Geometry I, 2010 : Week-12 test

Last name:

First name:

Student number:

The duration of this test is 40 minutes. Answer all 10 questions. Each question is worth 1 mark. Only the final answer to a question will be marked, so indicate this answer clearly. Calculators are not allowed.

Answer all questions in the spaces provided. You may do additional rough work on the backs of the question sheets, but this will not be looked at.

1. Let $A=\left(\begin{array}{cc}2 & 3 \\ 2 & -1\end{array}\right)$ and $B=\left(\begin{array}{cc}-2 & -1 \\ 3 & 4\end{array}\right)$. Determine the matrix $2 A-B$.
2. Let $A=\left(\begin{array}{cc}2 & 3 \\ 2 & -1\end{array}\right)$ and $B=\left(\begin{array}{cc}3 & -2 \\ -2 & 4\end{array}\right)$. Determine the matrix $A B$.
3. Write down the inverse of the 2×2 matrix $A=\left(\begin{array}{ll}2 & 5 \\ 2 & 4\end{array}\right)$. [Simplify your matrix entries as much as possible.]
4. Calculate the determinant of $A=\left(\begin{array}{ccc}7 & 5 & 1 \\ -2 & 3 & 1 \\ -2 & 4 & 1\end{array}\right)$.
5. Write down the matrix representing the linear transformation $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $t\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{x-y}{2 z+x}$.
6. Determine the 2×2 matrix representing a rotation about the origin through an angle of $3 \pi / 2$ (anticlockwise). [Simplify your matrix entries as much as possible.]
7. Determine all the (real) eigenvalues of the matrix $\left(\begin{array}{ll}8 & -6 \\ 9 & -7\end{array}\right)$.
8. Let $A=\left(\begin{array}{cc}-1 & 1 \\ 4 & -1\end{array}\right)$. Determine the set of all eigenvectors of A which correspond to the eigenvalue 1. [Your answer must be given correctly as a set.]
9. Exactly which of the following statements are true? [Your answer must be completely correct to obtain a mark.]
(a) Whenever A and B are invertible 2×2 matrices then $A-B$ is also an invertible 2×2 matrix.
(b) If A and B are 2×2 matrices and $A B$ is the zero 2×2 matrix, then either A or B is the zero 2×2 matrix.
(c) If the second column of a 3×3 matrix A is a scalar multiple of the first column, then $\operatorname{det}(A)=0$.
(d) If A and B are invertible 3×3 matrices, then $(A B)^{-1}=A^{-1} B^{-1}$.
(e) If $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear transformation, then $t\left(\mathbf{0}_{3}\right)=\mathbf{0}_{2}$.
10. Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Find all 2×2 matrices $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $A B=B A$. [Give your answer as a set.]
