Geometry I, 2008 : Mid-term test

Last name:

First name:

Student number:

The duration of this test is **40 minutes**. Answer **all** 10 questions. Each question is worth 1 mark. Only the final answer to a question will be marked, so indicate this answer clearly. Calculators are **not** allowed.

Answer all questions in the spaces provided. You may do additional rough work on the backs of the question sheets, but this will not be looked at.

1. Let $\underline{u} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$. Determine the vector of length 1 in the same direction as \underline{u} .

2. Let A = (1, -2, 3), B = (2, -1, -1). Determine the position vector of the point P on the line segment AB, such that $|\overrightarrow{AP}| = \frac{1}{3}|\overrightarrow{AB}|$.

3. Let A = (3, 3, 1), B = (3, -1, 4). Determine a vector equation for the line through A and B.

4. Calculate
$$\begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}$$
.

5. Determine a vector orthogonal to the plane defined by 3x + y - 4z = -12.

6. Apply back substitution to determine all solutions of the following system (in echelon form) of linear equations in x, y, z:

$$\begin{cases} 2x & -3y & -z & = -1 \\ & 2z & = -4 \end{cases}$$

•

7. Calculate
$$\begin{pmatrix} 5\\1\\-1 \end{pmatrix} \times \begin{pmatrix} -2\\-1\\4 \end{pmatrix}$$
.

8. Determine a Cartesian equation for the plane Π through (1, 1, 1), such that the intersection of Π and the plane defined by -3x + 2y + 4z = 12 is the empty set.

9. Suppose \underline{u} and \underline{v} are non-zero non-parallel vectors. For each of the following statements, say whether it is true or false. [Your answers must all be correct to get a mark.]

(a) $\underline{v} \cdot (\underline{u} \times (\underline{u} \times \underline{v})) > 0$ (b) $\underline{v} \cdot ((\underline{u} \times \underline{v}) \times -\underline{u}) > 0$ (c) $\underline{v} \cdot ((\underline{u} \times \underline{v}) \times \underline{u}) > 0$ (d) $\underline{u} \cdot (\underline{v} \times \underline{u}) > 0$ (e) $\underline{u} \cdot (-\underline{v} \times \underline{u}) > 0$

10. Suppose ABCD is a parallelogram, such that \overrightarrow{AC} represents $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ and \overrightarrow{BD} represents $\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$. Determine the vector represented by \overrightarrow{AB} . [Hint: First draw a parallelogram ABCD to help you think.]