévy walks,
generalized Langevin equations, or fractional Fokker-
Planck equations [1-8]. In these stochastic models the
mechanisms generating anomalous diffusion are put in by
hand on a coarse-grained level, either via non-Gaussian
probability distributions or via power law memory kernels.
While this stochastic approach to anomalous diffusion has
matured impressively, anomalous diffusion in deterministic
dynamical systems is yet poorly understood. In nonlinear
deterministic equations of motion there are only a few
mechanisms known to generate anomalous diffusion [3]:
stickiness of orbits to Kolmogorov-Arnold-Moser tori in
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Hamiltonian dynamics [1,2,9,10], marginally unstable
fixed points in dissipative Pomeau-Manneville-like maps
[11-15], and nontrivial topologies exhibited by polygonal
billiards [16]. In this Letter we introduce a simple hybrid
system at the interface between deterministic and stochastic
dynamics. We show that it yields another generic mech-
anism for anomalous diffusion based on stochastic chaos in
random dynamical systems [17,18]. This sheds new light on
the microscopic origin of anomalous dynamics. Similar
models have been used to understand the convection of
particles in flowing fluids [19], including fractal clustering
[20] and path coalescence [21], the localization transition in
continuum percolation problems [22], intermittency in
nonlinear electronic circuits [23], and random attractors
in stochastic climate dynamics [24]. Accordingly, we expect
fruitful applications of our approach to these problems.

Figure 1 gives our recipe to combine two deterministic
dynamical systems D and L randomly in time. Here, D
generates normal diffusion while L yields localization of
particles. We sample randomly between both systems with
probability p of choosing L at discrete time step t € N,
respectively, probability 1 — p of choosing D. For p =0,
we thus recover the dynamics of D, while for p = 1, we
obtain the dynamics of L. This implies that there must exist
a transition between these two different dynamics under
variation of p. Our central question is, for 0 < p < 1,
what type of diffusive dynamics emerges in the
resulting random dynamical system R? Here we model
deterministic diffusion by chaotic random walks on the
line [16,25-27] defined by the equation of motion
X1 = M,(x;), where
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FIG. 1. Diffusion generated by a random dynamical system.
The three time series in space-time plots display the position
x; € R of a point particle at discrete time ¢ € N. The trajectory in
the upper left is generated by the equation of motion x,, | =
D(x,) using a deterministic dynamical system D that yields
normal diffusion. The trajectory in the upper right is from x,, | =
L(x,) for a deterministic dynamical system L where all particles
localize in space. The random dynamical system R mixes these
two types of dynamics at time ¢ based on flipping a biased coin:
The position x,,; of the particle at the next time r4 1 is
determined by choosing with probability 1 — p the diffusive
system D while L is picked with probability p. The trajectory
generated by x,,; = R(x,) displays intermittency, where long
regular phases alternate randomly with irregular-looking, chaotic
motion.

ax 0<x< %

Ma(x): { CZ>0, (1)
ax+1—a % <x<l,

is a piecewise linear map lifted onto R by

M,(x+1)=M,(x)+ 1, cf. the inset in Fig. 2(a). For
a > 2, this model exhibits normal diffusion with
a Lyapunov exponent calculated to (see Sec. I in
Supplemental Material [28]) A(a) = Ina [16,40-42]. The
sample trajectory in the upper left-hand part of Fig. 1 was
obtained from D = M4(x), where the dynamics is chaotic
according to A(4) = In4 > 0. The trajectory in the upper
right-hand part of Fig. 1 corresponds to L = M ;(x),
where the dynamics is nonchaotic due to A(1/2)=—In2<0.
Here all particles contract onto stable fixed points at integer
positions x € Z. For defining the random map R, the slope
a becomes an independent and identically distributed,
multiplicative random variable: At any time step ¢ we
choose for our map R = M, (x), with probability p € [0, 1]

