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Summary 

 Why stochastic models ? 
 Textbook stochastic models 
 Noah, Joseph and volatility bunching 
 A physics of fractals ? 
 From fractals back to physics ? 
 Pitfalls:  1. Walks are not noises 
 2. Memory not always from self-similarity 
 3. Choice of fractal models 

 
 
 



WHY STOCHASTIC MODELS ? 



• We need to use stochastic (or partly 
stochastic) models in physics and the 
geosciences, particularly in time series 
analysis.    
 Partly as models when computational 

bandwidth or other issues prevent a fully 
deterministic model 
 But also as paradigms to help us frame the 

right statistical questions about data. 
 



•  Motivation  not only the classic problems but 
also increasing importance of topics like 
extremes and large deviations.    

• Couple of examples of relevance to the 
environmental sciences: 
 Extreme weather events 
 Solar Terrestrial Physics (“Space Weather”) 









Solar-Terrestrial Coupling 
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Convection (DP2) 

• Mass, momentum and 
energy input from 
reconnection at solar 
wind - magnetosphere 
interface. 

• Plasma circulation from 
day to night over poles 
and from night to day 
around flanks. 
 

• magnetic pole 

equator 

Sun 

flow 
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Courtesy Mervyn Freeman 



Substorms (DP1) 

• Irregular, large-scale 
releases of energy in 
magnetotail  

    -substorms. 
 

• Intense magnetic field-
aligned currents 
accelerate particles to 
cause aurora. 

solar wind 

magnetosphere 
BANG! 

Courtesy Mervyn Freeman 



Auroral Electrojet Index 

 
 

Ionosphere 

Magnetosphere 

Ground-based Instrumentation 
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“TEXTBOOK” STOCHASTIC MODEL 



Simplest textbook stochastic time series model: 
independent, identically distributed (iid), 
Gaussian, “white”, stationary noise.  
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White Gaussian noise has  short tailed 
amplitude distribution 
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ACF is delta-correlated in time,  here plotted 

normalised by mean square of signal 
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its moments do not grow with time.   
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 NOAH, JOSEPH AND VOLATILITY  



• In stark contrast, Mandelbrot's classic work in the 
1960s and early 1970s focused particularly on 3 
“anomalous” effects seen in time series drawn from 
the natural and economic sciences, each of which 
represented a strong departure from one of the above 
properties of white noise.  
 

 AE time series exhibits them all to some degree – has 
forced us to explore beyond simple noise models.  

     [Have removed some unpublished AE work, paper in 
preparation] 
 
 



Noah effect: Light and heavy tails 

Light tailed 
Gaussian 

Heavy tailed 
power law 

1(1 )( ) ~ xp x µ− +

2 2~ exp(( ) / )2xp x σ− One way to explore tail of 
distribution is via probability 
density function p(x). 



Joseph Effect 

    long range serial dependence in time 
 
 



Joseph Effect 

    long range serial dependence in time 
 
 



 Long tailed ACF suggestive of LRD 

  A singular power spectral density S(f) or an ACF 
that tends to infinity when summed are  
definitions of LRD in a stationary time series. 
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 “Bursts” illustrate effect of LRD 

    
 
 
 
 
 
 
Define burst area A as integrated area of time series 

above threshold between upward crossing and 
next downward crossing.   
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   “Volatility clustering" (correlations between 
the absolute value of the time series- or here  
its first differences).    
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Watkins et al, AGU Monograph, in press; 
See also Rypdal and Rypdal, JGR, 2011. 



  Common thread in all 3 effects is fractality. 
 
 Dilating power law amplitude pdf by scale factor leaves it a power law. 

Contrast Gaussian pdf with scale length from standard deviation. 
 
 Similarly dilating power law ACF leaves it power law. Contrast exponential 

ACF with scale length from e-folding time. 
 
Can relate dilation of time series amplitude 
X to dilation in time via self-affinity exponent H. 
 
 However a single self-similarity exponent may not be enough, even in early 

1970s Mandelbrot was thinking about multifractals i.e. a spectrum of 
exponents. 
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 A PHYSICS OF FRACTALS ? 



Bak et al’s self-organised criticality, introduced 
(PRL, 1987; PRE, ‘88) to  unify   Noah & Joseph 
effects through self-similar  “avalanches”.  
 
