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Equilibrium vs non-equilibrium

Equilibrium

Thermodynamics: minimum of free energy

Statistical mechanics
→ Ensembletheory
→ Fluctuations

Non-equilibrium

Transient or steady state

Athermal systems

Depends on driving/dissipation mechanisms

Universal statistical mechanical approach?
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Exact relations in non-equilibrium statistical mechanics

Fluctuation theorems for heat, work, currents (“X-Y”-FTs)
I Transient: Jarzynski, Crooks, Evans-Searles
I Steady state: Gallavotti-Cohen
I Generalizations
I Quantum FTs

lim
τ→∞

1

cτ
ln

Πτ (p)

Πτ (−p)
= p

Fluctuation-dissipation relations for steady states

Additivity principle

Ensembletheories
I Ensemble of phase space trajectories → non-equilibrium counterpart to

detailed balance
I Edward’s statistical mechanics for granular matter: energy → volume

How universal? How useful?
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Fluctuations in non-equilibrium steady states

Next simplest generalization of equilibrium is a nonequilibrium steady
state (NESS)

Physically a NESS is maintained by a balance between

Driving forces

I Temperature gradient

I Shear

←→

Dissipative forces

I Friction

I Viscosity

Characteristics of a NESS depend on the particular driving/dissipation
(thermostatting) mechanisms

Use large deviation formalism

p =

∫ τ

0
A(x(t))dt, lim

τ→∞

1

τ
ln Πτ (p) = I (p)

Rate function characterizes fluctuations in the NESS
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A nonequilibrium particle model

Particle in a moving harmonic potential

mẍ(t) + αẋ(t) = −κ(x(t)− vt) + ξ(t)

Mechanical work done on the particle

Wτ = −κv
∫ τ

0
(x(t)− vt)dt

0

0

Comoving frame

x(t) x (t)0

y(t)

Laboratory frame
x

y

v

Stationary process in the comoving frame y = x − vt:

mÿ(t) +αẏ(t) = −κy(t)−αv + ξ(t) , Wτ = −κv
∫ τ

0
y(t)dt

External noise

Noise and friction originate from physically independent mechanisms

Investigate role of time scales and singularities in the context of FTs
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A general type of noise

Poissonian shot noise (PSN)

z(t) =
nt∑

k=1

Γkδ(t − tk)

nt Poisson distributed with mean λ

Γk exponentially distributed with mean Γ0

White noise

Characteristic functional

Gz(t)[g(t)] = exp

{
λ

∫ ∞
0

(
1

1− iΓ0g(t)
− 1

)
dt

}

Consider zero mean noise:

ξ(t) = z(t)− λΓ0

Gaussian noise in the limits
λ→∞, Γ0 → 0, λΓ2

0 = const.

f(v) 

+1 

-1 
v 

z(t) 

t 

! = !! 

!= 0 
Diffusive 

Directed 

Unidirectional 

! 

〈 〉v   > 0  

〈 〉v   > 0  

〈 〉v   = 0  

F(t) 

t 
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Time scales

Time scales of the harmonic oscillator

Inertial time

τm =
m

α

Relaxation time

τr =
α

κ

Additional time scales due to PSN

Mean waiting time between
pulses

τλ =
1

λ

‘Poisson’ time

τp =
Γ0

α|v |

Qualitative transition behavior due to interplay of these time scales
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Symmetries and singularities

Zero mean noise

ξ(t) = z(t)− λΓ0

Mean position in NESS: 〈y〉 = −vτr

Mean work in NESS: 〈Wτ 〉 = αv2τ

U(y)

0<y> y

v

1 Distinguish v > 0 and v < 0
2 Singular features due to noise:

I Effective velocity: ve ≡ v + λΓ0/α
I Force balance: ve = − 1

τr
y∗

y*

U(y)

0<y> y

v

Effective nonlinearity

Position cut-off y∗ = −veτr

Infinite barrier in harmonic potential
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Symmetries and singularities

