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2.1 Sums and scalar multiples using coördinates . . . . . . . . . . . . . . . . 16
2.2 Unit vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Equations of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 The line determined by two distinct points . . . . . . . . . . . . . 19

3 The Scalar Product 20
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Preface

These are notes for the course MTH4103: Geometry I that I gave (am giving) in Semester
B of the 2013–14 academic year at Queen Mary, University of London. These notes are
based on handwritten notes I inherited from Professor L. H. Soicher, who lectured this
course in the academic years 2005–06 to 2009–10. The notes were typed up (using the
LATEX document preparation system) for the 2010–11 session by the two lecturers that
year, namely Dr J. N. Bray (Chapters 1–6) and Prof. S. R. Bullett (Chapters 7–10).
Naturally, several modifications were made to the notes in the process of typing them
up, as one expects to happen when a new lecturer takes on a course. I have made many
further revisions to the notes last year, and a few more this year, including some to take
advantage of the new module MTH4110: Mathematical Structures. Since I have now
typed up and/or edited the whole set of notes, the culpa for any errors, omissions or
infelicities therein is entirely mea.

Despite the presence of these notes, one should still take (or have taken) notes in
lectures. Certainly the examples given in lectures differ from those in these notes, and
there is material I covered in the lectures that does not appear in these notes, and
vice versa. Furthermore, the examinable material for the course is defined by what was
covered in lectures (including the proofs). In these notes, I have seldom indicated which
material is examinable.

My thanks go out to those colleagues who covered the several lectures I missed owing
to illness.

Dr John N. Bray, 25th March 2014
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Chapter 1

Vectors

1.1 Introduction

The word geometry derives from the Ancient Greek word γεωµετρία, with a rough
meaning of geometry, land-survey, though I prefer earth measurement. There are two
elements in this word: γη̃ (or Γη̃), meaning Earth (among other related words), and
either µετρέω, to measure, to count, or µέτρον, a measure. Given this etymology, one
should have a fair idea of what geometry is about. (Consult the handouts on the web
for a copy of the Greek alphabet; the letter names should give a [very] rough guide to
the pronunciations of the letters themselves.)

In this module, we are interested in lines, planes, and other geometrical objects in
3-dimensional space (and maybe spaces of other dimensions).

We shall introduce standard notation for some number systems.

• N = {0, 1, 2, 3, . . .}, the natural numbers. I always include 0 as a natural number;
some people do not.

• Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the integers. The notation comes from the German
Zahlen meaning numbers.

• N+ = Z+ = {1, 2, 3, . . .}, the positive integers, and N0 = Z>0 = {0, 1, 2, 3, . . .}, the
non-negative integers. The word positive here means strictly positive, that is to
say 0 is not considered to be a positive (or negative) number.

• Q = { a
b

: a, b are integers and b 6= 0 }. The Q is the first letter of quotient.

• R denotes the set of ‘real’ numbers. Examples of real numbers are 2, 3
5
,
√

7 and
π. Also, all decimal numbers, both terminating and not, are real numbers. In
fact, each real number can be represented in decimal form, though this decimal is
usually non-terminating and non-recurring. An actual definition of R is somewhat
technical, and is deferred (for a long time). The set R is a very artificial construct
and not very real at all.
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1.2 Vectors

A bound vector is a bounded (and directed) line segment
−→
AB in 3-dimensional [real]

space, which we shorten to 3-space and denote by R3, where A and B are points in this
space. (There is no particular reason, except familiarity, to restrict ourselves to 3-space,
and one often works in much higher dimensions, for example 196884-space.) We point
out that the real world around us probably bears little resemblence to R3, despite the
fact we are fondly imagining that it does.
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B

.
...........
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Note that a bound vector
−→
AB is determined by (and determines) three things:

(i) its length or magnitude, denoted |
−→
AB|,

(ii) its direction [provided A 6= B], and

(iii) its starting point, which is A.

If A = B, then
−→
AB =

−→
AA does not have a defined direction, and in this case

−→
AB is

determined by its length, which is 0, and its starting point A.
If we ignore the starting point, and only care about the length and direction, we

get the notion of a free vector (or simply vector in what follows). Thus
−→
AB and

−→
CD

represent the same free vector if and only if they have the same length and direction.
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We use u, v, w, . . . to denote free vectors (these would be underlined when hand-written:
thus u, v, w, . . .), and draw

�
�
�
�
�
�
�
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s

A

B

.
...........
..............................u
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to mean that the free vector u is represented by
−→
AB; that is, the length and direction

of u are those of the bound vector
−→
AB. We denote the length of u by |u|.

Note. We should never write something like
−→
AB = u, tempting though it may be. The

reason is that two objects on each side of the equal sign are different types of object
(a bound vector versus a free vector), and it is always inappropriate to relate different
types of object using the equality sign.

Note. The module text uses u, v, w, . . . for (free) vectors; this is perfectly standard in
printed works. The previous lecturer used u, v, w, . . . (see the 2010 exam, for example),
which is decidedly non-standard in print. The book also uses AB for the free vector

represented by
−→
AB, which we shall never use. Better notations for the free vector

represented by
−→
AB are free(

−→
AB) or [

−→
AB], but we shall hardly ever use these either.1

Note. Each bound vector represents a unique free vector. Also, for each free vector u

and for each point A there is a unique point B such that
−→
AB represents u. This is a

consequence of a bound vector being determined by its length, direction and starting
point, and a free vector being determined by its length and direction only. Of course, a
suitable (and annoying) modification must be made to the above when the zero vector
(see below) is involved. We leave such a modification to the reader.

1.3 The zero vector

The zero vector is the (free) vector with zero length. Its direction is undefined. We

denote the zero vector by 0 (or 0 in handwriting). It is represented by
−→
AA, where A can

be any point. (It is also represented by
−→
DD, where D can be any point, and so on.)

1.4 Vector negation

If v is a nonzero vector, then the negative of v, denoted −v, is the vector with the same

length as v but opposite direction. We define −0 := 0. If
−→
AB represents v then

−→
BA

represents −v.

Note. Vector negation is a function from the set of free vectors to itself. It is therefore
essential that it be defined for every element in the domain. That is, we must define
the negative of every free vector. Note here the special treatment of the zero vector,
which is not covered by the first sentence.

1Usually, [
−→
AB] would denote the equivalence class containing

−→
AB. Here the relevant equivalence

relation is that two bound vectors are equivalent if and only if they represent the same free vector.
There is an obvious bijection between the set of these equivalence classes and the set of free vectors. See
the module MTH4110: Mathematical Structures for definitions of equivalence relation and equivalence
class.
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1.5 Parallelograms

