Geometry I, 2006 : Mid-term test

Last name:

First name:

Student number:

The duration of this test is **40 minutes**. Answer **all** 10 questions. Each question is worth 1 mark. Only the final answer to a question will be marked, so indicate this answer clearly. Calculators are **not** allowed.

Answer all questions in the spaces provided. You may do additional rough work on the backs of the question sheets, but this will not be looked at.

1. Let A = (1, 2, 3), B = (2, -1, 4). Determine the vector represented by \overrightarrow{AB} .

2. Let A = (1, 2, 3), B = (2, -1, 4). Determine the position vector of the point P on the line segment AB, such that $|AP| = \frac{1}{2}|AB|$.

3. Let A = (1, 2, 3), B = (2, -1, 4). Determine a parametric equation of the line through A and B.

4. Let A = (1, 2, 3), B = (2, -1, 4), D = (2, 0, -3). Determine the point C such that ABCD is a parallelogram.

5. Determine the cosine of the angle between the vectors $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$.

6. Determine all solutions of the following system of linear equations in x, y, z: $\begin{cases}
x & -y & -2z &= -1 \\
-3x & +y & +z &= 2 \\
2x & -2y & +4z &= -2
\end{cases}$ 7. Determine the intersection of the plane defined by x - 2y + 3z = 4 with the line ℓ through the point (1, 2, 3) and in the direction of $\begin{pmatrix} 3\\0\\1 \end{pmatrix}$.

8. Determine the vector product $\underline{u} \times \underline{v}$, where $\underline{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\underline{v} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$.

9. Exactly which of the following statements are true?

- (a) If \underline{u} and \underline{v} are vectors such that $\underline{u} \times \underline{v} = \underline{0}$, then we must have $\underline{u} = \underline{0}$ or $\underline{v} = \underline{0}$.
- (b) If \underline{u} is a vector such that $\underline{u} \times \underline{v} = \underline{0}$ for every vector \underline{v} , then we must have $\underline{u} = \underline{0}$.
- (c) $\underline{u} \times \underline{v} = \underline{v} \times \underline{u}$ for all vectors $\underline{u}, \underline{v}$.
- (d) $(\underline{u} \times \underline{v}) \times \underline{w} = \underline{u} \times (\underline{v} \times \underline{w})$ for all vectors $\underline{u}, \underline{v}, \underline{w}$.
- (e) $\underline{u} \cdot (\underline{v} \times \underline{w}) = \underline{w} \cdot (\underline{u} \times \underline{v})$ for all vectors $\underline{u}, \underline{v}, \underline{w}$.

10. Let A = (1, 2, 3) and B = (2, -1, 4). Determine a Cartesian equation for a plane through A and B and parallel to the vector $\underline{u} = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}$.