Geometry I, 2006 : Mid-term test

Last name:
First name:
Student number:

The duration of this test is $\mathbf{4 0}$ minutes. Answer all 10 questions. Each question is worth 1 mark. Only the final answer to a question will be marked, so indicate this answer clearly. Calculators are not allowed.

Answer all questions in the spaces provided. You may do additional rough work on the backs of the question sheets, but this will not be looked at.

1. Let $A=(1,2,3), B=(2,-1,4)$. Determine the vector represented by $\overrightarrow{A B}$.
2. Let $A=(1,2,3), B=(2,-1,4)$. Determine the position vector of the point P on the line segment $A B$, such that $|A P|=\frac{1}{2}|A B|$.
3. Let $A=(1,2,3), B=(2,-1,4)$. Determine a parametric equation of the line through A and B.
4. Let $A=(1,2,3), B=(2,-1,4), D=(2,0,-3)$. Determine the point C such that $A B C D$ is a parallelogram.
5. Determine the cosine of the angle between the vectors $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$.
6. Determine all solutions of the following system of linear equations in x, y, z :
$\left\{\begin{array}{cccc}x-y-2 z & =-1 \\ -3 x+y+z & = & 2 \\ 2 x-2 y+4 z & =-2\end{array}\right.$.
7. Determine the intersection of the plane defined by $x-2 y+3 z=4$ with the line ℓ through the point $(1,2,3)$ and in the direction of $\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$.
8. Determine the vector product $\underline{u} \times \underline{v}$, where $\underline{u}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\underline{v}=\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$.
9. Exactly which of the following statements are true?
(a) If \underline{u} and \underline{v} are vectors such that $\underline{u} \times \underline{v}=\underline{0}$, then we must have $\underline{u}=\underline{0}$ or $\underline{v}=\underline{0}$.
(b) If \underline{u} is a vector such that $\underline{u} \times \underline{v}=\underline{0}$ for every vector \underline{v}, then we must have $\underline{u}=\underline{0}$.
(c) $\underline{u} \times \underline{v}=\underline{v} \times \underline{u}$ for all vectors $\underline{u}, \underline{v}$.
(d) $(\underline{u} \times \underline{v}) \times \underline{w}=\underline{u} \times(\underline{v} \times \underline{w})$ for all vectors $\underline{u}, \underline{v}, \underline{w}$.
(e) $\underline{u} \cdot(\underline{v} \times \underline{w})=\underline{w} \cdot(\underline{u} \times \underline{v})$ for all vectors $\underline{u}, \underline{v}, \underline{w}$.
10. Let $A=(1,2,3)$ and $B=(2,-1,4)$. Determine a Cartesian equation for a plane through A and B and parallel to the vector $\underline{u}=\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)$.