Suppose A,B,C,D are any points in 3-space. We obtain the figure ABCD by joining
A to B (by a [straight] line segment), B to C, C to D, and finally D to A. For example:
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D
D
D
D
DD

``````````̀
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@
@
@@s
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ss
A
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The figure ABCD is called a parallelogram if
−→
AB and

−→
DC represent the same vector.
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We note the following fact, which is really an axiom. We shall make some use of this
later.

Fact (Parallelogram Axiom). Note that
−→
AB and

−→
DC represent the same vector (u say)

if and only if
−→
AD and

−→
BC represent the same vector (v say). We can have u = v,

though more usually we will have u 6= v.

Note. We now see the folly of writing expressions like
−→
AD = v, where one side is a

bound vector, and one side is a free vector. For example, in the above parallelogram, we

would notice that
−→
AB = u =

−→
DC and deduce, using a well-known property of equality,

that
−→
AB =

−→
DC. But this is nonsense in the general case (when A 6= D), since the

vectors
−→
AB and

−→
DC have different starting points and are therefore not equal.

1.6 Vector addition

Now suppose that u and v are any vectors. Choose a point A. Further, assume that

points B and D are chosen so that
−→
AB represents u and

−→
AD represents v. (The points B

and D are unique.) We extend the A,B,D-configuration to a parallelogram by choosing

a point C (which is unique) such that
−→
DC represents u, as in the diagram below. (Note

that
−→
BC represents v by the Parallelogram Axiom.)
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The sum of u and v, which we denote as u + v, is defined to be the vector represented

by
−→
AC.
Note that I have defined vector addition only for free vectors, not for bound vectors,

so I do not wish to see you write things like
−→
AB +

−→
CD = · · · .

1.7 Some notation

In lectures, you will often see abbreviations for various mathematical concepts. Some of
these appear less often in printed texts. At least one of the symbols (∀) was introduced
around here. Most of these symbols can be negated.

• s.t. means ‘such that’.

• ∀ means ‘for all’.

• ∃ means ‘there exists’, while ∃! means ‘there exists unique’.

• @ means ‘there does not exist’.

• a ∈ B means that the element a is a member of the set B.

• a /∈ B means that the element a is not a member of the set B.

• A ⊆ B means that the set A is a subset of the set B (allows the case A = B).

1.8 Rules for vector addition

In the definition of u + v you will notice the use of an arbitrary point A. When one
encounters something like this, one is entitled to ask whether the definition depends on
the point A or not. Mathematicians, being pedants, very often will ask such seemingly
obvious questions. Temporarily, we shall use (u + v)A to denote the value of u + v
obtained if the arbitrary point A was used in its definition. (There is no need to worry
about the points B, C and D, since these are uniquely determined given u, v and A.)

We also take the opportunity in the following couple of pages to introduce terms such
as commutative, associative, identity, inverse and distributive. You should meet these
terms many times in your mathematical career. In the lectures we proved Theorems 1.2
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and 1.3 before Theorem 1.1. The box at the end of the proofs is the end-of-proof symbol.
One can write things like ‘QED’ (quod erat demonstrandum meaning ‘which was to be
shown’) instead.

Theorem 1.1. The definition of u + v does not depend on the point A used to define
it. In notation we have (u + v)A = (u + v)E for all vectors u and v and all points A
and E.

Proof. This proof involves three applications of the Paralellogram Axiom. Let ABCD
be the parallelogram obtained by using the Parallelogram Rule for vector addition to
calculate (u + v)A, and let EFGH be the parallelogram obtained by using the Parallel-

ogram Rule for vector addition to calculate (u + v)E. Thus
−→
AB,

−→
DC,

−→
EF and

−→
HG all

represent u, while
−→
AD and

−→
EH both represent v. Also

−→
AC represents (u+v)A and

−→
EG

represents (u + v)E. Finally, we define w to be the vector represented by
−→
AE. All this

information is in the diagram below.
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A B

CD

E F

GH

u

u
u

u

v

v

(u + v)A

(u + v)Ew

Firstly, we examine the quadrilateral AEHD, and because two sides,
−→
AD and

−→
EH

represent the same vector (namely v), we conclude that the other two sides
−→
AE and

−→
DH

represent the same vector, which is w. We now turn our attention to the quadrilateral

DHGC, and note that since
−→
DC and

−→
HG represent the same vector (namely u), then

so do
−→
DH and

−→
CG, this common vector being w. We have now shown that the sides−→

AE and
−→
CG of the quadrilateral AEGC represent w, and so applying the Parallelgram

Axiom for a third time, we see that
−→
AC and

−→
EG represent the same vector: that is, we

have now shown that (u + v)A = (u + v)E.

Theorem 1.2. For all vectors u and v we have u + v = v + u. This law is known as
the commutativity of vector addition, and we say that vector addition is commutative.
In fact, (u + v)A = (v + u)A for all vectors u and v and all points A.

Proof. The Parallelogram Rule for vector addition gives us the following parallelograms

ABCD and ABED in which
−→
AB and

−→
DC represent u;

−→
AD and

−→
BE represent v;

−→
AC

represents (u + v)A and
−→
AE represents (v + u)A (see the following diagram).
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(u+v)A (v+u)A

By the Parallelogram Axiom,
−→
BC represents v, and by the uniqueness of a point X such

that
−→
BX represents v we have that C = E. So now both (u + v)A and (v + u)A are

represented by
−→
AC[=

−→
AE] and therefore (u + v)A = (v + u)A.

What is X? In maths, when one wants to refer to a quantity (so that we can describe
some property satisfied by that quantity), we usually have its name, which is typically a
letter of the alphabet, such as X or Y . It might be that there is no thing satisfying the
properties required by X. For example, there is no real number X such that X2 + 1 = 0.
Or X need not be unique; for example there are precisely 3 real numbers X such that
X3 +X2 − 2X − 1 = 0. [It does not matter what the actual values of X are, though in
this case I can express them in other terms—one possible value of X is 2 cos 2π

7
.]

The following gives an alternative way of defining vector addition, known as the
Triangle Rule.

Theorem 1.3 (Triangle Rule). Let A be a point, and let B and C be the unique points

such that
−→
AB represents u and

−→
BC represents v. Then

−→
AC represents u + v, or more

accurately (u + v)A. The following diagram illustrates the Triangle Rule.
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vu + v or (u+v)A

Proof. (For this proof the points A, B, C correspond to the points A, B, E (in that
order) in the right-hand parallelogram of the picture in the proof of Theorem 1.2.) By

the Parallelogram Rule we see that
−→
AC represents (v+u)A, and by the previous theorem,

we have (v + u)A = (u + v)A, hence the result.

Theorem 1.4. For all vectors u, v and w we have u + (v + w) = (u + v) + w. This
property is called associativity.

Proof. Pick a point A, and let B, C and D be the unique points such that
−→
AB represents

u,
−→
BC represents v, and

−→
CD represents w, see the diagram below.
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�
�
�
�
�
��A
A
A
A
A
A
A
AA�
�
�
�
�
��

s

s

s

s
A

B

C

D
....................
..........
........

.
.......................................

.....................
...........
........

u
v

w

By the Triangle Rule applied to triangle BCD, we find that
−→
BD represents v+w, and so

by the Triangle Rule applied to triangle ABD we obtain that
−→
AD represents u+(v+w).

But the Triangle Rule applied to triangle ABC gives that
−→
AC represents u + v, and

applying the Triangle Rule to triangle ACD shows that
−→
AD represents (u + v) + w.

Since
−→
AD represents both u + (v + w) and (u + v) + w, we conclude that they are

equal.

Theorem 1.5. For all vectors u we have u + 0 = u. Thus u + 0 = 0 + u = u. This
asserts that 0 is an identity for vector addition.

Proof. Exercise (on exercise sheet).

1.9 Vector subtraction

Definition. For vectors u and v, we define u− v by u− v := u + (−v).

Theorem 1.6. For all vectors u we have u − u = 0. In other words, for each vector
u we have u + (−u) = 0, and thus u + (−u) = (−u) + u = 0 by Theorem 1.2. This
property means that −u is an additive inverse of u.

Proof. Let
−→
AB represent u. Then

−→
BA represents −u, and thus, by the Triangle Rule,−→

AA represents u + (−u). But
−→
AA (also) represents 0, and so u− u = u + (−u) = 0, as

required.

Theorem 1.7. Suppose
−→
AB represents u and

−→
AC represents v. Then

−→
BC represents

v − u.

Proof. A diagram for this is as follows.

@
@
@@

�
�
�
�
�
��

��
�
��

��

s

s
sA

B

C

. ...................

..........

........−u

......................
...........
......
v

We have that
−→
BA represents −u, and so, by the Triangle Rule,

−→
BC represents (−u)+v.

But (−u) + v = v + (−u) by Theorem 1.2 (commutativity of vector addition), and
v + (−u) = v − u by definition.
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1.10 Scalar multiplication

We now define how to multiply a real number α (a scalar) by a vector v to obtain
another vector αv. We first specify that αv has length

|α||v|,

where |α| is the absolute value of α and |v| is the length of v. Thus if α = 0 or v = 0
then |αv| = |α||v| = 0, and so αv = 0. Otherwise (when α 6= 0 and v 6= 0), we have
that αv is nonzero, and we must specify the direction of αv. When α > 0, we specify
that αv has the same direction as v, and when α < 0, we specify that αv has the same
direction as −v (and hence the opposite direction to v).

Note. I have noticed that some students are writing vα instead of αv. It is ugly, and I
have not defined vα, so please do not use it. I may want to use that notation (vα) for
something completely different.

From this definition of scalar multiplication, we observe the following elementary
properties.

1. 0v = 0 for all vectors v,

2. α0 = 0 for all scalars α,

3. 1v = v for all vectors v,

4. (−1)v = −v for all vectors v.

Further properties of scalar multiplication are given below as theorems. These are all
harder to prove.

Theorem 1.8. For all vectors v and all scalars α, β, we have α(βv) = (αβ)v.

Proof. We have |α(βv)| = |α||βv| = |α|(|β||v|) = (|α||β|)|v| = (|αβ|)|v| = |(αβ)v|, and
so α(βv) and (αβ)v have the same length.

If α = 0, β = 0 or v = 0 then α(βv) = 0 = (αβ)v (easy exercise), so we now suppose
that α 6= 0, β 6= 0 and v 6= 0, and show that α(βv) and (αβ)v have the same direction.
The rest of the proof breaks into four cases, depending on the signs of α and β.

If α > 0, β > 0 then βv and (αβ)v both have the same direction as v, and α(βv)
has the same direction as βv, hence as v. So α(βv) = (αβ)v in this case. If α < 0,
β < 0 then αβ > 0 and both α(βv) and (αβ)v have the same direction as v, though
multiplying by either one of α or β reverses direction.

If α < 0, β > 0 or α > 0, β < 0 then α(βv) and (αβ)v both have the same direction
as −v (can you see why?). [This is an example of a hidden exercise in the text, and you
should still try to do it, even though it will not appear on any exercise sheet.]

So we have now shown that α(βv) and (αβ)v have the same direction in all cases,
completing the proof.
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Theorem 1.9. For all vectors v and all scalars α, β, we have (α + β)v = αv + βv,
where the correct bracketing on the right-hand side is (αv) + (βv). This is an example
of a distributive law.

Proof. Exercise (not on the sheets). When evaluating αv + βv using the Parallelogram
Rule, you may assume that the four (not necessarily distinct) vertices of the parallelo-
gram all lie on a common (straight) line.

Theorem 1.10. For all vectors u, v and all scalars α, we have α(u+v) = αu+αv, where
the correct bracketing on the right-hand side is (αu) + (αv). This is also a distributive
law.

Proof. This will be at best a sketch of a proof. It will really be an argument convincing
you that the result is true using notions from Euclidean geometry. It is better to consider
this ‘theorem’ as an axiom. Our demonstration below will only cover the case α > 0,
and the diagram is drawn with α > 1.

Let
−→
AB represent u and

−→
BC represent v, so that

−→
AC represents u+v by the Triangle

Rule. Extending the lines AB and AC as necessary, we let D be the point on the line

AB such that
−→
AD represents αu, and let E be the point on the line AC such that

−→
AE

represents α(u + v).

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
��

s s s

s s

....................

..........

........

.
..................
.............
....

.
............
...........................

A B D

C

E

u

vu + v
(case α > 1)

Then |
−→
AD| = α|

−→
AB| and |

−→
AE| = α|

−→
AC| and so triangles ABC and ADE are similar

(that is one is a scaling of the other; here this scaling fixes the point A). Therefore

|
−→
DE| = α|

−→
BC| and

−→
BC and

−→
DE have the same direction, and so

−→
DE represents αv.

Now we use the Triangle Rule with triangle ADE to conclude that αu+αv = α(u+v).
(Note that the notion of similarity in general allows translations, rotations and re-

flexions as well as scaling.)

Aside. In 2011, one student observed that Theorem 1.4 (among others) looked more like
an axiom than a theorem. It is quite possible to choose an alternative axiomatisation of
