Geometry I, 2006 : Mid-term test sample solutions

The duration of this test is $\mathbf{4 0}$ minutes. Answer all 10 questions. Each question is worth 1 mark. Only the final answer to a question will be marked, so indicate this answer clearly. Calculators are not allowed.

1. Let $A=(1,2,3), B=(2,-1,4)$. Determine the vector represented by $\overrightarrow{A B}$.
This vector is $\underline{b}-\underline{a}=\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$.
(Throughout these solutions, the position vectors of points A, B, C, \ldots are denoted by $\underline{a}, \underline{b}, \underline{,}, \ldots$..)
2. Let $A=(1,2,3), B=(2,-1,4)$. Determine the position vector of the point P on the line segment $A B$, such that $|\overrightarrow{A P}|=$ $\frac{1}{2}|\overrightarrow{A B}|$.
$\underline{p}=\left(1-\frac{1}{2}\right) \underline{a}+\frac{1}{2} \underline{b}=\frac{1}{2}(\underline{a}+\underline{b})=\frac{1}{2}\left(\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)\right)=$ $\frac{1}{2}\left(\begin{array}{l}3 \\ 1 \\ 7\end{array}\right)=\left(\begin{array}{l}3 / 2 \\ 1 / 2 \\ 7 / 2\end{array}\right)$.
3. Let $A=(1,2,3), B=(2,-1,4)$. Determine parametric equations for the line through A and B.
This is the line through A in the direction of $\underline{b}-\underline{a}$, and so a vector equation for this line is
$\underline{r}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$. This gives the parametric equations:

$$
\begin{aligned}
& x=1+\lambda \\
& y=2-3 \lambda \\
& z=3+\lambda
\end{aligned}
$$

4. Let $A=(1,2,3), B=(2,-1,4), D=(2,0,-3)$. Determine the point C such that $A B C D$ is a parallelogram.
For $A B C D$ to be a parallelogram, $\overrightarrow{D C}$ must represent the same vector as $\overrightarrow{A B}$. In other words, $\underline{c}-\underline{d}=\underline{b}-\underline{a}$, and so $\underline{c}=\underline{d}+\underline{b}-\underline{a}$. Thus, $\underline{c}=\left(\begin{array}{c}2 \\ 0 \\ -3\end{array}\right)+\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{c}3 \\ -3 \\ -2\end{array}\right)$.
Therefore $C=(3,-3,-2)$.
5. Determine the cosine of the angle between the vectors $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$.
Let $\underline{u}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\underline{v}=\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$, and suppose these vectors are at angle θ. Then

$$
\cos \theta=\frac{\underline{u} \cdot \underline{v}}{|\underline{u}||\underline{v}|}=\frac{12}{\sqrt{14} \sqrt{21}}=\frac{12}{7 \sqrt{6}}=\frac{2 \sqrt{6}}{7}
$$

6. Determine all solutions of the following system of linear equations in x, y, z :
$\left\{\begin{array}{cccccc}x & - & - & 2 z & = & -1 \\ -3 x+y & + & z & 2 \\ 2 x & 2 y & 4 z & = & -2\end{array}\right.$.
This system is equivalent to

$$
\left\{\begin{aligned}
x-y-2 z & =-1 \\
-2 y-5 z & =-1 \\
& 8 z
\end{aligned}\right.
$$

Therefore $z=0,-2 y=-1$ and so $y=1 / 2, x-1 / 2=-1$ and so $x=-1 / 2$.
Thus $x=-1 / 2, y=1 / 2, z=0$ is the only solution.
7. Determine the intersection of the plane defined by $x-2 y+$ $3 z=4$ with the line ℓ through the point $(1,2,3)$ and in the direction of $\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$.
The line ℓ has vector equation $\underline{r}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$.
To find the intersection of the plane with ℓ, we solve $(1+$ $3 \lambda)-2(2)+3(3+\lambda)=4$. This gives $6 \lambda=-2, \lambda=-1 / 3$. Substituting $\lambda=-1 / 3$ into the equation for ℓ, we deduce that the intersection of the plane and ℓ consists of the single point ($0,2,8 / 3$).
8. Determine the vector product $\underline{u} \times \underline{v}$, where $\underline{u}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\underline{v}=\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$.
$\underline{u} \times \underline{v}=\left|\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right| \underline{i}-\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right| \underline{j}+\left|\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right| \underline{k}$
$=11 \underline{i}+2 \underline{j}-5 \underline{k}=\left(\begin{array}{c}11 \\ 2 \\ -5\end{array}\right)$.
9. Exactly which of the following statements are true?
(a) If \underline{u} and \underline{v} are vectors such that $\underline{u} \times \underline{v}=\underline{0}$, then we must have $\underline{u}=\underline{0}$ or $\underline{v}=\underline{0}$.
(b) If \underline{u} is a vector such that $\underline{u} \times \underline{v}=\underline{0}$ for every vector \underline{v}, then we must have $\underline{u}=\underline{0}$.
(c) $\underline{u} \times \underline{v}=\underline{v} \times \underline{u}$ for all vectors $\underline{u}, \underline{v}$.
(d) $(\underline{u} \times \underline{v}) \times \underline{w}=\underline{u} \times(\underline{v} \times \underline{w})$ for all vectors $\underline{u}, \underline{v}, \underline{w}$.
(e) $\underline{u} \cdot(\underline{v} \times \underline{w})=\underline{w} \cdot(\underline{u} \times \underline{v})$ for all vectors $\underline{u}, \underline{v}, \underline{w}$.

The only true statements are (b) and (e).
10. Let $A=(1,2,3)$ and $B=(2,-1,4)$. Determine a Cartesian equation for a plane through A and B and parallel to the vector $\underline{u}=\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)$.
This is the plane through the point A and parallel to both \underline{u} and the vector \underline{v} represented by $\overrightarrow{A B}$.
Now $\underline{v}=\underline{b}-\underline{a}=\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)$, and a vector equation for the plane is $\underline{r} \cdot \underline{n}=\underline{a} \cdot \underline{n}$, where $\underline{n}=\underline{u} \times \underline{v}=-9 \underline{i}-5 \underline{j}-6 \underline{k}$. Thus a Cartesian equation for the plane is $-9 x-5 y-6 z=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}-9 \\ -5 \\ -6\end{array}\right)=-37$, equivalently, $9 x+5 y+6 z=37$.