 



We and some others in space physics were attracted by the SOC paradigm in mid 1990s, 
and worked both on forward problem of what sorts of plasma physics would map on to SOC, 
and also inverse problem of unambiguous identification of SOC in data. See e.g Freeman and  
Watkins, Science 2002;  Watkins, NPG, 2002; Chapman and Watkins, Space Sci Rev, 2001;  
Watkins et al, JASTP, 2001; Aschwanden,  SOC In Astrophysics, Springer 2011 .  s 



FROM FRACTALS TO PHYSICS ? 



•   Initial interest in extreme fluctuations in 
space physics and other environmental 
science problems, and  need to compare 
paradigms like SOC to experimental data ... 

    ...has now led to an interest in three related  
issues   
 
 



AGGREGATION IS NOT NOISE 



 
• Most familiar issue arises from the fact that a measured 

fluctuating quantity need not always be stationary and 
noise-like. Instead natural fluctuations may have been 
integrated or multiplied by the system's physics to create 
the observed variable(s).  

•  Aggregated fluctuations already have rather different 
properties to noise, some of which can be traps for the 
unwary.  

• For example, the first passage time of even an “ordinary” 
Brownian random walk is already a heavy tailed random 
variable with infinite expectation value.  

• Well studied, well known to Mandelbrot, Bak et al, and 
particularly familiar to today’s audience ! Including it 
mainly because the Noah and Joseph effects are usually 
contrasted with white noise (as I did) and not random 
walks .... and to plug our recent Warwick meeting ...talks 
now online. 



 

http://www2.warwick.ac.uk/fac/cross_fac/comcom/events/powerlawsandrareevents2012/
programme/ 
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“Textbook” additive aggregation  
Brownian random walk
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MEMORY IS NOT (ALWAYS) 
FRACTALITY  



 
• A more subtle problem arises from the fact that a few 

of the very popular diagnostics are constructed to 
measure self-similarity , while most (e.g. R/S, DFA) in 
fact measure long-range dependence, so some 
confusion can arise when interpreting their outputs in 
systems  where these two properties are not 
synonymous. 

• Discussed in Franzke et al, Phil Trans A, 2012; see also  
Mercik et al,  ”Enigma of self-similarity of fractional 
Levy stable motions”, Acta Phys. Pol. B 34 3773 
(2003).  



FRACTAL NOISE MODELS: HOW TO 
CHOOSE ?  



 
•  Several models modify the Brownian random walk, 

including those for “anomalous diffusion”. In Watkins et al, 
PRE, 2009 we attempted to present a classification, which 
needs some correction.   

• Three particularly important classes of such models are:  
  additive and undamped, including fractional stable models, 

the fractional CTRW, and generalised shot noises 
  additive and mean reverting (damped) models like the 

Ornstein-Uhlenbeck process 
  multiplicative processes.    



 
• Important to dispel the misconception that 

such models are ``just statistics", as many 
embody a close correspondence with a 
physical scenario, which can be used as a 
guide when trying to choose the most suitable 
one to use, and which will bite back if you 
ignore it ! 
 



ADDITIVE UNDAMPED MODELS  



 
•  The variance of an additive stochastic process 

with no damping will tend to grow with time.  
• It is thus a model of diffusion. Not so obvious 

that it will be a time series model. 
•  Recap links between Langevin and Fokker-

Planck descriptions of diffusion, and the 
central limit theorem and scaling. 
 



Brownian Case 
Brownian random walk
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•  In Brownian case the three legs are (by now) 

very well studied and relate to each other. 
•   When we go beyond Brownian motion, it is 

not self-evident that can maintain all 3 
properties ... and in fact when we look at the 
models that have been developed we will see 
that they don’t. 
 



Anomalous diffusion: CTRW  
•If we choose to keep a (fractional) diffusion  
equation and lose the alpha-stability property  
we get Continuous Time Random Walk. 
 
•Can model simplest, factorising, version of CTRW  
by  specifying pdf of jump sizes and pdf of a random  
waiting time that elapses before next jump. 
Has been used as a model of space physics data 
[Zaslavsky et al, Physica A, 2007], but requires  
(non-uniform) waiting times to be defined on a  
uniformly sampled time series. 
 