Negative v

τp > τλ

y*

U(y)

y0 <y>

v

τp < τλ

y*

U(y)

y0 <y>

v

Work given by: Wτ = −κv
∫ τ

0 y(t)dt

Work cut-off

W ∗
τ = −κvy∗τ

I v > 0: W ∗
τ maximal work in time τ

I v < 0: W ∗
τ minimal work in time τ

If v < 0 and τp < τλ: minimal work W ∗
τ > 0 and no negative work

fluctuations can occur.
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Generalized Ornstein-Uhlenbeck process

Overdamped regime τm � τr

ẏ(t) = − 1

τr
y(t)− ve + z(t)

Obtain characteristic functional:

Gy(t)[h(t)] = e ik0y0−ive
R∞

0 k(t)dtGz(t)[k(t)],

where k(t) =
∫∞
t e(t−s)/τr h(s)ds.

1 Characteristic function of particle position: h(t) = h1δ(t − t1)

2 Characteristic function of the work: h(t) = −qvκΘ(τ − t)

Gy(t)[h(t)] =
〈
e−iqvκ

R τ
0

y(t)dt
〉

=
〈
e iqWτ

〉
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Stationary distribution

Particle position in the NESS:

P(y) ∝
(
α

Γ0
(y − y∗)

)τr/τλ−1

e−(y−y∗)α/Γ0

Transition behavior for τr < τλ

v

U(y)

y0y* <y>

!2 !1 0 1 2 3 y

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P!y"

Τr#ΤΛ

Τr%ΤΛ

Τr%ΤΛ
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Work distribution

Distribution of rescaled work p ≡Wτ/ 〈Wτ 〉 for large τ

Πτ (p) ∝
(√

p∗ − p

p∗ − 1

)− τr
τλ

“q
p∗−p
p∗−1

−1
”
− 3

2

exp

{
− τ

τλ

(√
p∗ − p

p∗ − 1
− 1

)2
}

Rescaled work cut-off: p∗ = 1 + σ(v)
τp
τλ

Rate function: I (p) = 1
τλ

(√
p∗−p
p∗−1 − 1

)2

v > 0

!2 !1 1 2 p

0.5

1.0

1.5

2.0

2.5

I!p"
p"#1.5

p"#2.0

p"#2.5

v < 0

!1 0 1 2 3 4 5 p

0.5

1.0

1.5

2.0

I!p"
p"#!1.0

p"#!0.5

p"#0.5
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Fluctuation theorem

Define dimensionless fluctuation function using a ≡ α
λΓ2

0

fτ (p) =
1

a 〈Wτ 〉
ln

Πτ (p)

Πτ (−p)

In the asymptotic regime τ →∞, v > 0:

0.5 1.0 1.5 2.0 2.5 3.0 p

!2

!1

1

2

3
f!p"

p"#6.0
p"#3.0
p"#2.5
p"#2.0
p"#1.5 SSFT

f!p""
Baule and Cohen, PRE (2009)

I f (p) defined on [−p∗, p∗]
and only depends on p, p∗

I SSFT for p∗ →∞
(Gaussian limit)

I Vertical slope for p → p∗

I Negative fluctuation
function for p∗ > 2 (i.e.
τp > τr )
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Fluctuation theorem

Define dimensionless fluctuation function using a ≡ α
λΓ2

0

fτ (p) =
1

a 〈Wτ 〉
ln

Πτ (p)

Πτ (−p)

In the asymptotic regime τ →∞, v < 0 and τp > τλ:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 p0

2

4

6

8

10

12

f!p"

p!"#4.0
p!"#2.5
p!"#2.0
p!"#1.5
p!"#1.0

SSFT

f!p!"