geometry in which several of the theorems here (including Theorem 1.4) are axioms. It
is also very likely that the Parallelogram Axiom would no longer be an axiom in such
an alternative system, but a theorem requiring proof.
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1.11 Position vectors

In order to talk about position vectors, we need to assume that we have fixed a point O
as an origin in 3-space. Then if A is any point, the position vector of A is defined to be

the free vector represented by the bound vector
−→
OA.

�
�
�
�
�
�
�

s

s

O

A

a
....................
..........
........

a is the position vector
of the point A

Note that each vector x is the position vector of exactly one point X in 3-space. This
point X has as distance and direction from the origin the length and direction of the
vector x.

��
�
��

�
�
��

s
sO

X
x

.
..................... ....................

Theorem 1.11. Let A and B be points with position vectors a and b. Let P be a

point on the line segment AB such that |
−→
AP | = λ|

−→
AB|. Then P has position vector

p = (1− λ)a + λb.

Proof. A diagram for this situation is as follows.

�
�

�
�

�
�

��

A
A
A
A
A
A
AA

�
�
�
�
�
�
��

s

ss s

O

A q P B
.

..................

.............
....

. ...................

.................. .
.................... ................... .

.......................................a p b

Let c be the vector represented by
−→
AB, and let q be the vector represented by

−→
AP .

Then q = λc. Now a + c = b (by the Triangle Rule), and adding −a to both sides we
obtain c = b− a. Therefore, using the Triangle Rule, we get p = a + q = a + λc, and
using the various rules for vector addition and scalar multiplication, we get:

p = a + λc = a + λ(b− a)
= a + λ(b + (−a))
= a + λb + λ(−a)
= a + λb + λ((−1)a)
= 1a + λb + (−λ)a
= (1− λ)a + λb,

as required.
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Example. Suppose P is one quarter of the way from A along the line segment AB.
Then p = (1− 1

4
)a + 1

4
b = 3

4
a + 1

4
b (see picture overleaf).

�
�

�
�

�
�

��

@
@
@
@
@
@
@@

�
�
�
�
�
�
��

s

ss s

O

A P B

|
−→
AP | = 1

4
|
−→
AB|. ...................

.................. ....................
...................

.................... ...................a p b

Note. If A and B are any points, with position vectors a and b respectively, then the

vector represented by
−→
AB is b− a (see picture below).

�
�
�
�

�
�

��

A
A
A
A
A
A
AA

s

s s

O

A b− a B
.

..................

.............
....

. ...................

.................. .
.......................................a b

Theorem 1.12 (Application of Theorem 1.11). The diagonals of a parallelogram ABCD
meet each other in their midpoints.

Proof. This proof proceeds by determining the midpoints of the two diagonals and show-
ing they are the same. The diagram of what we wish to prove is given below.

�
�
�
�
�
��

�
�
�
�
�
��

!!
!!

!!
!!

!!
!!

!!
!!Q

Q
Q
Q
Q
Q
Q
Q
QQs s

s s
s

A B

CD

X[= Y ]

Let X be the midpoint of the diagonal AC, and let Y be the midpoint of the diagonal
BD. Let A, B, C, D, X, Y have position vectors a, b, c, d, x, y respectively. Then,
by Theorem 1.11, we have

x = (1− 1
2
)a + 1

2
c = 1

2
a + 1

2
c = 1

2
(a + c) and y = (1− 1

2
)b + 1

2
d = 1

2
(b + d).

Since ABCD is a parallelogram,
−→
AB and

−→
DC represent the same vector. Since

−→
AB

represents b−a and
−→
DC represents c−d, we have b−a = c−d. Adding a+d to both

sides (and using the rules of vector addition and subtraction) gives b+d = c+a[= a+c].
So now 1

2
(a + c) = 1

2
(b + d), which implies that x = y, whence X = Y .
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In lectures, the symbol ⇒ often crops up, especially in proofs. It means ‘implies’ or
‘implies that.’ So A ⇒ B means ‘A implies B’ or ‘if A then B’ or ‘A only if B.’ The
symbol ⇐ means ‘is implied by,’ so that A⇐ B means ‘A is implied by B’ or ‘A if B.’
The symbol ⇔ means ‘if and only if’ so that A⇔ B means ‘A if and only if B’ or ‘A is
equivalent to B.’ Throughout the above, A and B are statements.
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Chapter 2

Cartesian Coördinates

The adjective Cartesian above refers to René Descartes (1596–1650), who was the first
to coördinatise the plane as ordered pairs of real numbers, which provided the first
systematic link between Euclidean geometry and algebra.

Choose an origin O in 3-space, and choose (three) mutually perpendicular axes
through O, which we shall label as the x-, y- and z-axes. The x-axis, y-axis and z-
axis form a right-handed system if they can be rotated to look like one of the following
(which can all to rotated to look like the others).

s
O

-

6

�
�
�	x

y

z

s
O

-

6

�
�
�	z

x

y

s
O

-

6

�
�
��
y

x

z

A left-handed system can be rotated to look like the following.

s
O

-

6

�
�
�	y

x

z

Swapping two axes or reversing the direction of one (or three) of the axes changes the
handedness of the system. It is possible to make the shape of a right-handed system
using our right-hand, with the thumb (pointing) along the x-axis, first [index] finger
along the y-axis, and second [middle] finger along the z-axis. You should curl the other
two fingers of your hand into you palm when you do this. (Unfortunately, it is possible,
though much harder, to make the shape of a left-handed system using your right hand,
but if you can make such a configuration it should be much more uncomfortable!) If
you use your left hand, you should end up with a left-handed system.

We let i, j and k denote vectors of length 1 in the directions of the x-, y- and z-axes
respectively.
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Let R be the point whose coördinates are (a, b, c), and let r be the position vector of
R. Then r = ai + bj + ck. See the diagram below.

�
�
�
��

%
%
%
%
%
%%

c
c
c
c
cc

s
s s

s

s

O

P Q

R = (a, b, c)

-

6

�
�
�

�
�

�
��	

i

j

k

x

y

z

ck

bj

aiq

r

.
.............

.....
.............
....

.
..................
.............
....

.

................... .......................................
...................

.....................
..........
.........

-

6

�
�

�	

Let q = ai + bj be the position vector of the point Q. Then applying Pythagoras’s
Theorem to the right-angled triangle OPQ we get:

|q| = |
−→
OQ| =

√
|
−→
OP |2 + |

−→
PQ|2 =

√
|a|2 + |b|2 =

√
a2 + b2.

HH
HH

HH
HH

H
HH

HH

. ........................ .

..........

..........

....s s

s

.
..................
.............
....

.
..................

................. .
.......................................

O

P Q

q(length |a|) ai

bj
(length |b|)

We also have the right-angled triangle OQR.

��
��

��
�
��

��
��

..........................

..........

..........

....s s

s

.
..................
.............
....

.
.............

.....
.............
.....

...........
.........

...................

O Q

R

q

r
ck (length |c|)

Applying Pythagoras’s Theorem to triangle OQR gives:

|r| = |
−→
OR| =

√
|
−→
OQ|2 + |

−→
QR|2 =

√
|q|2 + |c|2 =

√
a2 + b2 + c2.

To summarise: If R is a point having coördinates (a, b, c), then the position vector of
R is r = ai + bj + ck, which has length

√
a2 + b2 + c2.

Notation. We write

 a
b
c

 for the vector ai + bj + ck.
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2.1 Sums and scalar multiples using coördinates

Now let u =

 a
b
c

, v =

 d
e
f

 and let α be a scalar. Then, using the rules for vector

addition and scalar multiplication (sometimes multiple times per line) we get:

u + v =

 a
b
c

 +

 d
e
f

 = (ai + bj + ck) + (di + ej + fk)

= (ai + di) + (bj + ej) + (ck + fk)

= (a+ d)i + (b+ e)j + (c+ f)k =

 a+ d
b+ e
c+ f

 ,

along with

αu = α

 a
b
c

 = α(ai + bj + ck)

= α(ai) + α(bj) + α(ck)

= (αa)i + (αb)j + (αc)k =

 αa
αb
αc

 ,

and

−u = (−1)u = (−1)

 a
b
c

 =

 −a
−b
−c

 .

Example. Let u =

 2
−1
0

 and v =

 3
5
−1

. Then

3u− 4v = 3u + (−4)v = 3

 2
−1
0

 + (−4)

 3
5
−1

 =

 6
−3
0

 +

−12
−20
4

 =

 −6
−23
4

 .

2.2 Unit vectors

Definition 2.1. A unit vector is a vector of length 1.

For example, i, j and k are unit vectors. Let r be any nonzero vector, and define:

r̂ :=

(
1

|r|

)
r.
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(Note that |r| > 0, so that 1
|r| and hence r̂ exist.) But we also have 1

|r| > 0, and thus

|̂r| = | 1
|r| ||r| = 1

|r| |r| = 1, so that r̂ is the unit vector in the same direction as r. (There

is only one unit vector in the same direction as r.)

Example. Let r =

 −1
5
−4

. Then |r| =
√

(−1)2 + 52 + (−4)2 =
√

42. Therefore

r̂ =

(
1

|r|

)
r =

1√
42

 −1
5
−4

 =

 −1/
√

42

5/
√

42

−4/
√

42

 .

If we want the unit vector in the opposite direction to r, this is simply −r̂, and if we
want the vector of length 7 in the opposite direction to r, this is −7r̂.

2.3 Equations of lines

Let ` be the line through the point P in the direction of the nonzero vector u.

   
   

   
   

   
   

   

   
  

@
@
@

@
@

@@

�
�
�
�
�
�
�
��

s

s s
. ...................
..........
........

.....................
...........
........

..................
............
....

O

P

R
`

p
r

u

Now a point R is on the line ` if and only if
−→
PR represents a scalar multiple of u. Let p

and r be the position vectors of P and R respectively. Then
−→
PR represents r− p, and

so R is on ` if and only if r− p = λu for some real number λ; equivalently r = p + λu
for some real number λ. We thus get the vector equation of the line `:

r = p + λu (λ ∈ R),

where p and u are constants and r is a variable (depending on λ) which denotes the
position of a general point on `.

Moving to coördinates, we let r =

 x
y
z

, p =

 p1

p2

p3

 and u =

 u1

u2

u3

. Then:

 x
y
z

 = r = p + λu =

 p1

p2

p3

 + λ

 u1

u2

u3

 =

 p1 + λu1

p2 + λu2

p3 + λu3

 ,

17



from which we get the parametric equations of the line `, namely:

x = p1 + λu1

y = p2 + λu2

z = p3 + λu3

 .

Assuming that u1, u2, u3 6= 0, we may eliminate λ to get:

x− p1

u1

=
y − p2

u2

=
z − p3

u3

,

which are the Cartesian equations of the line `. (Each of these fractions is equal to λ.)
The following should tell you how to get the Cartesian equations of ` when one or two
of the ui are zero (they cannot all be zero). If u1 = 0 and u2, u3 6= 0 then the Cartesian
equations are

x = p1,
y − p2

u2

=
z − p3

u3

,

and if u1 = u2 = 0, u3 6= 0, the Cartesian equations are x = p1, y = p2 (with no mention
of z anywhere).

Example. As an example, we determine the vector, parametric and Cartesian equations

of the line ` through the point (3,−1, 2) in the direction of the vector

 −2
1
4

.

The vector equation is:

r =

 3
−1
2

 + λ

 −2
1
4

 .

The parametric equations are:

x = 3− 2λ
y = −1 + λ
z = 2 + 4λ

 .

And the Cartesian equations are:

x− 3

−2
=
y + 1

1
=
z − 2

4
.

Is the point (7,−3,−6) on `? Yes, since the vector equation is satisfied with λ = −2 (this
value of λ can be determined from the parametric equations). What about the point
(1, 1, 1)? No, because the Cartesian equations are not satisfied: 1 = 1−3

−2
6= 1+1

1
= 2.

Alternatively, we can look at the parametric equations: the first would give λ = 1, and
the second would give λ = 2, an inconsistency.
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2.3.1 The line determined by two distinct points

Suppose we are given two points P and Q on a line `, with P 6= Q, and we want to
determine (say) a vector equation for `. Suppose P has position vector p and Q has
position vector q.

Q
Q
Q

Q
Q

Q
Q

Q
QQ

�
�
�
�
�
��

s

s s
.
..........
............................ ....................

..........
.........

O

P Q `

p q

Then ` is a line through P in the direction of
−→
PQ, and thus in the direction of q − p

(the vector that
−→
PQ represents). Therefore, a vector equation for ` is:

r = p + λ(q− p).

Parametric and Cartesian equations for ` can be derived from this vector equation in
the usual way.
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Chapter 3

The Scalar Product

The scalar product is a way of multiplying two vectors to produce a scalar (real number).

Let u and v be nonzero vectors represented by
−→
AB and

−→
AC.

�
�
�
�
�
��

PPPPPPPP

s

s

s

....................

..........

........

.
.......................................

A

B

C

u

v

θ
........
.......
.......
.......
.......
.......

We define the angle between u and v to be the angle θ (in radians) between
−→
AB and

−→
AC, with 0 6 θ 6 π. A handy chart for converting between degrees and radians is given
below.

radians 0 π
180

π
12

π
10

π
6

π
5

π
4

1 π
3

2π
5

π
2

2π
3

3π
4

π 2π

degrees 0 1 15 18 30 36 45 180
π
≈ 57.3 60 72 90 120 135 180 360

Definition 3.1. The scalar product (or dot product) of u and v is denoted u·v, and is
defined to be 0 if either u = 0 or v = 0. If both u 6= 0 and v 6= 0, we define u·v by

u·v := |u||v| cos θ,

where θ is the angle between u and v. (Note that I have had to specify what θ is in the
definition itself; you must do the same.) We say that u and v are orthogonal if u·v = 0.

Note that u and v are orthogonal if and only if u = 0 or v = 0 or the angle between u
and v is π

2
. (This includes the case u = v = 0.)

Note. Despite the notation concealing this fact somewhat, the scalar product is a func-
tion . Its codomain (and range) is R, and its domain is the set of ordered pairs of (free)
vectors. As usual, we must make sure that the function is defined (in a unique manner)
for all elements of the domain, and this includes those pairs having the zero vector in
one or both positions.
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3.1 The scalar product using coördinates

Theorem 3.2. Let u =

 u1

u2

u3

 and v =

 v1

v2

v3

. Then u·v = u1v1 + u2v2 + u3v3.

Proof. If u = 0 (in which case u1 = u2 = u3 = 0) or v = 0 (in which case v1 = v2 =