t1/2
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FIG. 2. Mean square displacement (MSD) and waiting time
distribution (WTD) for randomized deterministic diffusion. The
two deterministic dynamical systems that are randomly sampled
in time with probability p by applying the recipe of Fig. 1 are
illustrated in the inset of (a). All symbols are generated from
computer simulations. (a) MSD (x?) for p = 0.6, 0.63, 0.663,
2/3,0.669, 0.68, 0.7 (top to bottom) for an ensemble of particles,
where each particle experiences a different random sequence.
There is a characteristic transition between normal diffusion and
localization via subdiffusion at a critical p,. = 2/3. (b) MSD at p,.
by starting the computations after different aging times ¢, = 0,
102, 103, 10* (top to bottom). The MSD displays aging similar to
analytical results from continuous time random walk (CTRW)
theory [13] (bold lines). (c) WTD 7(t) at p,. for particles leaving a
unit interval at the same aging times ¢, as in (b). The bold lines are
again analytical results from CTRW theory [13]. (d) MSD at the
critical probability p. for different types of averaging over the
random variable. For the straight black line with matching
symbols each particle experiences a different random sequence
(called uncommon noise), cf. Fig. 2(a). The other four lines
depict MSDs obtained from applying the same sequence of
random variables to all particles (called common noise). In these
four cases the MSD becomes a random variable breaking self-
averaging.

the slope @ = 1/2 while with probability 1 — p we pick
a = 4. The sequence of random slopes may or may not
depend on the individual particle if we consider an
ensemble of them [43], as we explore below. Random
maps of this type are also called iterated function systems
[44,45]. They have been studied by both mathematicians
and physicists in view of their measure-theoretic [45-47]
and statistical physical properties [19,43,48,49].

One can show straightforwardly that the Lyapunov
exponent A(p) of the random map R is zero at probability
p. =2/3 [28]. Since A(p) >0 for p < p., the map R
should generate normal diffusion in this regime while
p > p. with A(p) < 0 should lead to localization for long
times. In Fig. 2 we test this conjecture by comparing
numerical with analytical results. For our simulations we
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Subdiffusion for different types of randomness. (a) Sample trajectories at p. corresponding to 30 different initial conditions

with uncommon noise. (b) Same as (a) with common noise. The envelopes (smooth black curves ~7'/4) in (a) and (b) correspond to the
subdiffusive spreading for uncommon noise shown in Fig. 2(d). Panel (b) displays jump time synchronization of all particles. The inset
in (a) yields in double-logarithmic plot the infinite invariant density within a unit cell for uncommon noise for the map R modl.

used ~10° iterations of R with ~10° initial points, which
were distributed randomly and uniformly in the unit
interval [0, 1). Here each particle experienced a different
sequence of random slopes. We used an arbitrary precision
algorithm with up to 10'°%% decimal digits. Figure 2(a)
depicts the MSD (x7) under variation of p by confirming
the diffusion scenario conjectured above. However, passing
through p. the dynamics displays a subtle transition: Right
at p. we obtain long-time subdiffusion, (x*(¢)) ~ ¢'/2,
while around p,. this dynamics survives for long transient
times. Figures 2(b) and 2(c) reveal that right at p. R
exhibits aging [50,51] in both the MSD and the waiting
time distribution (WTD). The latter is the probability
distribution #7(7) of the times ¢ it takes a particle to
escape from a unit interval of R. In both Figs. 2(b) and
2(c) there is good agreement with analytical results from
CTRW theory for long times, (x?) ~ (t+1t,)* —t¢ and
n(t) ~14/[(t + t,)1%], where t, is the aging time [13]. This
theory furthermore predicts that for long times a WTD of
n(t) ~ 7 implies a MSD of (x?(z)) ~ 7= [11-15]. For R
this relation is fulfilled with y = 3/2. An exponent of the
WTD of 3/2 yields a diverging mean waiting time. This as
well as the existence of aging imply weak ergodicity
breaking of the dynamics [50-52].

