MTH4100 Calculus I
 Lecture notes for Week 8

Thomas' Calculus, Sections 4.1 to 4.4

Rainer Klages

School of Mathematical Sciences
Queen Mary University of London

Autumn 2009

Theorem 1 (First Derivative Theorem for Local Extrema) If f has a local maximum or minimum value at an interior point c of its domain, and if f^{\prime} is defined at c, then $f^{\prime}(c)=0$.
basic idea of the proof:

note: the converse is false! (counterexample?)
Where can a function f possibly have an extreme value according to this theorem?
answer:

1. at interior points where $f^{\prime}=0$
2. at interior points where f^{\prime} is not defined
3. at endpoints of the domain of f.
combine 1 and 2:
DEFINITION Critical Point
An interior point of the domain of a function f where f^{\prime} is zero or undefined is a critical point of f.

How to Find the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

1. Evaluate f at all critical points and endpoints.
2. Take the largest and smallest of these values.

Why the above assumptions? Because then we have the extreme value theorem, which ensures the existence of such values!
examples: (1) Find the absolute extrema of $f(x)=x^{2}$ on $[-1,1]$.

- f is differentiable on $[-1,1]$ with $f^{\prime}(x)=2 x$
- critical point: $f^{\prime}(x)=0 \quad \Rightarrow \quad x=0$
- endpoints: $x=-1$ and $x=1$
- $f(0)=0, f(-1)=1, f(1)=1$

Therefore f has an absolute maximum value of 1 twice at $x=-1$ and an absolute minimum value of 0 once at $x=0$.
(2) Find the absolute extrema of $f(x)=x^{2 / 3}$ on $[-2,3]$.

- f is differentiable with $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}$ except at $x=0$
- critical point: $f^{\prime}(x)=0$ or $f^{\prime}(x)$ undefined $\Rightarrow \quad x=0$
- endpoints: $x=-2$ and $x=3$
- $f(-2)=\sqrt[3]{4}, f(0)=0, f(3)=\sqrt[3]{9}$

Therefore f has an absolute maximum value of $\sqrt[3]{9}$ at $x=3$ and an absolute minimum value of 0 at $x=0$.

Rolle's theorem

motivation:

Theorem 2 Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$ then there exists a $c \in(a, b)$ with $f^{\prime}(c)=0$.
basic idea of the proof:
Apply extreme value theorem and first derivative theorem for extrema to interior points and consider endpoints separately; for details see the textbook Section 4.2.
note: It is essential that all of the hypotheses in the theorem are fulfilled!
examples:

(a) Discontinuous at an endpoint of $[a, b]$

(b) Discontinuous at an interior point of $[a, b]$

(c) Continuous on $[a, b]$ but not differentiable at an interior point
example: Apply Rolle's theorem to $f(x)=\frac{x^{3}}{3}-3 x$ on $[-3,3]$.

- The polynomial f is continuous on $[-3,3]$ and differentiable on $(-3,3)$.
- $f(-3)=f(3)=0$
- By Rolle's theorem there exists (at least!) one $c \in[-3,3]$ with $f^{\prime}(c)=0$.

From $f^{\prime}(x)=x^{2}-3=0$ we find that indeed $x= \pm \sqrt{3}$.
The Mean Value Theorem
motivation: "slanted version of Rolle's theorem"

Theorem 3 (Mean Value Theorem) Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b). Then there exists $a c \in(a, b)$ with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

basic idea of the proof:

Define $g(x)$ and $h(x)$ and apply Rolle's theorem.
example: Consider $f(x)=x^{2}$ on $[0,2]$.

- $f(x)$ is continuous and differentiable on $[0,2]$.
- Therefore there is a $c \in(0,2)$ with $f^{\prime}(c)=\frac{f(2)-f(0)}{2-0}=2$.
- Since $f^{\prime}(x)=2 x$ we find that $c=1$.