Baule and Cohen, PRE (2009)

I f (p) always > 0 for p > 0

I SSFT for p∗ →∞
(Gaussian limit)

I Vertical slope for p → p∗
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Additional thermal Gaussian noise

Add Gaussian noise η(t) with 〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2αβ δ(t − t ′)

mẍ(t) + αẋ(t) = −κ(x(t)− vt) + ξ(t) + η(t)

Product of characteristic functionals

Gy(t)[h(t)] = e ik0y0−ive
R∞

0 k(t)dtGz(t)[k(t)]Gη(t)[k(t)]

Stationary distribution given by convolution of P(y) and PG (y)
τr > τλ

!4 !3 !2 !1 0 1 2y
0.1
0.2
0.3
0.4
0.5
0.6
0.7
PGP

B"10

B"1

B"0.1

B"0.01

y*

τr < τλ

!3 !2 !1 0 1 2y

0.5

1.0

1.5

2.0

PGP

B"10

B"1

B"0.1

B"0.01

y*

B = ratio of noise powers Gauss/PSN
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Work fluctuations

Rate function

!10 !5 0 5 10 p

5

10

15

20

25
I!p"

B"10

B"1

B"0.1

!15 !10 !5 0 5 10 15 p

5

10

15

I!p"
B"10

B"1

B"0.1

Fluctuation function
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2

fGP!p"
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Equilibrium ensembles

Equilibrium

Thermodynamics: minimum of free energy

Statistical mechanics
→ Ensembletheory
→ Fluctuations

Ergodicity: system samples entire phase space over time
→ equivalence of time averages and ensemble averages over
stationary probability distributions p(x)

Microcanonical ensemble: p(x) is uniform at constant energy E

Entropy: S = −kB ln Ω(E )

Canonical ensemble: energy exchange with heat bath p(x) ∝ e−βH(x)

→ thermal equilibrium fluctuations

Rules for transition rates: detailed balance
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Biased ensemble of trajectories

Consider time-integrated
observable of equilibrium
dynamics x(t)

γΓ =

∫ τ

0
A(x(t))dt

Construct biased ensemble:
I Microcanonical
I Canonical: 〈γΓ〉 = γ0

!"#$%&

'(#&

! 

"
! 

" 0

Distribution of uncorrelated objects Γ is given by maximizing

S = −
∑

Γ

pΓ ln pΓ

for equilibrium paths Γ subject to constraint
∑

Γ pΓγΓ = γ0

Result:
pdr

Γ ∝ peq
Γ eνγΓ
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Biased ensemble of trajectories

Probability of non-equilibrium
trajectories

pdr
Γ ∝ peq

Γ eνγΓ

Shear flows of complex fluids
(R.M.L. Evans): shear

Models for glass formers
(Garrahan et al): activity

Calculate dynamical partition
function

Z (ν, t) = 〈eνγΓ〉

Consider dynamical free energy:

ψ(ν) = − lim
t→∞

1

t
log Z (ν, t)

Dynamical First-Order Phase Transition in Kinetically Constrained Models of Glasses

J. P. Garrahan,1 R. L. Jack,2 V. Lecomte,3 E. Pitard,4 K. van Duijvendijk,3 and F. van Wijland3

1School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
2Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
3Laboratoire Matière et Systèmes Complexes (CNRS UMR 7057), Université de Paris VII,

10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France
4Laboratoire des Colloı̈des, Verres et Nanomatériaux (CNRS UMR 5587), Université de Montpellier II,

place Eugène Bataillon, 34095 Montpellier cedex 5, France
(Received 1 February 2007; published 9 May 2007)

We show that the dynamics of kinetically constrained models of glass formers takes place at a first-
order coexistence line between active and inactive dynamical phases. We prove this by computing the
large-deviation functions of suitable space-time observables, such as the number of configuration changes
in a trajectory. We present analytic results for dynamic facilitated models in a mean-field approximation,
and numerical results for the Fredrickson-Andersen model, the East model, and constrained lattice gases,
in various dimensions. This dynamical first-order transition is generic in kinetically constrained models,
and we expect it to be present in systems with fully jammed states.