However, our map R generates dynamics that goes beyond
conventional CTRW theory. This becomes apparent by
looking at different types of averaging over the random
variables shown in Fig. 2(d): While in Figs. 2(a)-2(c) each
particle experienced a different sequence of random slopes,
as reproduced by the straight line with matching symbols for
the MSD in Fig. 2(d), for all the other MSDs in 2(d) the
corresponding random sequences are the same for all
particles. Accordingly, we call the former type of random-
ness uncommon noise, the latter common noise. Crucially,
while in Fig. 2(a), based on uncommon noise, the MSD is
well defined for all p, Fig. 2(d) shows that for common noise
sequences itbecomes a random variable at p,. in the long time
limit that completely depends on the random sequence
chosen. This bears strong similarity to what is called breaking
of self-averaging for random walks in quenched disordered

environments [53], which also implies weak ergodicity
breaking [54].

Figure 3 displays space-time plots of 30 trajectories
starting at different initial points for Fig. 3(a) uncommon
noise and Fig. 3(b) common noise. While in Fig. 3(a) the
different trajectories look rather irregular, yielding a spread-
ing front that matches to the subdiffusion depicted in
Fig. 2(d) for uncommon noise, Fig. 3(b) shows “temporal
clustering” in the form of jump time synchronization; i.e.,
all particles eventually jump from unit cell to unit cell at the
same time step. This matches to the fact that the MSD does
not converge for common noise, as seen in Fig. 2(d). The
inset in Fig. 3(a) represents the invariant density of the map
R mod 1, i.e., within a unit cell, with uncommon noise [55].
We see that it decays on average like p(x) ~ x~!. This result
and the stepwise structure of p(x) are in agreement with
analytical calculations [46,47]. At zero Lyapunov expo-
nent, uncommon noise thus leads to a weak spatial
clustering [20] and path coalescence [21] of particles at
integer positions x € Z. In contrast, for common noise an
invariant density does not exist, and we do not find any
spatial clustering.

We now explore the origin of this type of anomalous
dynamics in terms of dynamical systems theory. As
exemplified by the trajectory shown at the bottom of
Fig. 1, around p,. the dynamics of R is intermittent [55],
meaning long regular phases alternate randomly with
irregular-looking, chaotic motion. A paradigmatic inter-
mittent dynamical system is the Pomeau-Manneville map,
P, (x) =x+0bx*, b>1, x€[-1/2,1/2). Defining its
equation of motion in the same way as for M, above, it
generates subdiffusion characterized by a MSD and a WTD
that in suitable scaling limits match to the predictions of
CTRW theory with y = z/(z—1) [11,12,15]. As shown
above, for the map R, CTRW theory correctly predicts the
relation between the long-time MSD and the WTD by
using y = 3/2. Trying to understand the random map R in
terms of P_, thus suggests to choose z = 3. One should
now compare the invariant densities p(x) of the two maps
mod1: For P, mod 1, it is known that p(x) ~ x'~%, x > 0,
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which for z>2 becomes a non-normalizable, infinite
invariant density [56,57]. But for z =3, this yields
p(x) ~x72, while for R mod 1, we have p(x) ~x7!; see
the inset of Fig. 3(a). Hence, the intermittency displayed by
R is not of Pomeau-Manneville type but of a fundamentally
different microscopic dynamical origin. This might relate to
deviations between CTRW theory, which on a coarse-
grained level works well for the Pomeau-Manneville map,
and our numerical results for R on short timescales in the
MSD and the WTD of Fig. 2. It would be interesting to
further explore such differences, e.g., by the approach
outlined in Ref. [58].

However, there is another type of intermittency in
dynamical systems that is profoundly different from
Pomeau-Manneville dynamics, called on-off intermittency
[59-64]. It was first reported for two-dimensional coupled
maps,