v3 = 0) we have u·v = 0 = u1v1 + u2v2 + u3v3, as required.

Now suppose that u,v 6= 0, and let θ be the angle between u and v. We calculate
|u + v|2 in two different ways. Firstly we use coördinates.

|u + v|2 =

∣∣∣∣∣∣
 u1 + v1

u2 + v2

u3 + v3

∣∣∣∣∣∣
2

= (u1 + v1)
2 + (u2 + v2)

2 + (u3 + v3)
2

= u2
1 + 2u1v1 + v2

1 + u2
2 + 2u2v2 + v2

2 + u2
3 + 2u3v3 + v2

3

= |u|2 + |v|2 + 2(u1v1 + u2v2 + u3v3),

that is:
|u + v|2 = |u|2 + |v|2 + 2(u1v1 + u2v2 + u3v3). (3.1)

Our second way to do this is geometrical. Pick a point A, and consider the parallelogram

ABCD, where
−→
AB represents u and

−→
AD represents v. Thus

−→
BC represents v, and so−→

AC represents u + v by the Triangle Rule. Drop a perpendicular from C to the line
through A and B, meeting the said line at N , and let M be an arbitrary point on the
line through A and B strictly to ‘right’ of B (i.e. when traversing the line through A
and B in a certain direction we encounter the points in the order A, B, M). Let θ be
the angle between u and v (i.e. θ is the size of angle BAD). A result from Euclidean
geometry states that the angle MBC also has size θ. The following diagram has all this
information.
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(Note that this diagram is drawn with 0 < θ < π
2
. If θ = π

2
then N = B, and if θ > π

2

then N lies to the ‘left’ of B, probably between A and B, but possibly even to the ‘left’

of A.) We have |
−→
AN | = |(|u|+ |v| cos θ)|, even when θ > π

2
, and even when N is to the

‘left’ of A. We also have that |
−→
CN | = |v||sin θ|. Applying Pythagoras (which is fine here

even when θ > π
2
), and using the fact that |a|2 = a2 whenever a ∈ R, we obtain:

|u + v|2 = |
−→
AC|2 = |

−→
AN |2 + |

−→
CN |2 = (|u|+ |v| cos θ)2 + (|v| sin θ)2

= |u|2 + 2|u||v| cos θ + |v|2(cos θ)2 + |v|2(sin θ)2

= |u|2 + |v|2(cos2 θ + sin2 θ) + 2u·v.

21



Here cos2 θ means (cos θ)2 and sin2 θ means (sin θ)2. Using the standard identity that
cos2 θ + sin2 θ = 1 for all θ, we obtain:

|u + v|2 = |u|2 + |v|2 + 2u·v. (3.2)

Comparing Equations 3.1 and 3.2 gives us the result.

Note that if u =

 u1

u2

u3

 then u·u = u2
1 + u2

2 + u2
3 = |u|2 (even when u = 0).

Example. We determine cos θ, where θ is the angle between u =

 2
−1
1

 and v = 1
2
−3

. We have |u| =
√

22 + (−1)2 + 12 =
√

6 and |v| =
√

12 + 22 + (−3)2 =
√

14,

along with:
u·v = 2× 1 + (−1)× 2 + 1× (−3) = 2− 2− 3 = −3.

The formula u·v = |u||v| cos θ gives −3 =
√

6
√

14 cos θ = 2
√

21 cos θ, the last step being
since

√
6
√

14 =
√

2
√

3
√

2
√

7 = 2
√

21. Thus we get:

cos θ =
−3

2
√

21
= −1

2

√
3

7
.

(The last equality was obtained by cancelling a factor of
√

3 from the numerator and
denominator. There is no need to do this if it does not make the fraction ‘neater’, and
here I do not think it does.)

Note. The following is an example of totally unacceptable working when calculating a
dot product. 1

−1
−2

 ·

 3
−2
1

 =

 1× 3
(−1)× (−2)

(−2)× 1

 =

 3
2
−2

 = 3 + 2 + (−2) = 3.

This is because the first and third so-called equalities are nothing of the sort. The first
is trying to equate a scalar (LHS) with a vector (RHS), while the third tries to equate a
vector with a scalar. The above has TWO errors, and we shall simply mark such stuff
as being wrong.
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3.2 Properties of the scalar product

Let u,v 6= 0 and let θ be the angle between u and v. From the definition u·v =
|u||v| cos θ of the scalar product we observe that:

• if 0 6 θ < π
2

then u·v > 0;

• if θ = π
2

then u·v = 0; and

• if π
2
< θ 6 π then u·v < 0.

Moreover,

cos θ =
u·v
|u||v|

.

Now let u, v, w be any vectors. Then:

1. u·v = v·u;

2. u·(v + w) = (u·v) + (u·w);

3. (u + v)·w = (u·w) + (v·w);

4. u·(αv) = α(u·v) = (αu)·v for all scalars α;

5. u·(−v) = (−u)·v = −(u·v); and

6. (−u)·(−v) = u·v.

There is however no (non-vacuous) associative law for the dot product. This is because
neither of the quantities (u·v)·w and u·(v·w) is defined. (In both cases, we are trying
to form the dot product of a vector and a scalar in some order, and in neither order does
such a product exist.)

Each of the above equalities can be proved by using Theorem 3.2, which expresses
the dot product in terms of coördinates. To prove (1) we observe that:

u·v = u1v1 + u2v2 + u3v3 = v1u1 + v2u2 + v3u3 = v·u.

In order to prove the equality u·(αv) = α(u·v) of (4) we observe the following.

u·(αv) =

 u1

u2

u3

·

 αv1

αv2

αv3

 = u1(αv1) + u2(αv2) + u3(αv3)

= α(u1v1) + α(u2v2) + α(u3v3)
= α(u1v1 + u2v2 + u3v3) = α(u·v).

The proofs of the rest of these equalities are left as exercises.
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3.3 Equation of a plane

Let n be a vector and Π be a plane. We say that n is orthogonal to Π (or Π is orthogonal
to n) if for all points A, B on Π, we have that n is orthogonal to the vector represented

by
−→
AB. We also say that n is a normal (or normal vector) to Π, hence the notation n.
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Suppose that n 6= 0, A is a point, and we wish to determine an equation of the (unique)
plane Π that is orthogonal to n and contains A. Now a point R, with position vector r,

is on Π exactly when
−→
AR represents a vector orthogonal to n, that is when (r−a)·n = 0,

where a is the position vector of a. Equivalently, we have r·n− a·n = 0, which gives:

r·n = a·n,

a vector equation of the plane Π, where r is the position vector of an arbitary point on
Π, a is the position vector of a fixed point on Π, and n is a nonzero vector orthogonal
to Π. In coördinates, we let

r =

 x
y
z

 , n =

 n1

n2

n3

 and a =

 a1

a2

a3

 .

Then the point (x, y, z) is on Π exactly when: x
y
z

·

 n1

n2

n3

 =

 a1

a2

a3

·

 n1

n2

n3


that is, when

n1x+ n2y + n3z = d,

where d = a1n1 + a2n2 + a3n3. This is a Cartesian equation of the plane Π.

Example. We find a Cartesian equation for the plane through A = (2,−1, 3) and or-

thogonal to n =

 −2
3
5

. A vector equation is

 x
y
z

·

 −2
3
5

 =

 2
−1
3

·

 −2
3
5

,

which gives rise to the Cartesian equation −2x+ 3y + 5z = 8.
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Example. The equation 2x−y+3z = 6 specifies the plane Π orthogonal to n =

 2
−1
3


and containing the point (1,−1, 1). This is because we can write the equation as x

y
z

·

 2
−1
3

 =

 1
−1
1

·

 2
−1
3

 ,

which has the form r·n = a·n for suitable vectors r and a. The point (1, 2, 3) is not on
Π since 2× 1 + (−1)× 2 + 3× 3 = 2− 2 + 9 = 9 6= 6. The point (1, 2, 2) is on Π since
2× 1 + (−1)× 2 + 3× 2 = 2− 2 + 6 = 6.

Note that the coördinates of n can always be taken to be the coefficients of x, y, z
in the Cartesian equation. (It is valid to multiply such an n by any nonzero scalar, but
must ensure we do the corresponding operations to the right-hand sides of any equations
we use. Thus both 2x− y+3x = 6 and −4x+2y−6x = −12 are Cartesian equations of
the plane Π in the second example above.) Finding a point on Π is harder. A sensible
strategy is to set two of x, y, z to be zero (where the coefficient of the third is nonzero).
Here setting x = y = 0 gives 3z = 6, whence z = 2, so that (0, 0, 2) is on Π. Setting
x = z = 0 gives y = −6, so that (0,−6, 0) is on Π, and setting y = z = 0 gives x = 3,
so that (3, 0, 0) is on Π. (This sensible strategy does not find the point (1,−1, 1) that is
on Π.)

In the case of the plane Π′ with equation x + y = 1, setting x = z = 0 gives the
point (0, 1, 0) on Π′, while setting y = z = 0 gives the point (1, 0, 0) on Π′. But if we
set x = y = 0, we end up with the equation 0 = 1, which has no solutions for z, so we
do not find a point here.

Note. [Not lectured.] Another form of a vector equation for a plane, corresponding to
the vector equation for a line is as follows. Take any 3 points A, B, C on Π such that A,
B, C are not on the same line. Let A, B, C have position vectors a, b, c respectively.
Then a vector equation for Π is:

r = a + λ(b− a) + µ(c− a),

where λ and µ range (independently) over the whole of R.

3.4 The distance from a point to a plane

Let Π be the plane having equation ax + by + cz = d, so that Π is orthogonal to

n =

 a
b
c

 6= 0. Let Q be a point, and let M be the point on Π closest to Q.
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n =

 a
b
c


Π

Let m, q be the position vectors of M , Q. Then the vector q−m represented by
−→
MQ

is orthogonal to Π, and so (since we are in just 3 dimensions) q−m is a scalar multiple
of n, that is q−m = λn for some scalar λ ∈ R. Therefore:

(q−m)·n = (λn)·n = λ(n·n) = λ|n|2,

and so q·n−m·n = λ|n|2. But m is on Π, which has equation r·n = d, and so m·n = d.
Therefore q·n− d = λ|n|2, and thus:

λ =
q·n− d

|n|2

But the distance from Q to Π (which is the distance from Q to M , where M is the

closest point on Π to Q) is in fact |
−→
MQ| = |λn| = |λ||n|, that is:∣∣∣∣q·n− d

|n|2

∣∣∣∣ |n| = |q·n− d|
|n|

.

If one looks at other sources one may see a superficially dissimilar formula for this
distance. To obtain this, we let P be any point on Π, and let p be the position vector
of p, so that p·n = d. Thus q·n− d = q·n− p·n = (q− p)·n. Therefore the distance
can also be expressed as:

|(q− p)·n|
|n|

=

∣∣∣∣(q− p)· n

|n|

∣∣∣∣ =

∣∣∣∣free(−→PQ)· n

|n|

∣∣∣∣ = |(q− p)·n̂|,

where free(
−→
PQ) = q−p is the (free) vector represented by

−→
PQ, and n̂ is the unit vector

in the direction of n.

Example. We find the distance of (3,−2, 4) from the plane defined by 2x+3y−5z = 7.

With our notation we have n =

 2
3
−5

, d = 7, q =

 3
−2
4

, and so the distance is

|q·n− d|
|n|

=
|(6− 6− 20)− 7|√

22 + 32 + (−5)2
=

27√
38
.
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3.5 The distance from a point to a line

Let ` be the line with (vector) equation r = p + λu, where u 6= 0, and let Q be a point
with position vector q. If Q = P (where P has position vector P ), then Q is on `, and
the distance between Q and ` is 0. Else we drop a normal from Q to ` meeting ` at the
point M .
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............

The distance from Q to ` is |
−→
MQ|, that is |q − m|, is easily seen from the diagram

to be |
−→
PQ| sin θ, where θ is the angle between q − p (the vector that

−→
PQ represents)

and the vector u (which is the direction [up to opposite] of the line `). [Pedants should
recall that u 6= 0, and also note that sin θ > 0, since 0 6 θ 6 π.] For now we content
ourselves with noting that this distance is |q − p| sin θ (which ‘morally’ applies even
when q = p). When we encounter the cross product, we shall be able to express this
distance as |(q−p)×u|/|u|. Note that sin θ can be calculated using dot products, since
cos θ can be so calculated, and we have sin θ =

√
1− cos2 θ. On calculating |q−p| sin θ,

we find that the distance from Q to ` is√
|q− p|2|u|2 − ((q− p)·u)2

|u|
,

a formula which applies even when q = p. In the case when |u| = 1 the above formula
simplifies to

√
|q− p|2 − ((q− p)·u)2.

Exercise. Use methods from Calculus I to minimise the distance from R to Q, where
R, the typical point on `, has position vector r with r = p + λu. Show that this
minimum agrees with the distance from Q to ` given above. Hint: The quantity |r− q|
is always at least 0. So |r − q| is minimal precisely when |r − q|2 is minimal. But
|r− q|2 = (r− q)·(r− q), and this is easier to deal with.
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Chapter 4

Intersections of Planes and Systems
of Linear Equations

Using coördinates, a plane Π is defined by an equation:

ax+ by + cz = d,

where a, b, c, d are real numbers, and at least one of a, b, c is nonzero. The set of points
on Π consists precisely of the points (p, q, r) with ap + bq + cr = d. In set-theoretic
notation, this set is:

{ (p, q, r) : p, q, r ∈ R | ap+ bq + cr = d }.

Suppose we wish to determine the intersection (as a set of points) of k given planes
Π1,Π2, . . . ,Πk given by the respective equations:

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2
...

akx+ bky + ckz = dk

 . (4.1)

Now a point (a, b, c) is in this intersection precisely when it is on each of the planes
Π1,Π2, . . . ,Πk, which is the case precisely when x = p, y = q, z = r is a solution to
each of the equations aix + biy + ciz of (4.1), where 1 6 i 6 k. Thus, to determine
the intersection, we need to determine the solutions to the system of k linear equations
(4.1) in 3 unknowns. The technique we shall use to do this, called Gaußian elimination
or reduction to echelon form can be applied to determine the solutions to a system of k
linear equations in any number of unknowns.

Note. Gaußian elimination is named after Carl Friedrich Gauß (1777–1855). The sym-
bol ß is a special German symbol called Eszett or scharfes S, and is pronounced like
the English word-initial S, and is often rendered into English as ss; thus Gauß is often
written as Gauss in English.
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4.1 Possible intersections of k planes in R3

For k = 0, 1, 2, 3, 4, . . . we detail below various configurations of k planes in R3, and
what their intersections are. (The cases k = 0, 1 did not appear in lectures.)

• The intersection of 0 planes of R3 is the whole of R3. (See below for why.)

• The intersection of 1 plane(s) Π1 of R3 is simply Π1.

• The intersection of 2 planes Π1, Π2 of R3 is usually a line. The only exceptions
occur when Π1 and Π2 are parallel. In such a case, if Π1 6= Π2, then Π1 and Π2

intersect nowhere, whereas if Π1 = Π2, then Π1 and Π2 intersect in the plane Π1.
Example 3 below is a case when Π1 and Π2 are parallel but not equal.

• In general, 3 planes Π1, Π2, Π3 intersect at precisely one point (Example 1 below is
like this). Exceptional situations arise when two (or all) of the planes are parallel.
Assuming that no two of Π1, Π2, Π3 are parallel, exceptional situations arise only