Anomalous diffusion & CTRW 
 Can  simulate CTRW directly.

fractional diffusion equation
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2α =
α H

1/ 2H =
1/H dα= +

2
t pp∇ = ∂

• From Brockmann et al, Nature, 2006. 
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Diffusion Equations 
Stable Process 
 

CTRW 
 

            

  

                

fBm FTP 

 ? 

LFSM FF CTRW 

 ? 

2α =
α H
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2
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• Revised from  Watkins et al, PRE, 2009 
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Stable processes: linear fractional 
stable motion 

•Conversely if we  lose the  diffusion  
equation but keep the alpha-stability property  
we get the family of fractional stable motions. 
 
Has been proposed as a model of AE,  e.g.  Watkins 
et al, Space Science Reviews, 2005. Biggest deficiency 
is shape of the pdfs, which are heavier-tailed  
than reality (see e.g. Rypdal & Rypdal, 2011). Fix-up  
of truncated Levy approach less satisfactory than  
some others here. 
  



Stable processes 
 Can difference LFSM to give a 
fractional stable noise. Langevin-type
descriptions with LFS noise driving do exist
e.g. Magdziarz, Stochastic Models, 2007.
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Kinetic  picture ? 
 Early work on fBm for example proposed 
that a diffusion equation with a diffusion 
coefficient with power law time dependence 
would describe it, see also Watkins et al, 
2009. 
 
WRONG  !, as this describes the pdf but not 
the correct temporal structure e.g. first 
passage time etc. See e.g. Lim and 
Muniandy, PRE, 2002.  

1( ) H
t P H t D Pα αα −∂ = ∂



Another process ? 
  The diffusion equation in the last slide, with 
nonlinear time dependence in its coefficient, 
seems to be a third process, neither 
Mandelbrot’s fBm or the FPT ? Some light 
shed by Lutz, PRE, 2001, who derived it and 
a fractional Langevin equation from a 
concrete  (system + heat bath) model. In his 
notation (where “α”= our “αH”) FLE was: 
  1
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M
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∂
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Diffusion Equations 
Stable Process 
 

CTRW 
 

            

  

                

fBm FTP 

 ? 

LFSM FF CTRW 

 ? 

2α =
α H

1/ 2H =
1/H dα= +

2
t pp∇ = ∂

• After Watkins et al, PRE, 2009 

'/H d α=

0 2α< ≤ 1/H α=

t ppα∇ = ∂

2α =

0 2α< ≤

0 1H≤ ≤

0 1H≤ ≤

Ordinary Levy Motion  

Bachelier -Wiener Brownian Motion  

2 H
tp pα∇ ∂=

H
tp pα α∇ ∂=



Campbell’s Theorem Approach 

Voss [in the Science of Fractal Images, 1988] 
called above “fBm”, but interpreted  as a 
sum of power law responses to shocks W(s). 
See also work by Mandelbrot on fractal 
sums of pulses and Eliazar & Klafter on 
generalised shot noises. 
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 ADDITIVE DAMPED MODELS 



Mean reversion 
•A key step in modifying  additive random 
walk for physical applications was 
introduction of a damping time scale. 
•In physics we have Ornstein-Uhlenbeck 
model of damped Brownian motion 
•In stochastics we have first order 
autoregressive process AR(1): 
 
 

 
1n nX Xλ −= + 



AE 

•Strongly indicated for AE which has  ~ exponential 
decay in ACF  on short time scales less than a few 
hours.  
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 MULTIPLICATIVE MODELS 



Cascade processes 

 Many systems have 
aggregation, but not by an 
additive route. 
 
Classic example is 
turbulence.  
 
One indicator can be the 
presence of ~ lognormality 
in pdf. 



Modelling AE   

 An interesting recent synthesis of these 
approaches has been combination of  
mean reversion and a multifractal noise by 
Rypdal and Rypdal, 2011 to model AE. 
 
As in finance a log transformation was first 
employed to give a series with near-
stationary increments. 
 
 



Summary 

 Why stochastic models ? 
 Textbook stochastic models 
 Noah, Joseph and volatility bunching 
 A physics of fractals ? 
 From fractals back to physics ? 
 Pitfalls:  1. Walks are not noises 
 2. Memory not always self-similarity 
 3. Choice of fractal models 
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