DOI: 10.1103/PhysRevLett.98.195702 PACS numbers: 64.70.Pf, 05.40.!a

An increasingly accepted view is that the phenomenol-
ogy associated with the glass transition [1] requires a
purely dynamic analysis, and does not arise from an under-
lying static transition (see, however, [2]). Indeed, it has
been suggested that the glass transition manifests a first-
order phase transition in space and time between active and
inactive phases [3]. Here we apply Ruelle’s thermody-
namic formalism [4,5] to show that this suggestion is
indeed correct, for a specific class of stochastic models.
The existence of active and inactive regions of space-time,
separated by sharp interfaces, is dynamic heterogeneity, a
central feature of glass forming systems [6]. This phe-
nomenon, in which the dynamics becomes increasingly
spatially correlated at low temperatures, arises naturally
[7] in models based on the idea of dynamic facilitation,
such as spin-facilitated models [8,9], constrained lattice
gases [10,11], and other kinetically constrained models
(KCMs) [12]. Figure 1 illustrates the discontinuities in
space-time order parameters at the dynamical transition
in one such model, together with the singularity in a space-
time free energy, as a function of a control parameter to be
discussed shortly.

The thermodynamic formalism of Ruelle and co-
workers was developed in the context of deterministic
dynamical systems [4]. While traditional thermodynamics
is used to study fluctuations associated with configurations
of a system, Ruelle’s formalism yields information about
its trajectories (or histories). The formalism relies on the
construction of a dynamical partition function, analogous
to the canonical partition function of thermodynamics. The
energy of the system is replaced by the dynamical action
(the negative of the logarithm of the probability of a given
history), the entropy of the system by the Kolmogorov-
Sinai entropy [13], and the temperature by an intrinsic field
conjugate to the action. This formalism has been exploited

recently to describe the chaotic properties of continuous-
time Markov processes [5].

In this work, we define the dynamical partition sum [4,5]
for our stochastic systems by

 ZK"s; t# $
X

histories

Prob"history#e!sK̂"history#; (1)

 

-0.2 -0.1 0 0.1 0.2
s
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0.2

0.4
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K
(s

) /
 N

t
-0.2 -0.1 0 0.1 0.2

s
-0.02
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0.08

ψ
K

(s
) /

 N

-1 0 1 2
s
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0.1

0.2

0.3

0.4

ρ K
(s

)

active       inactive active       inactive

model with
kinetic constraints

kinetic constraints
removed

FIG. 1 (color online). First-order transition in terms of the field
s. (Top) The dynamical order parameter K"s# (the average
number of configuration changes in a trajectory) and its large-
deviation function  K"s# for the FA model, calculated in a mean-
field approximation, for d $ 3 and T $ 0:5; see Eqs. (6)–(9).
The large-deviation function is singular at s $ 0 and the order
parameter K has a first-order jump. The dynamics has two
phases, an active one for s < 0 and an inactive one for s > 0.
Physical dynamics take place at s $ 0, where the two dynamic
phases coexist. (Bottom) An alternative order parameter !K"s#
(the average number of excited sites in a trajectory; see Fig. 2) in
the d $ 1 FA model at T $ 0:91, calculated numerically in a
finite system (N $ 100 sites). The transition is absent when the
kinetic constraints are removed.

PRL 98, 195702 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
11 MAY 2007

0031-9007=07=98(19)=195702(4) 195702-1  2007 The American Physical Society

Garrahan et al, PRL (2007)
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Fluid in shear flow

A sheared NESS has much in common with equilibrium:

Sheared NESS

same Hamiltonian, only
boundaries differ

ergodic

reproducible phase behavior

spatial and temporal fluctuations

ubiquitous

time

s
ta
te

!

"

a

b

Thursday, May 27, 2010

...yet not solved by equilibrium statistical mechanics!

In general, γ̇ influential, if relaxation times τr are long: γ̇τr � 1
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Phenomena in shear flows of complex fluids

Amphiphiles:

Micrograph courtesy of Mark 
Buchanan

equilibrium continuous shear

Sunday, June 6, 2010

Shear banding:

Thursday, May 27, 2010

Phase transition

controlled by shear rate in
addition to temperature,
concentration, etc.
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Nonequilibrium statistical mechanics of shear flow

A model fluid

is defined by a set of n rates {ωab}
for jumping between microstates a, b

time

s
ta
te

!

"

a

b

Tuesday, June 8, 2010Can the transition rates be chosen arbitrarily ?