when the intersections of Π1 with Π2, Π2 with Π3 and Π3 with Π1 are parallel
lines. These lines either coincide, in which case Π1, Π2, Π3 intersect in this line
(Example 2 below is like this), or the three lines are distinct, in which case Π1,
Π2, Π3 have empty intersection (Example 2′ below is like this).

• In general, 4 or more planes intersect at no points whatsoever. Another way of
saying this is that their intersection is ∅, the empty set. Non-empty intersections
are possible in exceptional cases.

4.1.1 Empty intersections, unions, sums and products

This was not done in lectures. Empty products and so on are somewhat subtle, and
cause a lot of confusion and stress. Take the following as definitions.

• If I intersect 0 sets, each of which is presumed to belong to some “universal” set,
then their intersection is that “universal” set. In the case above, the “universal”
set was R3. A “universal” set is a set that contains (as elements) all the entities
one wishes to consider in a given situation. If no “universal” set is understood (or
exists) in the context in which you happen to be working, then the intersection
of 0 sets is undefined. Taking the complement of a set is only defined when a
“universal” set is around.

• The union of 0 sets is the empty set ∅. (There is no need to assume the existence
a “universal” set here.)

• The sum of 0 real (or rational or complex) numbers is 0, and the sum of 0 vectors
is 0. [In general, the sum of 0 things is the additive identity of the object these
things are taken to belong to, when such a thing exists and is unique.]

• The product of 0 real (or rational or complex) numbers is 1. [In general, the
product of 0 things is the multiplicative identity of the object these things are
taken to belong to, when such a thing exists and is unique.]
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4.2 Some examples

Before we formalise the notions of linear equation, Gaußian elimination, echelon form
and back substitution in the next chapter, we give some examples of solving systems of
linear equations using these methods.

Example 1. We determine all solutions to the system of equations:

x+ y + z = 1
−2x+ 2y + z = −1

3x+ y + 5z = 7

 . (4.2)

We use the first equation to eliminate x in the second and third equations. We do this
by adding twice the first equation to the second, and −3 times the first equation to the
third, to get:

x + y + z = 1
4y + 3z = 1

− 2y + 2z = 4

 .

We now use the second equation to eliminate y in third by adding 1
2

times the second
equation to the third, which gives:

x+ y + z = 1
4y + 3z = 1

7
2
z = 9

2

 .

We have now reduced the system to something called echelon form, and this is easy to
solve by a process known as back substitution. The third equation gives z = 9/2

7/2
= 9

7
.

Then the second equation gives 4y + 3(9
7
) = 1, and so 4y = −20

7
, whence y = −5

7
. Then

the first equation gives x− 5
7

+ 9
7

= 1, whence x = 3
7
.

We conclude that the only solution to the system of equations (4.2) is x = 3
7
, y = −5

7
,

z = 9
7
. Thus the three planes defined by the equations of (4.2) intersect in the single

point (3
7
,−5

7
, 9

7
). Recall that, in general, three planes intersect in precisely one point.

It is always good practice to check that any solution you get satisfies the original
equations. You will probably pick up most mistakes this way. If your ‘solution’ does not
satisfy the original equations then you have certainly made a mistake. If the original
equations are satisfied, then you have possibly made a mistake and got lucky, and you
could still have overlooked some solution(s) other than the one(s) you found. Naturally,
the check works fine here.

Example 2. We determine all solutions to the system of equations:

− y − 3z = −7
2x− y + 2z = 4

−4x + 3y − 2z = −1

 . (4.3)
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We want a nonzero x-term (if possible) in the first equation, so we interchange the first
two equations, to get:

2x− y + 2z = 4
− y − 3z = −7

−4x + 3y − z = −1

 .

We now use the first equation to eliminate the x-term from the other equations. To do
this we add twice the first equation to the third equation; we leave the second equation
alone, since its x-term is already zero. We now have:

2x− y + 2z = 4
− y − 3z = −7
y + 3z = 7

 .

We now use the second equation to eliminate y from the third equation. We do this by
adding the second equation to the third equation, which gives:

2x− y + 2z = 4
− y − 3z = −7

0 = 0 (!)

 . (4.4)

This system of equations is in echelon form, but has the rather interesting equation
0 = 0. This prompts the following definition.

Definition. An equation ax + by + cz = d is called degenerate if a = b = c = 0 (NB:
we do allow d 6= 0 as well as d = 0). Otherwise it is non-degenerate.

There are two types of degenerate equations.

1. The degenerate equation 0 = 0 (in 3 variables x, y, z) has as solutions x = p,
y = q, z = r, for all real numbers p, q, r.

2. The degenerate equation 0 = d, with d 6= 0, has no solutions. Note that the =
sign is being used in two different senses in the previous sentence: the first use
relates two sides of an equation, and the second use is as equality. This may be
confusing, but I am afraid you are going to have to get used to it.

Since the equation 0 = 0 yields no restrictions whatsoever, we may discard it from the
system of equations (4.4) to obtain:

2x− y + 2z = 4
− y − 3z = −7

}
. (4.5)

This system of equations is in echelon form, and has no degenerate equations, and we
solve this system of equations using the process of back substitution. The variable z can
be any real number t, since z is not a leading variable in any of the equations of (4.5),
where we define the term leading variable in the next chapter. Then the second equation
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gives −y−3t = −7, and so y = 7−3t. Then the first equation gives 2x−(7−3t)+2t = 4,
and so 2x = 11− 5t, and hence x = 11

2
− 5

2
t.

We have that x = 11
2
− 5

2
t, y = 7− 3t, z = t is a solution for all real numbers t (this

is infinitely1 many solutions). Therefore, the intersection of the three planes defined by
(4.3) is

{ (11
2
− 5

2
t, 7− 3t, t) : t ∈ R }.

This intersection is a line, with parametric equations:

x = 11
2
− 5

2
λ

y = 7− 3λ
z = λ

 .

When we take a cross-section through the configuration of planes defined by the original
equations, we get a diagram like the following, where all the planes are perpendicular to
the page.

@
@
@
@
@
@
@
@
@

XXXXXXXXXXXXX

�
�
�
�
�
�
�
��

s

The sceptic will wonder whether we have lost any information during the working of
this example. We shall discover that the method we use preserves all the information
contained in the original equations. Nevertheless, it is still prudent to check, for all real
numbers t, that (x, y, z) = (11

2
− 5

2
t, 7− 3t, t) is a solution to all of the original equations

(4.3).

Example 2′. The equations here have the same left-hand sides as those in Example 2.
However, their right-hand sides are different (I may have made a different alteration in
lectures).

− y − 3z = −5
2x− y + 2z = 4

−4x + 3y − z = −1

 . (4.6)

The steps one must perform to bring the equations into echelon form are the same as
in Example 2. In all cases, the left-hand sides should all be the same. However, the

1In 2010, the BBC broadcast a Horizon programme about Infinity, including contributions from
Professor P. J. Cameron of our department. One thing we learned in the programme is that there are
different sizes of infinite set. The sets N, Z and Q all have the same size, denoted ℵ0 (the countably
infinite cardinality), while R has a strictly bigger size, denoted 2ℵ0 . The symbol ℵ is the first letter of
the Hebrew alphabet, is called ’aleph, and traditionally stands for a glottal stop.
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right-hand sides will differ. Echelonisation proceeds as follows. First swap the first and
second equations:

2x− y + 2z = 4
− y − 3z = −5

−4x + 3y − z = −1

 .

Add twice the first equation to the third:

2x− y + 2z = 4
− y − 3z = −5
y + 3z = 7

 .

Add the second equation to the third:

2x− y + 2z = 4
− y − 3z = −5

0 = 2

 .

But 0 = 2 is a degenerate equation with no solutions, so the whole system of equations
has no solutions, and thus the original system of equations has no solutions. There is
no need to engage in back substitution for this example.

When we take a cross-section through the configuration of planes defined by the origi-
nal equations, we get a diagram like the following, where all the planes are perpendicular
to the page.
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Checking all the solutions we obtain is vacuous in this example. A better bet is to follow
through the echelonisation to try to figure out how to obtain the equation 0 = 2 from
the original equations (4.6). In this case, we find that we obtain 0 = 2 by adding the
first and third equations of (4.6) to twice the second equation of (4.6).

Example 3. We determine the intersection of the two planes defined by:

x + 2y − z = 2
−2x− 4y + 2z = 1

}
. (4.7)

Add twice the first equation to the second to get:

x+ 2y − z = 2
0 = 5

}
.
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But 0 = 5 is a degenerate equation with no solutions, so the whole system of equations
has no solutions, and thus the original system of equations has no solutions. So the
intersection of the planes is ∅ = {}, the empty set, which is the only set that has no
elements. In this case, the original two planes were parallel, but not equal.

Example 4. [Not done in lectures.] If we have a system of k = 0 equations in unknowns
x, y, z, then the solutions to this system of equations is x = r, y = s, z = t, where r, s,
t can be any real numbers. The solution set is thus:

{ (r, s, t) : r, s, t ∈ R } = R3,

which corresponds to my earlier assertion that the intersection of 0 planes in R3 is the
whole of R3.

4.3 Notes

We have been solving systems of linear equations by employing two basic types of oper-
ations on these equations to bring them into an easy-to-solve form called echelon form.
These operations are:

(A) adding a multiple of one equation to another;

(I) interchanging two equations; and

(M) [not used by us] multiplying an equation by a nonzero number.

These are called elementary operations on the system of linear equations, and the cor-
responding operations on matrices (we define matrices later) are called elementary row
operations.

These elementary operations (including (M)) are all invertible, and as a consequence
never change the set of solutions of a system of linear equations (see Coursework 4). It is
for this reason that we kept writing down equations we had seen previously, and not just
the new equations we had found. The whole system of linear equations is important, and
if we did not keep track of the whole system this then we might lose some information
on the way and inadvertently deduce more solutions to our equations than the original
equations had.

One should be careful how one annotates row operations. Please bear in mind that
we are operating on systems of equations, which should thus be linked by a brace (you
will lose marks for forgetting this). Writing R1 +2R2 does not tell me the row operation
you have performed. Does this mean add 2 copies of Row 2 to Row 1 (an operation you
would never use)? In that case, you could write R1 7→ R1 + 2R2 or R′

1 = R1 + 2R2. Or
does R1 + 2R2 replace Row 2? (This is not one of our basic operations, but I have still
seen it in work I had to mark.) During Gaußian elimination, failure to indicate the row
operations used, or indicating them ambiguously, is also liable to lose marks.
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Chapter 5

Gaußian Elimination and Echelon
Form

A linear equation in variables x1, x2, . . . , xn is of the form

a1x1 + a2x2 + · · ·+ anxn = d,

where a1, a2, . . . , an, d are scalars. The x1-term a1x1 is the first term, The x2-term a2x2 is
the second term, and in general the xi-term aixi is the ith term. In the case when n = 3,
we generally use a, b, c, x, y, z instead of a1, a2, a3, x1, x2, x3; thus a1x1 + a2x2 + a3x3 = d
becomes ax+ by + cz = d.

A linear equation a1x1+a2x2+· · ·+anxn = d is degenerate if a1 = a2 = · · · = an = 0;
otherwise it is non-degenerate. The equation can be degenerate even if d 6= 0.

5.1 Echelon form (Geometry I definition)

Before defining echelon form we make some comments. Firstly, echelon form is properly
a concept for matrices; we give an equivalent definition for systems of linear equations.
Secondly, there are 3 different definitions of echelon form, of varying strengths, and it is
possible that you may have encountered a different one previously. We use the weakest
of the definitions in this course. For this course, it is important that you understand
and use the definition of echelon form given below.

Definition 5.1. A system of linear equations in x1, x2, . . . , xn is in echelon form if every
non-degenerate equation begins with strictly fewer zero terms than each equation below
it and any degenerate equation occurs after (below) the non-degenerate equations.

Note that any system of linear equations in echelon form has at most n non-degenerate
equations (if any), but can have arbitrarily many degenerate equations (if any). A sys-
tem with no non-degenerate equations (or no equations whatsoever) is automatically
in echelon form. The right-hand sides of a system of linear equations play no rôle in
determining whether that system is in echelon form. We do not insist that the first
nonzero term of each non-degenerate equation be xi for some i. (This extra condition is
currently required in the MTH5112: Linear Algebra I definition of echelon form.)