Know $f^{\prime}(x) \Rightarrow$ know $f(x)$? special case:
Corollary 1 (Functions with zero derivatives are constant) If $f^{\prime}(x)=0$ on (a, b) then $f(x)=C$ for all $x \in(a, b)$.
basic idea of the proof:
Apply the Mean Value Theorem to all $x_{1}, x_{2} \in(a, b)$!
Know $f^{\prime}(x)=g^{\prime}(x) \Rightarrow$ know relation between f and g ?
Corollary 2 (Functions with the same derivative differ by a constant) If $f^{\prime}(x)=$ $g^{\prime}(x)$ for all $x \in(a, b)$, then $f(x)=g(x)+C$.

Proof: Consider $h(x)=f(x)-g(x)$. As $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0$ for all $x \in(a, b)$, $h(x)=C$ by the previous corollary and so $f(x)=g(x)+C$.
q.e.d.
example:

Increasing and decreasing functions
motivation:

- make increasing/decreasing mathematically precise
- clarify relation to positive/negative derivative

DEFINITIONS Increasing, Decreasing Function

Let f be a function defined on an interval I and let x_{1} and x_{2} be any two points in I.

1. If $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$, then f is said to be increasing on I.
2. If $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{1}<x_{2}$, then f is said to be decreasing on I.

A function that is increasing or decreasing on I is called monotonic on I.
example: $f(x)=x^{2}$ decreases on $(-\infty, 0]$ and increases on $[0, \infty)$. It is monotonic on $(-\infty, 0]$ and $[0, \infty)$ but not monotonic on $(-\infty, \infty)$.

Corollary 3 (First derivative test for monotonic functions) Suppose that f is continuous on $[a, b]$ and differentiable on (a, b).
If $f^{\prime}(x)>0$ at each point $x \in(a, b)$, then f is increasing on $[a, b]$.
If $f^{\prime}(x)<0$ at each point $x \in(a, b)$, then f is decreasing on $[a, b]$.
sketch of the proof:
The Mean Value theorem states that $f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)$ for any $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$. Hence, the sign of $f^{\prime}(c)$ determines whether $f\left(x_{2}\right)<f\left(x_{1}\right)$ or the other way around, which in turn determines the type of monotonicity.
example: Find the critical points of $f(x)=x^{3}-12 x-5$ and identify the intervals on which f is increasing and decreasing.

$$
f^{\prime}(x)=3 x^{2}-12=3\left(x^{2}-4\right)=3(x+2)(x-2) \Rightarrow x_{1}=-2, x_{2}=2
$$

These critical points subdivide the natural domain into $(-\infty,-2),(-2,2),(2, \infty)$.
rule: If $a<b$ are two nearby critical points for f, then f^{\prime} must be positive on (a, b) or negative there. (proof relies on continuity of f^{\prime}). This implies that for finding the sign of f^{\prime} it suffices to compute $f^{\prime}(x)$ at one $x \in(a, b)$!
Here: $f^{\prime}(-3)=15, f^{\prime}(0)=-12, f^{\prime}(3)=15$.

$$
\begin{array}{cccc}
\text { intervals } & -\infty<x<-2 & -2<x<2 & 2<x<\infty \\
\text { sign of f, } & + & - & + \\
\text { behaviour of } \mathbf{f} & \text { increasing } & \text { decreasing } & \text { increasing }
\end{array}
$$

First derivatives and local extrema

example:

- Whenever f has a minimum, $f^{\prime}<0$ to the left and $f^{\prime}>0$ to the right.
- Whenever f has a maximum, $f^{\prime}>0$ to the left and $f^{\prime}<0$ to the right.
\Rightarrow At local extrema, the sign of $f^{\prime}(x)$ changes!