X1 = (1 =€)f(x;) +ef(y),
Yer1 = (1 =€) f(y:) +ef (x,), (2)

where x,.; = f(x;) is chaotic with positive Lyapunov
exponent and € € [0,1] [59,60]. When ¢ is large, the
possibly chaotic dynamics is trapped on the synchroni-
zation manifold x, = y,. By decreasing € to a critical
parameter € = €*, trajectories start to escape from this
manifold into the full two-dimensional space. This is called
a blowout bifurcation and the associated intermittency on-
off intermittency [65]. In subsequent works Egs. (2) were
boiled down to more specific two-dimensional maps
[19,47,59,61-64,66]. The simplest ones are piecewise
linear [47,63,66], such as [47]

ax; (x, <1,0<y,<p)
X+l = %xt (xy<lip<y <1
1+b(1-x,) (x,>1),
{% 0<y <p) 5)
Yit1 = -
" L (p <y 1),

with symmetry y — —y and parameters a > 0, b € R,
p € (0,1). Because of its skew product form this system
can be understood as a one-dimensional map x,,; = f(x;)
with multiplicative randomness generated by y,.; = g(y;)
[19,59,61,62,64,66]. In a next step one might replace the
deterministic chaotic dynamics of y, by stochastic noise. If
we now consider the dynamics of x, in Egs. (3) on the unit
interval only by choosing a = 2, taking the map mod1, and
choosing dichotomic noise, we obtain a simple piecewise
linear map with multiplicative randomness that is qualita-
tively identical to our model R mod 1 [19,46,47]. For this
class of systems it has been shown numerically and
analytically that at a critical p, the invariant density of
x = x, decays like p(x) ~ x7! [47,60,62,64,66-68] and that

a suitably defined waiting time distribution between chaotic
“bursts” obeys 7(1) ~ 173/ [47,64,66-68]. In Refs. [67,68]
different diffusive models driven by on-off intermittency
have been studied, and for two of them [68] subdiffusion
with a MSD of (x>(f)) ~t'/?> has been obtained by
matching simulation results to CTRW theory. We thus
conclude that our model R exhibits anomalous diffusion
generated by on-off intermittency. We emphasize, however,
that the mechanism underlying our model depicted in Fig. 1
is more general than this particular type of intermittent
dynamics.

In order to check for the generality of our results, in the
Supplemental Material [28] we first replace the dichotomic
noise by physically more realistic continuous noise dis-
tributions choosing (1) uniform noise on a bounded interval
and (2) a nonuniform unbounded log-normal distribution.
Figures 1 and 2 in Secs. 2 and 3 of Ref. [28], respectively,
show that our mechanism is very robust under variation of
the type of noise. We may thus conjecture that our scenario
of subdiffusion generated by random maps holds for any
generic type of noise. We also tested whether the strong
localization due to contraction onto a stable fixed point can
be replaced by a weaker chaotic localization to a subregion
in phase space. However, in this case the transition between
diffusive and localized dynamics is entirely different with-
out displaying any subdiffusion, cf. Fig. 3 in Sec. 4 of
Ref. [28]. As a general principle, one must thus mix
expansion with contraction to generate anomalous dynam-
ics. Finally, in Sec. 5 of Ref. [28] we study a simple
nonlinear map that exhibits different types of diffusion in
different parameter regions of a bifurcation scenario gen-
erating chaotic and periodic windows. Randomizing this
map according to Fig. 1 yields again subdiffusion with a
MSD of (x7) ~ t'/> and a WTD of 5(t) ~ t73/?, cf. Fig. 4 in
Ref. [28]. This demonstrates that the basic mechanism
generating anomalous diffusion which we propose is also
robust in a nonlinear setting.

In summary, we have shown that anomalous dynamics
emerges if we randomly mix chaotic diffusion and non-
chaotic localization with a sampling probability yielding a
zero Lyapunov exponent of the randomized dynamics.
Interestingly, our basic mechanism bears similarity with
the famous problem of a protein searching for a target at a
DNA strand [69]: Here the protein randomly switches
between (normal) diffusion in the bulk of the cell and
moving along the DNA. This is called facilitated diffusion,
as the random switching between different modes may
decrease the average time to find a target [69-71]. We are
not aware, however, that for this problem any emergence of
anomalous diffusion as an effective dynamics representing
the whole diffusion process has been discussed. Along
these lines, one might speculate that using our framework
for combining normal diffusion with constant velocity
scanning [70] could yield a kind of Lévy walk [8], which
poses an interesting open problem.
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