Geometry I, 2006 : Mid-term test sample solutions

The duration of this test is **40 minutes**. Answer **all** 10 questions. Each question is worth 1 mark. Only the final answer to a question will be marked, so indicate this answer clearly. Calculators are **not** allowed.

1. Let A = (1, 2, 3), B = (2, -1, 4). Determine the vector represented by \overrightarrow{AB} .

This vector is
$$\underline{b} - \underline{a} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}.$$

(Throughout these solutions, the position vectors of points A, B, C, \ldots are denoted by $\underline{a}, \underline{b}, \underline{c}, \ldots$)

2. Let A = (1, 2, 3), B = (2, -1, 4). Determine the position vector of the point P on the line segment AB, such that $|\overrightarrow{AP}| = \frac{1}{2}|\overrightarrow{AB}|$.

$$\underline{p} = (1 - \frac{1}{2})\underline{a} + \frac{1}{2}\underline{b} = \frac{1}{2}(\underline{a} + \underline{b}) = \frac{1}{2}\left(\begin{pmatrix}1\\2\\3\end{pmatrix} + \begin{pmatrix}2\\-1\\4\end{pmatrix}\right) = \frac{1}{2}\begin{pmatrix}3\\1\\7\end{pmatrix} = \begin{pmatrix}3/2\\1/2\\7/2\end{pmatrix}.$$

3. Let A = (1, 2, 3), B = (2, -1, 4). Determine parametric equations for the line through A and B.

This is the line through A in the direction of $\underline{b} - \underline{a}$, and so a vector equation for this line is

 $\underline{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$. This gives the parametric equations:

x	=	1	+	λ
y	=	2	—	3λ
z	=	3	+	λ

4. Let A = (1, 2, 3), B = (2, -1, 4), D = (2, 0, -3). Determine the point C such that ABCD is a parallelogram.

For ABCD to be a parallelogram, \overrightarrow{DC} must represent the same vector as \overrightarrow{AB} . In other words, $\underline{c} - \underline{d} = \underline{b} - \underline{a}$, and so $\underline{c} = \underline{d} + \underline{b} - \underline{a}$. Thus, $\underline{c} = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ -2 \end{pmatrix}$. Therefore C = (3, -3, -2). 5. Determine the cosine of the angle between the vectors $\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$

and
$$\begin{pmatrix} 2\\ -1\\ 4 \end{pmatrix}$$
.
Let $\underline{u} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$ and $\underline{v} = \begin{pmatrix} 2\\ -1\\ 4 \end{pmatrix}$, and suppose these vectors are at angle θ . Then

$$\cos \theta = \frac{\underline{u} \cdot \underline{v}}{|\underline{u}||\underline{v}|} = \frac{12}{\sqrt{14}\sqrt{21}} = \frac{12}{7\sqrt{6}} = \frac{2\sqrt{6}}{7}$$

6. Determine all solutions of the following system of linear equations in x, y, z:

 $\begin{cases} x & -y & -2z & = -1 \\ -3x & +y & +z & = 2 \\ 2x & -2y & +4z & = -2 \end{cases}$

This system is equivalent to

$$\begin{cases} x & -y & -2z & = -1 \\ -2y & -5z & = -1 \\ 8z & = 0 \end{cases}$$

Therefore z = 0, -2y = -1 and so y = 1/2, x - 1/2 = -1 and so x = -1/2.

Thus x = -1/2, y = 1/2, z = 0 is the only solution.

7. Determine the intersection of the plane defined by x - 2y + 3z = 4 with the line ℓ through the point (1, 2, 3) and in the direction of $\begin{pmatrix} 3\\0\\1 \end{pmatrix}$.

The line ℓ has vector equation $\underline{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$.

To find the intersection of the plane with ℓ , we solve $(1 + 3\lambda) - 2(2) + 3(3 + \lambda) = 4$. This gives $6\lambda = -2$, $\lambda = -1/3$. Substituting $\lambda = -1/3$ into the equation for ℓ , we deduce that the intersection of the plane and ℓ consists of the single point (0, 2, 8/3).

8. Determine the vector product $\underline{u} \times \underline{v}$, where $\underline{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and

$$\underline{v} = \begin{pmatrix} 2\\ -1\\ 4 \end{pmatrix}.$$

$$\underline{u} \times \underline{v} = \begin{vmatrix} 2 & -1\\ 3 & 4 \end{vmatrix} \underline{i} - \begin{vmatrix} 1 & 2\\ 3 & 4 \end{vmatrix} \underline{j} + \begin{vmatrix} 1 & 2\\ 2 & -1 \end{vmatrix} \underline{k}$$

$$= 11\underline{i} + 2\underline{j} - 5\underline{k} = \begin{pmatrix} 11\\ 2\\ -5 \end{pmatrix}.$$

9. Exactly which of the following statements are true?

(a) If \underline{u} and \underline{v} are vectors such that $\underline{u} \times \underline{v} = \underline{0}$, then we must have $\underline{u} = \underline{0}$ or $\underline{v} = \underline{0}$.

(b) If \underline{u} is a vector such that $\underline{u} \times \underline{v} = \underline{0}$ for every vector \underline{v} , then we must have $\underline{u} = \underline{0}$.

- (c) $\underline{u} \times \underline{v} = \underline{v} \times \underline{u}$ for all vectors $\underline{u}, \underline{v}$.
- (d) $(\underline{u} \times \underline{v}) \times \underline{w} = \underline{u} \times (\underline{v} \times \underline{w})$ for all vectors $\underline{u}, \underline{v}, \underline{w}$.
- (e) $\underline{u} \cdot (\underline{v} \times \underline{w}) = \underline{w} \cdot (\underline{u} \times \underline{v})$ for all vectors $\underline{u}, \underline{v}, \underline{w}$.

The only true statements are (b) and (e).

10. Let A = (1, 2, 3) and B = (2, -1, 4). Determine a Cartesian equation for a plane through A and B and parallel to the vector $\underline{u} = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}$.

This is the plane through the point A and parallel to both \underline{u} and the vector \underline{v} represented by \overrightarrow{AB} .

Now $\underline{v} = \underline{b} - \underline{a} = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$, and a vector equation for the plane is $\underline{r} \cdot \underline{n} = \underline{a} \cdot \underline{n}$, where $\underline{n} = \underline{u} \times \underline{v} = -9\underline{i} - 5\underline{j} - 6\underline{k}$. Thus a Cartesian equation for the plane is $-9x - 5y - 6z = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -9 \\ -5 \\ -6 \end{pmatrix} = -37$, equivalently, 9x + 5y + 6z = 37.