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c except possibly at c itself. Moving across c from left to right,

1. if f^{\prime} changes from negative to positive at c, then f has a local minimum at c;
2. if f^{\prime} changes from positive to negative at c, then f has a local maximum at c;
3. if f^{\prime} does not change sign at c (that is, f^{\prime} is positive on both sides of c or negative on both sides), then f has no local extremum at c.
example: Find the critical points of $f(x)=x^{4 / 3}-4 x^{1 / 3}$. Identify the intervals on which f is increasing and decreasing. Find the function's extrema.

$$
\begin{array}{cccc}
f^{\prime}(x)=\frac{4}{3} x^{1 / 3}-\frac{4}{3} x^{-2 / 3}=\frac{4}{3} \frac{x-1}{x^{2 / 3}} \Rightarrow x_{1}=1, & x_{2}=0 \\
\text { intervals } & x<0 & 0<x<1 & 1<x \\
\text { sign of } \mathbf{f}, & - & - & +
\end{array}
$$

behaviour of \mathbf{f} decreasing decreasing increasing
Apply the first derivative test to identify local extrema:

- f^{\prime} does not change sign at $x=0 \Rightarrow$ no extremum
- f^{\prime} changes from - to + at $x=1 \Rightarrow$ local minimum

Since $\lim _{x \rightarrow \pm \infty}=\infty$, the minimum at $x=1$ with $f(1)=-3$ is also an absolute minimum. Note that $f^{\prime}(0)=-\infty$!

Concavity and curve sketching

example:

$$
\begin{array}{ccc}
\text { intervals } & x<0 & 0<x \\
\text { turning of curve } & \text { turns to the right } & \text { turns to the left } \\
\text { tangent slopes } & \text { decreasing } & \text { increasing }
\end{array}
$$

The turning or bending behaviour defines the concavity of the curve.

DEFINITION Concave Up, Concave Down

The graph of a differentiable function $y=f(x)$ is
(a) concave up on an open interval I if f^{\prime} is increasing on I
(b) concave down on an open interval I if f^{\prime} is decreasing on I.

In the literature you often find that 'concave up' is denoted as convex, and 'concave down' is simply called concave.

If $f^{\prime \prime}$ exists, the last corollary of the mean value theorem implies that f^{\prime} increases if $f^{\prime \prime}>0$ on I and decreases if $f^{\prime \prime}<0$:

The Second Derivative Test for Concavity

Let $y=f(x)$ be twice-differentiable on an interval I.

1. If $f^{\prime \prime}>0$ on I, the graph of f over I is concave up.
2. If $f^{\prime \prime}<0$ on I, the graph of f over I is concave down.
examples: (1) $y=x^{3} \Rightarrow y^{\prime \prime}=6 x$: For $(-\infty, 0)$ it is $y^{\prime \prime}<0$ and graph concave down. For $(0, \infty)$ it is $y^{\prime \prime}<0$ and graph concave up.

(2) $y=x^{2} \Rightarrow y^{\prime \prime}=2>0$: graph is concave up everywhere.

$y=x^{3}$ changes concavity at the point $(0,0)$; specify:
```
DEFINITION Point of Inflection
```

A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

At a point of inflection it is $y^{\prime \prime}>0$ on one, $y^{\prime \prime}<0$ on the other side, and either $y^{\prime \prime}=0$ or undefined at such point.

If $y^{\prime \prime}$ exists at an inflection point it is $y^{\prime \prime}=0$ and y^{\prime} has a local maximum or minimum.
examples: (1) $y=x^{4} \Rightarrow y^{\prime \prime}=12 x^{2}: y^{\prime \prime}(0)=0$ but $y^{\prime \prime}$ does not change sign - no inflection point at $x=0$.

(2) $y=x^{1 / 3} \Rightarrow y^{\prime \prime}=\left(\frac{1}{3} x^{-\frac{2}{3}}\right)^{\prime}=-\frac{2}{9} x^{-\frac{5}{3}}: y^{\prime \prime}$ does change sign - inflection point at $x=0$ but $y^{\prime \prime}(0)$ does not exist.

