## Geometry I, 2007 : Mid-term test solutions

The duration of this test is 40 minutes. Answer all 10 questions. Each question is worth 1 mark. Only the final answer to a question will be marked, so indicate this answer clearly. Calculators are not allowed.
Answer all questions in the spaces provided. You may do additional rough work on the backs of the question sheets, but this will not be looked at.

1. Let $A=(-3,1,1), B=(2,-1,3)$. Determine the vector represented by $\overrightarrow{A B}$.

Where $\underline{a}$ is the position vector of $A$ and $\underline{b}$ is the position vector of $B$, the vector represented by $\overrightarrow{A B}$ is $\underline{b}-\underline{a}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)-\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}5 \\ -2 \\ 2\end{array}\right)$.
2. Let $\underline{u}=\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)$. Determine the vector of length 1 having direction opposite that of $\underline{u}$.

This vector is

$$
-\frac{1}{|\underline{u}|} \underline{u}=-\frac{1}{\sqrt{11}}\left(\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
3 / \sqrt{11} \\
-1 / \sqrt{11} \\
-1 / \sqrt{11}
\end{array}\right) .
$$

3. Determine Cartesian equations for the line through the point $(-3,1,1)$ and in the direction of the vector $\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$.

A vector equation for this line is $\underline{r}=\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$, giving parametric

$$
\text { equations: } \begin{aligned}
x & =-3+2 \lambda \\
y & =1 \\
z & =1+3 \lambda
\end{aligned} .
$$

Thus Cartesian equations for the line are:

$$
\frac{x+3}{2}=\frac{y-1}{-1}=\frac{z-1}{3} .
$$

4. Determine the cosine of the angle between the vectors $\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$.

Let $\underline{u}=\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)$ and $\underline{v}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$, and suppose these vectors are at angle
$\theta$. Then

$$
\cos \theta=\frac{\underline{u} \cdot \underline{v}}{|\underline{v}||\underline{\mid}|}=\frac{-4}{\sqrt{11} \sqrt{14}}=\frac{-4}{\sqrt{154}} .
$$

5. Determine a Cartesian equation for the plane through the point $(-3,1,1)$ and orthogonal to the vector $\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$.

This equation is calculated as $2 x-y+3 z=\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$, which gives

$$
2 x-y+3 z=-4
$$

6. Determine all solutions of the following system of linear equations in $x, y, z$ :
$\left\{\begin{array}{c}x-y-z=-2 \\ -3 x+3 y+4 z=7 \\ 2 x-3 y+z=-2\end{array}\right.$.
Adding 3 times the first equation to the second and -2 times the first to the third, we get $\left\{\begin{aligned} & x-y-z=-2 \\ &-y+3 z=1 \\ &-y+\end{aligned}\right.$, and interchanging the second and third equations gives $\left\{\begin{array}{rlrl}x-y & - & z & -2 \\ -y & + & 3 z & = \\ z & = & 1\end{array}\right.$, which is in echelon form.
Applying back substitution, $z=1,-y+3=2$ and so $y=1, x-1-1=-2$ and so $x=0$.
Thus $x=0, y=1, z=1$ is the only solution.
7. Suppose $\underline{u}$ and $\underline{v}$ are non-zero vectors with $|\underline{u} \times \underline{v}|=-\underline{u} \cdot \underline{v}$. Is this possible? If not, why not? If so, determine the angle $\theta$ between $\underline{u}$ and $\underline{v}$.

We have $|\underline{u} \times \underline{v}|=-\underline{u} \cdot \underline{v}$ if and only if $|\underline{u}||\underline{v}| \sin \theta=-|\underline{u}||\underline{v}| \cos \theta$ for some $\theta$ with $0 \leq \theta \leq \pi$, and since $\underline{u}$ and $\underline{v}$ are non-zero vectors, this is equivalent to $\sin \theta=-\cos \theta$ for some $\theta$ with $0 \leq \theta \leq \pi$. This is certainly possible, and happens exactly when

$$
\theta=\frac{3 \pi}{4} .
$$

8. Suppose $\underline{u}, \underline{v}, \underline{w}$ is a right-handed triple of vectors. Exactly which of the following are right-handed triples?
(a) $\underline{v} \times \underline{w}, \underline{w}, \underline{v}$
(b) $\underline{w}, \underline{v}, \underline{u}$
(c) $-\underline{v}, \underline{u},-\underline{w}$
(d) $\underline{u},-\underline{w}, \underline{v}$
(e) $\underline{v}, \underline{v} \times(-\underline{w}), \underline{w}$

The only right-handed triples are (d) and (e).
9. Determine the volume of a parallepiped with sides corresponding to $\underline{u}=\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right), \underline{v}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$, and $\underline{w}=\left(\begin{array}{c}-2 \\ -1 \\ 4\end{array}\right)$.

We have $\underline{v} \times \underline{w}=\left|\begin{array}{cc}-1 & -1 \\ 3 & 4\end{array}\right| \underline{i}-\left|\begin{array}{cc}2 & -2 \\ 3 & 4\end{array}\right| \underline{j}+\left|\begin{array}{cc}2 & -2 \\ -1 & -1\end{array}\right| \underline{k}=-\underline{i}-14 \underline{j}-4 \underline{k}=$ $\left(\begin{array}{c}-1 \\ -14 \\ -4\end{array}\right)$, and the volume is $|\underline{u} \cdot(\underline{v} \times \underline{w})|=|(-3)(-1)-14-4|=|-15|=15$.
10. Consider the planes defined by $x-2 y+2 z=3$ and by $y+z=0$. Determine a non-zero vector parallel to both of these planes.

One method of solution proceeds by finding two distinct points $A, B$ in the intersection of the two planes (this intersection is easy to compute and is a line), and then a vector parallel to both planes is represented by $\overrightarrow{A B}$.
Two such points are $A=(3,0,0)$ and $B=(-1,-1,1)$. Then $\overrightarrow{A B}$ represents $\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)-\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}-4 \\ -1 \\ 1\end{array}\right)$, which is parallel to both planes.
Alternatively, a vector parallel to both planes could be computed as $\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right) \times\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}-4 \\ -1 \\ 1\end{array}\right)$. (Can you see why this works?)