Balance equation for the probability distribution pa:

ṗa =
∑
b

[ωbapb − ωabpa] = 0

Satisfied by (equilibrium condition): ωbapb − ωabpa = 0

→ Equilibrium heat bath:

ωab/ωba = e−(Eb−Ea)/kBT

Condition of detailed balance
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Tuesday, June 8, 2010→ Do similar constraints apply in a sheared NESS ?

A fluid volume in the bulk feels shear only intermediated through
surrounding fluid
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Postulate: statistics of sheared NESS
obtained from a biased ensemble of
equilibrium trajectories
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Nonequilibrium counterpart to detailed balance

→ Unnormalized probability of a
path: pdr

Γ ∝ peq
Γ eνγΓ

→ Want: probability of a transition

ωab = Pr(a→ b|a)/∆t
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!"
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By counting all trajectories that contain transition a→ b obtain exact
relations for the transition rates:

ωdr
ab = ωeq

abeν∆γba+∆qba

Local contribution: ∆γba is the immediate shear contribution of the
transition a→ b

Global contribution: ∆qba measures the propensity for future shear
given a→ b
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Predictions

Invariant quantities in the sheared NESS

Product constraint

ωdr
abω

dr
ba = ωeq

abω
eq
ba ∀a, b

Noise from the reservoir determines 

which path the system follows through its 

microstate-space,  
during the  

experiment. 

time 
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Saturday, June 5, 2010

Total exit rate constraint∑dr
a −

∑dr
b =

∑eq
a −

∑eq
b ∀a, b

∑
a ≡

∑
j ωaj

Introduce shear current (rate) J = γ/τ of a trajectory

Current fluctuations
pτ (J)

pτ (−J)
∼= eνJτ τ →∞ → Fluctuation theorem

Baule and Evans, PRL (2008); JSTAT (2010)
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Testing the theory: a fluid of rotors

Numerically time-stepping
Newtonian eqs of motion

I Θ̈ = Fi+1,i − Fi ,i−1

Conserves angular momentum

time

s
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te
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"
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b

Sunday, June 6, 2010

Inter-neighbour torque: Fij = F conserv
ij + F dissip

ij + F random
ij
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Sunday, June 6, 2010

F dissip
ij ∝ Θ̇i − Θ̇j

F conserv
ij = −U ′(Θi −Θj)

F random
ij = −F random

ji
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Testing the theory: a fluid of rotors
At equilibrium

Boltzmann statistics in
U(∆Θ)

Transitions between wells
satisfy detailed balance

Impose shear at the
boundaries...
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If

Dynamics is ergodic

Correlations are small

Potential wells=microstates

In order to expedite data collection

Take overdamped (low mass) limit

Treat each gap (∆Θ) as “system”

then the theory applies here !
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Testing the product constraint

Use equilibrium symmetries

ωeq
ab = ωeq

ad

ωeq
ba = ωeq

da

...

Product constraint

ωabωba = ωeq
abω

eq
ba ∀a, b

→ ωabωba = ωdaωad

and similarly for transitions c → b
and c → d

Evans, Simha, Baule, Olmsted, PRE 2010
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Testing the total exit rate constraint

Use equilibrium symmetries

ωeq
ab = ωeq

ad

ωeq
ba = ωeq

da

...

Total exit rate constraint∑dr
a −

∑dr
b =

∑eq
a −

∑eq
b ∀a, b

→ ωba + ωbc = ωda + ωdc

Evans, Simha, Baule, Olmsted, PRE (2010)
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Testing the total exit rate constraint

Measured ratio close to unity for
all parameter values

Discrepancies in lower left corner

In low noise regime ergodicity
might break down

Discrepancies do not increase
with γ̇
→ theory is not a
near-equilibrium approximation
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Outlook

Deviations from SSFT for non-Gaussian fluctuations
I Paradigmatic non-equilibrium particle model
I PSN as generalization of Gaussion noise (mechanical random force)

Statistical mechanics of some non-equilibrium systems might be
treated using ensemble approaches as in equilibrium

Connect non-equilibrium trajectory ensemble with thermodynamics of
phase transitions under shear

I Shear thickening in Brownian and non-Brownian colloidal suspensions
I Needs suitable lattice model where shear can be identified
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