Geometry I, 2008 : Mid-term test

Last name:
First name:
Student number:
The duration of this test is $\mathbf{4 0}$ minutes. Answer all 10 questions. Each question is worth 1 mark. Only the final answer to a question will be marked, so indicate this answer clearly. Calculators are not allowed.

Answer all questions in the spaces provided. You may do additional rough work on the backs of the question sheets, but this will not be looked at.

1. Let $\underline{u}=\left(\begin{array}{c}2 \\ -2 \\ 3\end{array}\right)$. Determine the vector of length 1 in the same direction as \underline{u}.
2. Let $A=(1,-2,3), B=(2,-1,-1)$. Determine the position vector of the point P on the line segment $A B$, such that $|\overrightarrow{A P}|=\frac{1}{3}|\overrightarrow{A B}|$.
3. Let $A=(3,3,1), B=(3,-1,4)$. Determine a vector equation for the line through A and B.
4. Calculate $\left(\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ -1 \\ 3\end{array}\right)$.
5. Determine a vector orthogonal to the plane defined by $3 x+y-4 z=-12$.
6. Apply back substitution to determine all solutions of the following system (in echelon form) of linear equations in x, y, z :

$$
\left\{\begin{array}{rl}
2 x-3 y- & z \\
2 z & =-1 \\
2
\end{array} .\right.
$$

7. Calculate $\left(\begin{array}{c}5 \\ 1 \\ -1\end{array}\right) \times\left(\begin{array}{c}-2 \\ -1 \\ 4\end{array}\right)$.
8. Determine a Cartesian equation for the plane Π through $(1,1,1)$, such that the intersection of Π and the plane defined by $-3 x+2 y+4 z=12$ is the empty set.
9. Suppose \underline{u} and \underline{v} are non-zero non-parallel vectors. For each of the following statements, say whether it is true or false. [Your answers must all be correct to get a mark.]
(a) $\underline{v} \cdot(\underline{u} \times(\underline{u} \times \underline{v}))>0$
(b) $\underline{v} \cdot((\underline{u} \times \underline{v}) \times-\underline{u})>0$
(c) $\underline{v} \cdot((\underline{u} \times \underline{v}) \times \underline{u})>0$
(d) $\underline{u} \cdot(\underline{v} \times \underline{u})>0$
(e) $\underline{u} \cdot(-\underline{v} \times \underline{u})>0$
10. Suppose $A B C D$ is a parallelogram, such that $\overrightarrow{A C}$ represents $\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$ and $\overrightarrow{B D}$ represents $\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$. Determine the vector represented by $\overrightarrow{A B}$.
[Hint: First draw a parallelogram $A B C D$ to help you think.]