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Example. As linear equations in the variables x, y, z, we have that:

• x+2y = 8 begins with 0 zero terms (the zero z-term does not begin the equation);

• 3y − 4z = −5 begins with 1 zero term;

• −5z = 2 begins with 2 zero terms;

• 0 = 0 and 0 = 5 both begin with 3 zero terms (the right-hand sides are irrelevant).

Thus the system of equations

x+ 2y = 8
3y − 4z = −5
− 5z = 2

0 = 0
0 = 5


is in echelon form.

Also, the following systems of equations are in echelon form:

x+ 2y = 3
3y − 4z = −5
− 5z = 4


x+ 2y = 3

− 5z = 4
0 = 0


x+ 2y = 3

− 5z = 4
0 = −5

 ,

and these are in echelon form too:

3y − 4z = −5
− 5z = 7

}
3y − 4z = −5

0 = 7

}
3y − 4z = −5

0 = 0

}
3y − 4z = −5

}
.

The following systems of equations are not in echelon form.

x+ 2y = 7
− 3z = 4

2y − 5z = −3


x+ 4y − z = −1

0 = 4
3y − 4z = −5


x+ 3y = 1

y + 4z = −2
y − 5z = 3

 .

In the last case, the last two equations commence with the same number (one) of zero
terms but are non-degenerate.

5.2 Gaußian elimination

We now describe the process of Gaußian elimination, which is used to bring a system
of linear equations (in x1, x2, . . . , xn or x, y, z, etc.) into echelon form. You must use
exactly the algorithm described here, even though other ways of reducing to (a
possibly different) echelon form may be mathematically valid.1 In particular, our
algorithm does not use the M-operations of Section 4.3; these are required in general for
reducing to the stronger versions of echelon form.

1The course MTH5112: Linear Algebra I uses a strictly stronger definition of echelon form than we
do, and consequently uses a slightly different version of Gaußian elimination than we do in MTH4103:
Geometry I. This modified version does require the M-operations of Section 4.3. You must not use the
Linear Algebra I version of Gaußian elimination in this course.
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Step 1. If the system is in echelon form then stop. (There is nothing to do.)
If each equation has zero x1-term then go to Step 2. (There are no x1-terms to

eliminate.)
If the first equation has a zero x1-term then interchange it with the first equation

that has nonzero x1-term. (So now the first equation has nonzero x1-term.)
Add appropriate multiples of the first equation to the others to eliminate their x1-

terms.

Step 2. (At this point, all equations except perhaps the first should have zero x1-term.)
If the system is in echelon form then stop.
If each equation with zero x1-term also has zero x2-term then go to Step 3.
If the first equation with zero x1-term has a zero x2-term then interchange it with

the first equation that has zero x1-term and nonzero x2-term. (So now the first equation
with zero x1-term has nonzero x2-term.)

Add appropriate multiples of the first equation with zero x1-term to the equations
below it to eliminate their x2-terms.

Step m for 3 6 m 6 n. (At this point, all equations except perhaps the first up to
m− 1 should have zero x1-, x2-, . . . , xm−1-terms. Each of these first 6 m− 1 equations
should begin with strictly more zero terms than their predecessors.)

If the system is in echelon form then stop.
If each equation with zero x1-, x2-, . . . , xm−1-terms also has zero xm-term then go to

Step m + 1. (This situation should only arise in the case when m < n; if m = n this
case should only ‘arise’ if you are already in echelon form [in which case you should have
stopped already].)

If the first equation with zero x1-, x2-, . . . , xm−1-terms also has zero xm-term, then
interchange it with the first equation having zero x1-, x2-, . . . , xm−1-terms and nonzero
xm-term.

Add appropriate multiples of the first equation with zero x1-, x2-, . . . , xm−1-terms to
the equations below it to eliminate their xm-terms.

If m = n then the system of equations should now be in echelon form, so you can
stop.

5.2.1 Notes on Gaußian elimination

1. If a degenerate equation of the form 0 = 0 is created at any stage, it can be
discarded, and the Gaußian elimination continued without it.

2. If a degenerate equation of the form 0 = d, with d 6= 0, is created at any stage
then the system of equations has no solutions, and the Gaußian elimination can
be stopped.

3. The operations required to bring a system of equations into echelon form are
independent of the right-hand sides of the equations. (Compare Examples 2 and
2′ in Section 4.2.)

37



Example. We perform Gaußian elimination on the following system of equations.

x + 2y + z = 2
x + 2y + 3z = −8

3x + 5y + 2z = 6
−2x− 2y + z = 0

 . (5.1)

Step 1. To eliminate the x-term in all equations but the first, we add −1 times the
first equation to the second, −3 times the first equation to the third, and 2 times the
first equation to the fourth. This gives:

x + 2y + z = 2
2z = −10

− y − z = 0
2y + 3z = 4

 .

Step 2. The first equation having zero x-term (the second) also has zero y-term. The
first equation having zero x-term and nonzero y-term is the third, so interchange the
second and third equations, to get:

x + 2y + z = 2
− y − z = 0

2z = −10
2y + 3z = 4

 .

Now that the second equation has zero x-term and nonzero y-term, use this to eliminate
y from the equations below it. To do this we need only add twice the second equation
to the fourth, to obtain:

x + 2y + z = 2
− y − z = 0

2z = −10
z = 4

 .

Step 3. We are still not in echelon form, and the first equation with zero x-term and
y-term has nonzero z-term. (This is the third equation.) We use the third equation to
eliminate z from all equations after the third (by adding −1

2
times the third equation to

the fourth). This gives:
x + 2y + z = 2
− y − z = 0

2z = −10
0 = 9

 .

This system of equations is now in echelon form, but has no solutions (as 0 = 9 has no
solutions). Hence the original system (5.1) has no solutions. Geometrically, this reflects
the fact that four planes of R3 generally have empty intersection.
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5.3 Solving systems of equations in echelon form

We now show how to find all solutions to a system of linear equations in echelon form.
If the system contains an equation an equation of the form 0 = d with d 6= 0, then
the system has no solutions, and we have nothing more to do. If the system has any
equations of the form 0 = 0, then throw these out, since they contribute no restriction on
the solution set whatsoever. Thus we may now only consider systems of linear equations
in echelon form which have no degenerate equations.

Definition. In a non-degenerate linear equation (written in standard form), the first
variable, reading left to right, in a nonzero term is called the leading variable of the
equation.

Example. In these examples, we assume that we have three variables x, y, z, in that
order. In the first three cases, the linear equation is in standard form; in the latter two
cases it is not.

• The leading variable of −x+ y = 3 is x.

• The leading variable of 3y − 2z = 7 is y.

• The leading variable of −4z = 8 is z.

• The standard form of z− y+2x− y = 4 is 2x− 2y+ z = 4, so the leading variable
is x.

• The equation x+(−1)x−3 = 4 is degenerate (it is equivalent to −3 = 4, or 0 = 7),
and so has no leading variable defined.

5.3.1 Back substitution

Back substitution is an algorithm to determine all the solutions to a system of non-
degenerate equations in echelon form. It proceeds as follows.

Step 1. Variables which are not leading variables of any of the equations in the system
can take arbitrary (real) values. Assign a symbolic value to each such non-leading
variable.2

Step 2. Given symbolic values for the non-leading variables, solve for the leading
variables, starting from the bottom and working up.

2In general, we shall want to apply this procedure when the equations are defined over fields F other
than R. In this case, the non-leading variables should take arbitrary values in F . You should see the
concept of field defined in MTH4104: Introduction to Algebra. (MTH4104 is compulsory for about half
of you this year, and strongly recommended for the rest of you next year.) Examples of fields are Q,
R and C (but not N or Z). You should have met all these sets in MTH4110: Mathematical Structures,
and gained some extra familiarity with C in MTH4101: Calculus II.
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Example 1. We apply back substitution to the following system of equations, which is
in echelon form:

x+ 3y − z = 7
z = 0

}
.

There is just one non-leading variable, namely y. Thus y can take any real value, say
y = t. We now solve for the leading variables x and z, starting with z.

The last equation gives z = 0. Therefore, the first equation gives x+ 3t+ 0 = 7, and
so x = 7 − 3t. Thus, the solutions of the system are x = 7 − 3t, y = t, z = 0, where t
can be any real number.

We remark that the intersection of the planes defined by these equations is thus
{ (7−3t, t, 0) : t ∈ R }, which is the set of points on the line having parametric equations:

x = 7− 3λ
y = λ
z = 0

 ,

and Cartesian equations x−7
−3

= y, z = 0.

Example 2. We apply back substitution to the following system of equations, which is
in echelon form:

x+ 3y + 5z = 9
2y + 4z = 6

3z = 3

 .

All the variables are leading in one of the equations. So we start immediately on Step 2.
The (third) equation 3z = 3 gives z = 1. Then the second equation becomes 2y+4 = 6,
whence we get that y = 1. Then the first equation becomes x+ 3 + 5 = 9, and so x = 1.
Therefore the only solution of this system of equations is x = y = z = 1.

Example 3. We apply back substitution to the following system of just one equation,
which is in echelon form:

2x− y + 3z = 5
}
.

The non-leading variables y and z can take arbitrary real values, say y = s and z = t.
We now solve for the only leading variable, x, using the only equation of the system. We
have 2x− s+ 3t = 5, so 2x = 5 + s− 3t, and hence x = 5

2
+ s

2
− 3t

2
. Thus the solutions

of the system are x = 5
2

+ s
2
− 3t

2
, y = s, z = t, where s and t can be any real numbers.

We remark that is follows that { (5
2

+ s
2
− 3t

2
, s, t) : s, t ∈ R } is the set of points on

the plane defined by 2x− y + 3z = 5.

5.4 Summary

To solve a system of linear equations, first use Gaußian elimination to bring the system
into echelon form, and then use back substitution to the system in echelon form, re-
membering to deal appropriately with degenerate equations along the way. You should
review your notes, starting at the beginning of Chapter 4, to see many examples of this.
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5.5 Intersection of a line and a plane

Consider a line ` defined by the parametric equations:

x = p1 + u1λ
y = p2 + u2λ
z = p3 + u3λ

 ,

and a plane Π defined by
ax+ by + cz = d.

We find the intersection of ` and Π by determining the λ for which

a(p1 + u1λ) + b(p2 + u2λ) + c(p3 + u3λ) = d. (5.2)

This gives one linear equation in one unknown λ. The solution is unique, except in the
degenerate case when au1 + bu2 + cu3 = 0, in which case ` is parallel to Π. In this case,
there are 0 or infinitely many solutions, depending on whether ` is in Π or not (which
is if and only if ap1 + bp2 + cp3 = d or not). Note that rearranging Equation 5.2 to
standard form for a linear equation in λ yields

(au1 + bu2 + cu3)λ = d− (ap1 + bp2 + cp3). (5.3)

So if Π and ` have vector equations r·n = d and r = p + λu respectively, we find that

(n·u)λ = d− n·p. (5.4)

(You should be able to work out what n, p and u are here.) Thus if n·u 6= 0 we get the
unique solution λ = (d− n·p)/(n·u).

Example. For example, let ` be the line with parametric equations:

x = 1 + 2λ
y = 2 + 3λ
z = −1− 4λ

 ,

and let Π be the plane defined by x − y + 2z = 3. To determine the intersection Π ∩ `
of Π and ` we solve

(1 + 2λ)− (2 + 3λ) + 2(−1− 4λ) = 3.

This gives −3 − 9λ = 3, or −9λ = 6, with unique solution λ = −2
3
. (If we wish to

use the formula below Equation 5.4 to calculate λ we note that d = 3, n·p = −3 and
n·u = −9.) Thus ` and Π intersect in the single point (x0, y0, z0), with

x0 = 1 + 2(−2
3
) = −1

3
,

y0 = 2 + 3(−2
3
) = 0,

z0 = −1− 4(−2
3
) = 5

3
.

As a set of points, the intersection ` ∩ Π of ` and Π is {(−1
3
, 0, 5

3
)}.
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Notation. Let A and B be sets. Then the intersection of A and B is denoted A ∩ B,
and is the set of elements that are in both A and B. The union of A and B is denoted
A ∪ B, and is the set of elements that are in A or B (or both). As a mnemonic, the
symbol ∩ resembles a lower case N, which is the second letter of intersection, and the
symbol ∪ resembles a lower case U, the first letter of union.

The following properties hold for ∩ and ∪, for all sets A, B, C. The last pair of
properties only makes sense in the presence of a ‘universal’ set E .

• A ∩B = B ∩ A and A ∪B = B ∪ A.

• A ∩ (B ∩ C) = (A ∩B) ∩ C and A ∪ (B ∪ C) = (A ∪B) ∪ C.

• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

• A ∩ A = A ∪ A = A.

• A ∩∅ = ∅ and A ∪∅ = A.

• A ∩ E = A and A ∪ E = E .

5.6 Intersection of two lines

Consider lines ` and m defined (respectively) by the parametric equations:

x = p1 + u1λ
y = p2 + u2λ
z = p3 + u3λ

 and
x = q1 + v1µ
y = q2 + v2µ
z = q3 + v3µ

 .

We find the intersection of ` and m by determining the λ and µ for which:

p1 + u1λ = q1 + v1µ,
p2 + u2λ = q2 + v2µ,
p3 + u3λ = q3 + v3µ.

This is equivalent to solving the following system of linear equations:

u1λ− v1µ = q1 − p1

u2λ− v2µ = q2 − p2

u3λ− v3µ = q3 − p3

 .

Note that, in general, we expect this system of equations to have no solution.

Example. In this example, the lines ` andm are defined (respectively) by the parametric
equations:

x = 1 + λ
y = 2 + 3λ
z = 1− 4λ

 and
x = 2 + 3µ
y = 1− µ
z = 3 + 2µ

 .
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Thus we must solve (for λ and µ) the following equations:

1 + λ = 2 + 3µ,
2 + 3λ = 1− µ,
1− 4λ = 3 + 2µ.


This is equivalent to the following system of linear equations:

λ− 3µ = 1
3λ + µ = −1

−4λ− 2µ = 2

 .

We now apply Gaußian elimination. Adding −3 times the first equation to the second
and 4 times the first equation to the third gives:

λ− 3µ = 1
10µ = −4

− 14µ = 6

 .

We now need to eliminate µ in the third equation. To do this add 7
5
[= −(−14

10
)] times

the second equation to the third, to get:

λ− 3µ = 1
10µ = −4

0 = 2
5

 .

There is no solution to this system (because of the equation 0 = 2
5
). Thus we conclude

that the lines ` and m do not meet. As a set of points, the intersection of ` and m is ∅,
the empty set.

Here, the lines ` and m are skew, that is, they do not meet in any point, but they are
not parallel either (since their direction vectors are not scalar multiples of each other).
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Chapter 6

The Vector Product

6.1 Parallel vectors

Suppose that u and v are nonzero vectors. We say that u and v are parallel, and write
u ‖ v, if u is a scalar multiple of v (which will also force v to be a scalar multiple of u).
Note that u and v are parallel if and only if they have the same or opposite directions,
which happens exactly when u and v are at an angle of 0 or π.

Example. The vectors

 1
2
−3

 and

 2
4
−6

 are parallel, but

 1
2
−3

 and

 −2
−4
−6


are not parallel.

The relation of parallelism has the following properties, where u, v and w are nonzero
vectors.

1. u ‖ u for all vectors u. [This property is called reflexivity.]

2. u ‖ v implies that v ‖ u. [This property is called symmetry.]

3. u ‖ v and v ‖ w implies that u ‖ w. [This property is called transitivity.]

A relation that is reflexive, symmetric and transitive is called an equivalence relation.
This concept was introduced in MTH4110: Mathematical Structures. Thus, parallelism
is a equivalence relation on the set of nonzero vectors

Note. A wording like “u and v are parallel if . . . ” presumes that the property of
parallelism is symmetric between u and v. This may be obvious from the definition that
follows, or else a proof would need to be supplied. If you want to define a concept that
is asymmetric (or not obviously symmetric), a wording like “u is parallel to v if . . . ” is
more appropriate. [Can you prove that the relations of parallelism and collinearity (see
below) are symmetric? Be careful of the zero vector for the latter relation.]

Also, when one provides more than one definition of a concept, one should prove the
equivalence of the definitions. Can you prove the various definitions of collinear to be
equivalent?
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6.2 Collinear vectors

It is useful to extend the notion of parallelism to pairs of vectors involving the zero
vector. However, we shall give this notion a different name, and call it collinearity. We
say that two vectors u and v are collinear if u = 0 or v = 0 or u and v are parallel
(this includes the case u = v = 0).

An equivalent definition of collinearity is that u and v are collinear if there exist
[real] numbers (scalars) α and β not both zero such that

αu + βv = 0. (6.1)

(This covers the case when one or both of u and v is 0, as well as the general case
when u and v are parallel.) The relation of collinearity is reflexive and symmetric (in all
dimensions), but is not transitive in dimension at least 2. However, it is nearly transitive
[not a technical term]: if u and v are collinear, and v and w are collinear, then either
u and w are collinear or v = 0 (or both).

Another definition of collinearity is that u and v are collinear if O, U and V all

lie on some [straight] line, where
−→
OU represents u and

−→
OV represents v. This line is

unique except in the case u = v = 0, that is O = U = V . Two diagrams illustrating
this concept are given below. In the left-hand one u and v are collinear, and in the
right-hand one they are not.
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Note. The word collinear is logically made up of two parts: the prefix co-, and the stem
linear. Thus it would seem that the logical spelling of collinear should be as colinear.
However, co- is a variant of com- or con-, roughly meaning ‘with’ or ‘together’, and this
assimilates to col- and cor- before words beginning with L and R respectively. Thus, in
contrast to words like coplanar, we get words like collinear and correlation since the plain
co- prefix is rare before words beginning with L and R. (The phenomenon of assimilation
also affects the prefix Latinate prefix in-, giving us words like impossible, immaterial,
illegal and irrational. The Germanic prefix un- is unaffected by this phenonemon.)

6.3 Coplanar vectors

We say that vectors u, v and w are coplanar if the points O, U , V , W all lie on some

plane, where
−→
OU ,

−→
OV ,

−→
OW represent the free vectors u, v, w respectively. (Note that

this definition is symmetric in u, v and w.) Thus we see that u, v, w are coplanar if and
only if either u and v are collinear or there exist scalars λ and µ such that w = λu+µv.
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From the above, we get the following symmetrical algebraic formulation of copla-
narity: u, v, w are coplanar if there exist [real] numbers (scalars) α, β, γ such that

αu + βv + γw = 0 and (α, β, γ) 6= (0, 0, 0). (6.2)

Note that to determine whether a particular triple u, v, w is coplanar, we can use the
above equation αu + βv + γw = 0, which induces 3 linear equations in the unknowns
α, β, γ (or n equations if u,v,w ∈ Rn rather than R3). These equations always have
the solution α = β = γ = 0, and u, v, w are coplanar if and only if the equations have
a solution other than α = β = γ = 0.

Example 1. If u = 0, v = 0 or w = 0 then u, v, w are coplanar. For example,
if u = 0, we can take α = 1, β = γ = 0 in Equation 6.2. Geometrically, the points
O, U , V , W consist of at most 3 distinct points, and any three points (in R3) lie on at
least one plane.

Example 2. Suppose that u and v are (nonzero and) parallel. Then v = λu for some
scalar λ. Therefore we have λu − v = 0, and so in Equation 6.2 we can take α = λ,
β = −1, γ = 0. Geometrically, O, U , V lie on one line (which is unique since U, V 6= O),
and so O, U , V , W lie on at least one plane (which is unique, except when W lies on
the line determined by O, U , V ).

Example 3. We let u =

 1
2
3

, v =

 4
5
6

 and w =

 7
8
9

. Then Equation 6.2

yields the following linear equations in α, β, γ:

α+ 4β + 7γ = 0
2α+ 5β + 8γ = 0
3α+ 6β + 9γ = 0

 .

Echelonisation gives the following system of equations:

α + 4β + 7γ = 0
− 3β − 6γ = 0

0 = 0

 .

Back substitution then gives the solution α = t, β = −2t, γ = t, where t can be any real
number. Setting t = 1 (any nonzero value will do), we see that u− 2v + w = 0, so that
u, v, w are coplanar.

Example 4. We let u =

 1
2
3

, v =

 2
3
1

 and w =

 3
1
2

. Then Equation 6.2

yields the following linear equations in α, β, γ:

α+ 2β + 3γ = 0
2α+ 3β + γ = 0
3α+ β + 2γ = 0

 .
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Echelonisation gives the following system of equations:

α+ 2β + 3γ = 0
−β − 5γ = 0

18γ = 0

 .

Thus we see that the only solution to this system of equations is α = β = γ = 0.
Therefore u, v, w are not coplanar.

6.4 Right-handed and left-handed triples

Suppose now that u, v, w are not coplanar. Pick an origin O in 3-space, and define

U , V , W by the condition that
−→
OU ,

−→
OV ,

−→
OW represent u, v, w respectively. We now

give three methods to determine whether we have a right-handed or left-handed triple.
You should try to convince yourselves of the equivalence of these methods. Some of the
results stated under the “finger exercises” (Section 6.4.1) are easier to prove with one of
these methods than another.

Method 1. We let the plane determined by U , V , W be the page of these notes. (Note
that U , V , W are not all on the same line, so that this plane is unique.) We now orient
ourselves so that O is in front of the page, which is the same side as us. (Note that
O cannot be on the page.) We now follow the vertices of the triangle UVW around
clockwise. If they occur in the order U, V,W (or V,W,U or W,U, V ) then the triple
is right-handed. Else, for the orders U,W, V and V, U,W and W,V, U , the triple is
left-handed.

If O is behind the page (the other side to us), then the anticlockwise orders U, V,W
and V,W,U and W,U, V give us a right-handed triple, while the anticlockwise orders
U,W, V and V, U,W and W,V, U give us a left-handed triple.

The following diagrams illustrate the situations that arise, where the page is the
plane containing U , V and W . Note that O being on the page would make u, v, w
coplanar, so this does not happen here.
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Method 2. We let the plane determined by O, U , V be the page of these notes. We
then look at the plane from the side such the angle from u to v proceeding anticlockwise
is between 0 and π. (If the anticlockwise angle lies between π and 2π then look at the
plane from the other side.) If w points ‘towards’ you, that is W is the same side of the
O,U, V -plane as you are, then u, v, w is right-handed. If w points ‘away from’ you then
u, v, w is left-handed.

Method 3. Using your right hand put your thumb in the direction of u, and your first
[index] finger in the direction of v. If W lies on the side of the plane through O, U , V
indicated by your second [middle] finger, we call u, v, w a right-handed triple; otherwise
it is a left-handed triple.

For any triple u, v, w of vectors, precisely one of the following properties holds: it
is coplanar, it is right-handed, or it is left-handed.

Examples. i, j, k is a right-handed triple. i, j, −k and k, j, i are both left-handed
triples.

Note. The vectors u, v, w forming a right-handed or left-handed triple need not be
mutually orthogonal, but they must not be coplanar.

6.4.1 Some finger exercises (for you to do)

If u, v, w are coplanar, then so is any triple that is a permutation of ±u, ±v, ±w,
for any of the 8 possibilities for sign. From now on, we assume that u, v, w are not
coplanar. The basic operations we can do to a triple of vectors are:

1. multiply one the vectors by a constant λ > 0;

2. negate one of them; or

3. swap two of them.

The first operation preserves the handedness of a triple, but the latter two operations
send right-handed triples to left-handed triples and vice versa. (Each of these operations
sends coplanar triples to coplanar triples.) Combining these operations, we see that
negating an even number of the vectors preserves handedness, while negating an odd
number of the vectors changes the handedness. One can convert u, v, w to each of
v, w, u and w, u, v using two swaps. Thus one sees that (in 3 dimensions) cycling
u, v, w does not change the handedness of the system. We have the following.

• If u, v, w is a right-handed triple, then the following triples are also right-handed:
u,v,w; v,w,u; w,u,v; u,−v,−w; −u,v,−w; −u,−v,w; u,−w,v; u,w,−v;
−u,w,v; w,v,−u; w,−v,u; −w,v,u; −w,−v,−u; and so on.

• If u, v, w is a right-handed triple, then the following triples are left-handed:
u,w,v; w,v,u; v,u,w; −u,v,w; u,−v,w; u,v,−w; −u,−v,−w; −v,−w,−u;
−w,−u,−v; w,−v,−u; −w,v,−u; −w,−v,u; and so on.
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6.5 The vector product

We now describe a method of multiplying two vectors to obtain another vector.

Definition 6.1. Suppose that u, v are nonzero non-parallel vectors (of R3) at angle θ.
Then the vector product or cross product u× v is defined to be the vector satisfying:

(i) |u× v| = |u||v| sin θ (note that sin θ > 0 here, since 0 < θ < π);

(ii) u× v is orthogonal to both u and v; and

(iii) u, v, u× v is a right-handed triple.

If u = 0 or v = 0 or u, v are parallel, then the vector product u× v is defined to be 0.
Thus |u × v| = 0 = |u||v| sin θ also holds when u and v are (nonzero and) parallel. A
picture illustrating a typical cross product appears below.
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Note. Occasionally, you will see the cross product u×v written as u∧v. However, this
wedge product properly means something else, so you should not use such a notation.

We note that if u, v are nonzero and non-parallel, then |u×v| > 0 (so that u×v 6= 0);
otherwise |u × v| = 0 (so that u × v = 0). In particular, for all vectors u, we have
u× u = 0. Further, we note that i× j = k, since:

(i) |k| = 1 = 1× 1× 1 = |i||j| sin π
2
;

(ii) k is orthogonal to both i and j; and

(iii) i, j, k is a right-handed triple.

Similarly, we get the following table of cross products:

i j k
i 0 k −j
j −k 0 i
k j −i 0

where the entry in the u row and v column is u× v.
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6.6 Properties of the vector product

For all vectors u, v, w, and for all scalars α, the following properties hold

1. v × u = −(u× v);

2. (αu)× v = α(u× v) and u× (αv) = α(u× v);

3. u·(v ×w) = v·(w × u) = w·(u× v) and
u·(w × v) = w·(v × u) = v·(u×w) = −[u·(v ×w)];

4. u·(v ×w) = (u× v)·w;

5. (u + v)×w = (u×w) + (v ×w) and u× (v + w) = (u× v) + (v ×w).

The proofs of these will be done below, with some other necessary results interspersed.
We also note the result that the vector product is not associative, that is in general
u × (v × w) 6= (u × v) × w, even though both sides of this are always defined. We
leave it as an exercise to find an example of this non-equality. There are, however,
triples u, v, w of vectors such that u × (v ×w) = (u × v) ×w; for example, we have
i× (j× k) = i× i = 0 = k× k = (i× j)× k. Nor is the vector product commutative.

In the proofs below, we shall make use of certain facts without noting them explictly.
