Geometry I, 2010: Mid-term test

Last name:

First name(s):

Student number:

The duration of this test is **40 minutes**. Answer **all** 10 questions. Each question is worth 1 mark. Only the final answer to a question will be marked, so indicate this answer clearly. Calculators are **not** allowed.

Answer all questions in the spaces provided. You may do additional rough work on the backs of the question sheets, but this will not be looked at.

1. Let
$$\mathbf{a} = \begin{pmatrix} -3 \\ -2 \\ 6 \end{pmatrix}$$
. Determine $|\mathbf{a}|$.

2. Let A = (-3, 3, -2) and B = (-3, 4, 0), and let P be one third of the way along the line segment from A to B. (That is $|\overrightarrow{AP}| = \frac{1}{3}|\overrightarrow{AB}|$.) Determine the position vector \mathbf{p} of P.

3. Determine parametric equations for the line through the points (-3, 3, -2) and (-2, 5, 0).

4. Determine the cosine of the angle between the vectors $\mathbf{p} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and $\mathbf{q} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$. Simplify your answer as much as possible.

5. Apply Gaußian elimination to transform the following system of linear equations into echelon form. [You do not need to determine the solutions of the system.]

6. Determine the intersection, as a set of points, of the plane defined by the equation x - 2y + 2z = 3 with the plane defined by -y + 3z = 2. [Your answer must be correctly specified as a set to obtain a mark.]

7. Calculate the area of the parallelogram determined by the vectors
$$\mathbf{a} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$

and
$$\mathbf{b} = \begin{pmatrix} 3 \\ -1 \\ -3 \end{pmatrix}$$
.

8. Determine a nonzero vector parallel to the plane defined by

$$3x + y - 3z = 17.$$

- **9.** Exactly which of the following statements are true? [Your answer must be completely correct to obtain a mark.]
- (a) If \mathbf{u} , \mathbf{v} , \mathbf{w} are vectors such that \mathbf{u} is orthogonal to \mathbf{v} and \mathbf{v} is orthogonal to \mathbf{w} , then \mathbf{u} is orthogonal to \mathbf{w} .
- (b) $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ implies that $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
- (c) $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ for all vectors \mathbf{v} implies that $\mathbf{u} = \mathbf{0}$.
- (d) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
- (e) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \neq (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

10. Let A, B, C be points in 3-space with position vectors \mathbf{a} , \mathbf{b} , \mathbf{c} respectively, and let D be the point of 3-space such that ABCD is a parallelogram.

Determine an expression for the position vector **d** of *D* in terms of **a**, **b**, **c**.