

MTH4100 Calculus I

Lecture notes for Week 8

Thomas' Calculus, Sections 4.1 to 4.4

Rainer Klages

School of Mathematical Sciences Queen Mary University of London

Autumn 2009

Theorem 1 (First Derivative Theorem for Local Extrema) If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then f'(c) = 0.

note: the converse is false! (counterexample?)

Where can a function f possibly have an extreme value according to this theorem?

answer:

- 1. at interior points where f' = 0
- 2. at interior points where f' is not defined
- 3. at endpoints of the domain of f.

combine 1 and 2:

DEFINITION Critical Point

An interior point of the domain of a function f where f' is zero or undefined is a **critical point** of f.

How to Find the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

- 1. Evaluate f at all critical points and endpoints.
- 2. Take the largest and smallest of these values.

Why the above assumptions? Because then we have the *extreme value theorem*, which ensures the *existence* of such values!

examples: (1) Find the absolute extrema of $f(x) = x^2$ on [-1, 1].

- f is differentiable on [-1, 1] with f'(x) = 2x
- critical point: $f'(x) = 0 \implies x = 0$
- endpoints: x = -1 and x = 1
- f(0) = 0, f(-1) = 1, f(1) = 1

Therefore f has an absolute maximum value of 1 twice at x = -1 and an absolute minimum value of 0 once at x = 0.

(2) Find the absolute extrema of $f(x) = x^{2/3}$ on [-2, 3].

- f is differentiable with $f'(x) = \frac{2}{3}x^{-1/3}$ except at x = 0
- critical point: f'(x) = 0 or f'(x) undefined $\Rightarrow x = 0$
- endpoints: x = -2 and x = 3
- $f(-2) = \sqrt[3]{4}, f(0) = 0, f(3) = \sqrt[3]{9}$

Therefore f has an absolute maximum value of $\sqrt[3]{9}$ at x = 3 and an absolute minimum value of 0 at x = 0.

Rolle's theorem

motivation:

Theorem 2 Let f(x) be continuous on [a, b] and differentiable on (a, b). If f(a) = f(b) then there exists $a \ c \in (a, b)$ with f'(c) = 0.

basic idea of the proof:

Apply extreme value theorem and first derivative theorem for extrema to interior points and consider endpoints separately; for details see the textbook Section 4.2.

note: It is *essential* that all of the hypotheses in the theorem are fulfilled!

examples:

example: Apply Rolle's theorem to $f(x) = \frac{x^3}{3} - 3x$ on [-3, 3].

- The polynomial f is continuous on [-3,3] and differentiable on (-3,3).
- f(-3) = f(3) = 0

• By Rolle's theorem there exists (at least!) one $c \in [-3, 3]$ with f'(c) = 0. From $f'(x) = x^2 - 3 = 0$ we find that indeed $x = \pm \sqrt{3}$.

The Mean Value Theorem

motivation: "slanted version of Rolle's theorem"

Theorem 3 (Mean Value Theorem) Let f(x) be continuous on [a, b] and differentiable on (a, b). Then there exists a $c \in (a, b)$ with

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

basic idea of the proof:

Define g(x) and h(x) and apply Rolle's theorem.

example: Consider $f(x) = x^2$ on [0, 2].

- f(x) is continuous and differentiable on [0, 2].
- Therefore there is a $c \in (0,2)$ with $f'(c) = \frac{f(2) f(0)}{2 0} = 2$.
- Since f'(x) = 2x we find that c = 1.

Know $f'(x) \Rightarrow$ know f(x)? special case:

Corollary 1 (Functions with zero derivatives are constant) If f'(x) = 0 on (a, b) then f(x) = C for all $x \in (a, b)$.

basic idea of the proof:

Apply the Mean Value Theorem to all $x_1, x_2 \in (a, b)$!

Know $f'(x) = g'(x) \Rightarrow$ know relation between f and g?

Corollary 2 (Functions with the same derivative differ by a constant) If f'(x) = g'(x) for all $x \in (a, b)$, then f(x) = g(x) + C.

Proof: Consider h(x) = f(x) - g(x). As h'(x) = f'(x) - g'(x) = 0 for all $x \in (a, b)$, h(x) = C by the previous corollary and so f(x) = g(x) + C. q.e.d.

Increasing and decreasing functions

motivation:

- make increasing/decreasing mathematically precise
- clarify relation to **positive/negative derivative**

DEFINITIONS Increasing, Decreasing Function
Let f be a function defined on an interval I and let x₁ and x₂ be any two points in I.
1. If f(x₁) < f(x₂) whenever x₁ < x₂, then f is said to be increasing on I.
2. If f(x₂) < f(x₁) whenever x₁ < x₂, then f is said to be decreasing on I.
A function that is increasing or decreasing on I is called monotonic on I.

example: $f(x) = x^2$ decreases on $(-\infty, 0]$ and increases on $[0, \infty)$. It is monotonic on $(-\infty, 0]$ and $[0, \infty)$ but not monotonic on $(-\infty, \infty)$.

Corollary 3 (First derivative test for monotonic functions) Suppose that f is continuous on [a, b] and differentiable on (a, b).

If f'(x) > 0 at each point $x \in (a, b)$, then f is increasing on [a, b]. If f'(x) < 0 at each point $x \in (a, b)$, then f is decreasing on [a, b].

sketch of the proof:

The Mean Value theorem states that $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$ for any $x_1, x_2 \in [a, b]$ with $x_1 < x_2$. Hence, the sign of f'(c) determines whether $f(x_2) < f(x_1)$ or the other way around, which in turn determines the type of monotonicity.

example: Find the critical points of $f(x) = x^3 - 12x - 5$ and identify the intervals on which f is increasing and decreasing.

$$f'(x) = 3x^2 - 12 = 3(x^2 - 4) = 3(x + 2)(x - 2) \Rightarrow x_1 = -2, x_2 = 2$$

These critical points subdivide the natural domain into $(-\infty, -2), (-2, 2), (2, \infty)$.

rule: If a < b are two nearby critical points for f, then f' must be positive on (a, b) or negative there. (proof relies on continuity of f'). This implies that **for finding the sign** of f' it suffices to compute f'(x) at one $x \in (a, b)$!

Here: f'(-3) = 15, f'(0) = -12, f'(3) = 15.

First derivatives and local extrema

example:

- Whenever f has a minimum, f' < 0 to the left and f' > 0 to the right.
- Whenever f has a maximum, f' > 0 to the left and f' < 0 to the right.

 \Rightarrow At local extrema, the sign of f'(x) changes!

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c except possibly at c itself. Moving across c from left to right,

- 1. if f' changes from negative to positive at c, then f has a local minimum at c;
- 2. if f' changes from positive to negative at c, then f has a local maximum at c;
- 3. if f' does not change sign at c (that is, f' is positive on both sides of c or negative on both sides), then f has no local extremum at c.

example: Find the critical points of $f(x) = x^{4/3} - 4x^{1/3}$. Identify the intervals on which f is increasing and decreasing. Find the function's extrema.

$$f'(x) = \frac{4}{3}x^{1/3} - \frac{4}{3}x^{-2/3} = \frac{4}{3}\frac{x-1}{x^{2/3}} \Rightarrow x_1 = 1, x_2 = 0$$

intervals $x < 0$ $0 < x < 1$ $1 < x$
sign of f' - - +
behaviour of f decreasing decreasing increasing

Apply the first derivative test to identify local extrema:

- f' does not change sign at $x = 0 \Rightarrow$ no extremum
- f' changes from to + at $x = 1 \Rightarrow$ local minimum

Since $\lim_{x\to\pm\infty} = \infty$, the minimum at x = 1 with f(1) = -3 is also an absolute minimum. Note that $f'(0) = -\infty$!

Concavity and curve sketching

example:

The turning or bending behaviour defines the **concavity** of the curve.

DEFINITION Concave Up, Concave Down
The graph of a differentiable function y = f(x) is
(a) concave up on an open interval I if f' is increasing on I
(b) concave down on an open interval I if f' is decreasing on I.

In the literature you often find that 'concave up' is denoted as *convex*, and 'concave down' is simply called *concave*.

If f'' exists, the last corollary of the mean value theorem implies that f' increases if f'' > 0on I and decreases if f'' < 0:

The Second Derivative Test for Concavity
Let y = f(x) be twice-differentiable on an interval I.
1. If f" > 0 on I, the graph of f over I is concave up.
2. If f" < 0 on I, the graph of f over I is concave down.

examples: (1) $y = x^3 \Rightarrow y'' = 6x$: For $(-\infty, 0)$ it is y'' < 0 and graph concave down. For $(0, \infty)$ it is y'' < 0 and graph concave up.

(2) $y = x^2 \Rightarrow y'' = 2 > 0$: graph is concave up everywhere.

 $y = x^3$ changes concavity at the point (0,0); specify:

DEFINITION Point of Inflection A point where the graph of a function has a tangent line and where the concavity changes is a **point of inflection**.

At a point of inflection it is y'' > 0 on one, y'' < 0 on the other side, and either y'' = 0 or undefined at such point.

If y'' exists at an inflection point it is y'' = 0 and y' has a local maximum or minimum.

examples: (1) $y = x^4 \Rightarrow y'' = 12x^2$: y''(0) = 0 but y'' does not change sign – no inflection point at x = 0.

(2) $y = x^{1/3} \Rightarrow y'' = \left(\frac{1}{3}x^{-\frac{2}{3}}\right)' = -\frac{2}{9}x^{-\frac{5}{3}}$: y'' does change sign - inflection point at x = 0 but y''(0) does not exist.