One such fact is that collinearity is a symmetric relation. That is, u and v are collinear
if and only if v and u are collinear.

Theorem 6.2. For all vectors u and v we have v × u = −(u × v). This property is
called anti-commutativity.

Note. The fact that the vector product is anti-commutative does not prove that it fails
to be commutative. It could be that u×v = 0 for all u and v, or that −(u×v) = u×v
even when u× v 6= 0. You must exhibit an explicit example to show that the vector
product is not commutative, for example i × j = k 6= −k = j × i. (In some situations
there may be more subtle ways to show a property does not always hold, but the explicit
example still seems to be the best approach.)

Proof. If u = 0 or v = 0 or u and v are parallel (that is if u and v are collinear) then
v × u = 0 = −0 = −(u × v). Otherwise, we let θ be the angle between u and v, and
let w = u × v. Now |−w| = |w| = |u||v| sin θ = |v||u| sin θ, −w is orthogonal to u, v
(since w is), and v, u, −w is a right-handed triple. Thus v× u = −w = −(u× v).

Theorem 6.3. For all vectors u and v and all scalars α we have (αu)×v = α(u×v) =
u× (αv).

Proof. We prove the first of these of equalities only. The proof of the other is similar
and is left as an exercise (on Coursework 5). Alternatively, we can use properties we
will have already established, for we have

u× (αv) = −((αv)× u) = −(α(v × u)) = −(α(−(u× v))) = α(u× v).
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If u = 0 or v = 0 or u, v are parallel or α = 0 then (αu)×v = 0 = α(u×v). Otherwise
(when α 6= 0 and u,v not collinear), we let θ be the angle between u and v, and let
w = u× v. The angle between αu and v is θ if α > 0 and π − θ if α < 0, and we have

|αw| = |α||w| = |α||u||v| sin θ = |αu||v| sin θ = |αu||v| sin(π − θ).

Moreover, αw is orthogonal to αu and v (since w is orthogonal to u and v), and αu, v,
αw is a right-handed triple (whether α > 0 or α < 0). Thus (αu)× v = α(u× v).

6.6.1 The area of a parallelogram and triangle

In this subsection, we prove formulae involving the vector product for areas of parallel-
ograms and triangles having sides that represent the vectors u and v.

Definition. Two geometric figures are said to be congruent if one can be obtained from
the other by a combination of rotations, reflexions and translations. A figure is always
congruent to itself, and two congruent figures always have the same area (if indeed they
have an area at all: some really really weird bounded figures do not have an area).
Two geometric figures are said to be similar if one can be obtained from the other by
a combination of rotations, reflexions, translations, and scalings by nonzero amounts.
Both congruence and similarity are equivalence relations on the set of geometric figures.

Theorem 6.4. Let
−→
OU and

−→
OV represent u and v respectively, and let W be the point

making OUWV into a parallelogram. Then the parallelogram OUWV has area |u× v|
and the triangle OUV has area 1

2
|u× v|.

Proof. If u = 0, v = 0 or u and v are parallel then u× v = 0 and O,U, V,W all lie on
the same line, so that the (degenerate) parallelogram OUWV and triangle OUV both
have area 0 = |u×v| = 1

2
|u×v|. For the rest of the proof, we assume that u and v are

not collinear, and for clarity, we also refer to the diagram below.
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Otherwise, let ` be the line through O and U , and let X and Y be the points on ` with
V X and WY perpendicular to `. Let θ be the angle between u and v. Now triangles
OXV and UYW are congruent, and thus have the same area, and so OUWV has the
same area as the rectangle XYWV , which is:

|
−→
VW ||

−→
V X| = |u|(|v| sin θ) = |u× v|.
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The triangles OUV and WUV are congruent triangles covering the whole of the paral-
lelogram OUWV without overlap (except on the line UV of area 0). Thus OUV has
half the area of OUWV , that is 1

2
|u× v|.

6.6.2 The triple scalar product

Definition. The triple scalar product of the ordered triple of vectors u, v, w is u·(v×w).
Note that we have not defined the cross product of a scalar and a vector (either way
round), and so u× (v·w) and (u·v)×w do not exist.

Theorem 6.5. The volume of a parallelepiped with sides corresponding to u, v and w
(as per the diagram below) is |u·(v ×w)|.
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Proof. Each face of a parallelepiped is a parallelogram, and here the base is a parallelo-
gram with sides corresponding to v and w. Thus the parallelepiped has volume

V = area of base× perpendicular height = |v ×w| × perpendicular height,

by Theorem 6.4. If v × w = 0 or u = 0 then V = 0 = |u·(v × w)|. Otherwise, the
perpendicular height is ||u| cosϕ| = |u||cosϕ| where ϕ is the angle between u and v×w,
since v ×w is orthogonal to the base. Thus

V = |v ×w||u||cosϕ| = ||u||v ×w| cosϕ| = |u·(v ×w)|,

by the definition of the scalar product.

Remark. The volume of the tetrahedron determined by u, v and w is 1
6
|u·(v × w)|.

The volume is calculated as 1
3
× base area× perpendicular height. The tetrahedron has

four vertices, namely O, U , V and W , and four triangular faces, which are OUV , OVW ,
OWU and UVW (see diagram above).

When is a triple scalar product 0? positive? negative?

We have u·(v × w) = 0 if and only if the volume of a parallelepiped with sides cor-
responding to u, v, w is 0, which happens exactly when u, v and w are coplanar.
Otherwise, we consider the following diagram (on the next page), where ϕ 6= π

2
, since

we do not wish to have U in the plane determined by O, V and W .
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(ϕ 6= π
2
)

Now v ×w is orthogonal to the plane Π through O, V and W , and v, w, v ×w is
a right-handed triple. Also, u·(v×w) = |u||v×w| cosϕ, where ϕ is the angle between
u and v ×w.

If u·(v × w) > 0 then 0 6 ϕ < π
2
, and so U is on the same side of Π as X. This

implies that v, w, u is a right-handed triple, and thus so is u, v, w.
If u·(v × w) < 0 then π

2
< ϕ 6 π, and so U is on the other side of Π to X. This

implies that v, w, u is a left-handed triple, and thus so is u, v, w.
Thus we conclude the following.

1. u·(v ×w) = 0 if and only if u, v and w are coplanar.

2. u·(v ×w) > 0 if and only if u, v, w is a right-handed triple.

3. u·(v ×w) < 0 if and only if u, v, w is a left-handed triple.

Theorem 6.6. For all vectors u, v and w we have u·(v×w) = v·(w×u) = w·(u×v).
Thus u·(w × v) = w·(v × u) = v·(u×w) = −[u·(v ×w)] for all vectors u, v and w.

Proof. We prove the first line. The second line follows from the first, together with
anti-commutativity of the cross product and various properties of the dot product.

In absolute terms, each of these triple products (u·(v×w), v·(w×u) and w·(u×v))
gives the volume V of a parallelepiped with sides corresponding to u, v and w.

If u, v and w are coplanar then each triple product gives V = 0.
If u, v, w is a right-handed triple, then so are v, w, u and w, u, v, and each triple

product gives +V .
If u, v, w is a left-handed triple, then so are v, w, u and w, u, v, and each triple

product gives −V .

Theorem 6.7. For all vectors u, v and w we have u·(v ×w) = (u× v)·w.

Proof. We have (u × v)·w = w·(u × v) = u·(v ×w), using commutativity of the dot
product followed by the previous theorem.
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6.6.3 The distributive laws for the vector product

Theorem 6.8. For all vectors u, v and w we have (u + v) ×w = (u ×w) + (v ×w)
and u× (v + w) = (u× v) + (u×w).

Proof. We prove just the first of these. Let t be any vector. Then we have

t·((u + v)×w) = (u + v)·(w × t) (by Theorem 6.6)
= u·(w × t) + v·(w × t) (by Distributive Law for ·)
= t·(u×w) + t·(v ×w) (by Theorem 6.6)

Therefore we have

0 = t·((u + v)×w)− t·(u×w)− t·(v ×w)
= t·(((u + v)×w)− (u×w)− (v ×w))

Let s = ((u+v)×w)−(u×w)−(v×w). Since t can be any vector we have s·t = t·s = 0
for every vector t, and so by the Feedback Question (Part (c)) of Coursework 2, we must
have s = 0. Thus (u + v)×w = (u×w) + (v ×w), as required.

The proof of the second equality has a similar proof to the first, or it can be deduced
from the first using the anti-commutative property of the vector product.

6.7 The vector product in coördinates

We now use the rules for the vector product we have proved to find a formula for the
vector product of two vectors given in coördinates.

Theorem 6.9. Let u =

 u1

u2

u3

 and v =

 v1

v2

v3

. Then we have:

u× v =

 u1

u2

u3

×

 v1

v2

v3

 =

 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 .

Proof. We have u = u1i+ u2j+ u3k and v = v1i+ v2j+ v3k. Therefore, the distributive
and scalar multiplication laws (Theorems 6.3 and 6.8) give us:

u× v = (u1i + u2j + u3k)× (v1i + v2j + v3k)

= (u1i× v1i) + (u1i× v2j) + (u1i× v3k) + (u2j× v1i)
+(u2j× v2j) + (u2j× v3k) + (u3k× v1i) + (u3k× v2j) + (u3k× v3k)

= u1v1(i× i) + u1v2(i× j) + u1v3(i× k) + u2v1(j× i)
+u2v2(j× j) + u2v3(j× k) + u3v1(k× i) + u3v2(k× j) + u3v3(k× k)

= 0 + u1v2k + u1v3(−j) + u2v1(−k) + 0 + u2v3i + u3v1j + u3v2(−i) + 0

= (u2v3 − u3v2)i + (−u1v3 + u3v1)j + (u1v2 − u2v1)k

= (u2v3 − u3v2)i− (u1v3 − u3v1)j + (u1v2 − u2v1)k,

which is the result we wanted.
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There is a more useful way to remember this formula for u× v. We define:∣∣∣∣ a b
c d

∣∣∣∣ := ad− bc,

which is the determinant of the 2 × 2 matrix

(
a b
c d

)
. We have

∣∣∣∣ a b
c d

∣∣∣∣ =

∣∣∣∣ a c
b d

∣∣∣∣.
Then we have:

u× v =

∣∣∣∣ u2 v2

u3 v3

∣∣∣∣ i +

∣∣∣∣ u3 v3

u1 v1

∣∣∣∣ j +

∣∣∣∣ u1 v1

u2 v2

∣∣∣∣k =

∣∣∣∣ u2 v2

u3 v3

∣∣∣∣ i− ∣∣∣∣ u1 v1

u3 v3

∣∣∣∣ j +

∣∣∣∣ u1 v1

u2 v2

∣∣∣∣k.
Example. Let u =

 2
−5
7

 and v =

 −3
−1
4

. Then

u× v =

∣∣∣∣−5 −1
7 4

∣∣∣∣ i− ∣∣∣∣ 2 −3
7 4

∣∣∣∣ j +

∣∣∣∣ 2 −3
−5 −1

∣∣∣∣k
= (−20− (−7))i− (8− (−21))j + (−2− 15)k = −13i− 29j− 17k.

In order to check (not prove) that we have calculated u × v correctly, we evaluate the
scalar products u·w and v·w, where we have calculated u × v to be w. Both scalar
products should be 0 since u·(u× v) = v·(u× v) = 0.

Example. We find the volume of a parallelepiped with sides corresponding to the vectors

u =

 3
5
−1

, v =

 −1
5
1

 and w =

 −5
3
2

. This volume is |u·(v ×w)|. We have

v ×w =

∣∣∣∣ 5 3
1 2

∣∣∣∣ i− ∣∣∣∣−1 −5
1 2

∣∣∣∣ j +

∣∣∣∣−1 −5
5 3

∣∣∣∣k = 7i− 3j + 22k.

Thus u·(v ×w) = 3(7) + 5(−3) + (−1)(22) = 21 − 15 − 22 = −16, and so the volume
is | − 16| = 16. Note that u, v, w is a left-handed triple, since u·(v ×w) < 0.

6.8 Applications of the vector product

6.8.1 Distance from a point to a line

Let P be a point, and let ` be a line with vector equation r = a + λu (so that u 6= 0),
where a is the position vector of the point A lying on ` (see diagram).
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............
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Let v be the vector represented by
−→
AP , so that v = p−a, where p is the position vector

of P . Suppose that P is not on `, and let θ be the angle between u and v. If X is a [or
rather the] point on ` nearest to P then angle AXP is π

2
, and the distance from P to `

is:

|
−→
PX| = |

−→
AP | sin θ = |v| sin θ =

|u× v|
|u|

=
|v × u|
|u|

=
|(p− a)× u|

|u|
.

Note that when P is on ` then v is a scalar multiple of u, and |u× v|/|u| = 0, which is
the correct distance from P to ` in this case also.

You should compare this to the result obtained in Section 3.5, taking due account of
the different labelling used in that section. The result that |a×b| =

√
|a|2|b|2 − (a·b)2

for all vectors a and b (proof exercise) should also prove to be useful here.

Example. Find the distance from P = (−3, 7, 4) to the line ` with vector equation

r =

 2
−2
−3

 + λ

 4
−5
3

. Here a =

 2
−2
−3

, A = (2,−2,−3) and u =

 4
−5
3

. So

−→
AP represents v = p− a =

 −3
7
4

−

 2
−2
−3

 =

 −5
9
7

. Now

u× v =

∣∣∣∣−5 9
3 7

∣∣∣∣ i− ∣∣∣∣ 4 −5
3 7

∣∣∣∣ j +

∣∣∣∣ 4 −5
−5 9

∣∣∣∣k =

 −62
−43
11

 .

Therefore |u×v| =
√

(−62)2 + (−43)2 + 112 =
√

3844 + 1849 + 121 =
√

5814 = 3
√

646

and |u| =
√

42 + (−5)2 + 32 =
√

50 = 5
√

2, and thus we conclude that the distance is

|u× v|
|u|

=
3
√

646

5
√

2
=

3
√

323

5
.

(Note that we have v×u = (p−a)×u = −(u×v), and so |v×u| = |(p−a)×u| = |u×v|.)

6.8.2 Distance between two lines

We derive a formula for the distance between lines ` and m having vector equations

r = a + λu and r = b + µv

respectively. (By distance between ` and m, we mean the shortest distance from a point
on ` to a point on m.) For the vector equations above to be valid, we require that u 6= 0
and v 6= 0. If u and v are parallel, then this distance is the distance from P to m, where
P is any point on `.

So from now on, we assume that u and v are not parallel (and are nonzero). Let
−→
PQ

be a shortest directed line segment from a point on ` to a point on m. This situation is
shown in the diagram below (on the next page).

56



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��H

H
H
H
H
H
H
H
H
H
HH

H
H
H

H
H
H

H
H

H
H
HH

�
�

��

H
H

HH

s

s
s

s .

.........................
.........................

.

..........

..........

..... ......................
...

.
..................

.................

.
...........
.........

...................

.
.......................................

P

Q

A

B

m

`

u

v

w

Then the vector w represented by
−→
PQ is orthogonal to both u and v, and so must be a

scalar multiple of u× v. Thus

w = q− p = α(u× v),

for some scalar α, where p and q are (respectively) the position vectors of P and Q.
Now P is on ` and so p = a + λu for some λ, and Q is on m and so q = b + µv for
some µ. Therefore, q− p = α(u× v) = b− a + µv − λu, and thus:

α|u× v|2 = α(u× v)·(u× v)
= (b− a + µv − λu)·(u× v)
= (b− a)·(u× v) + µ(v·(u× v))− λ(u·(u× v))
= (b− a)·(u× v),

where the last step holds since u·(u× v) = v·(u× v) = 0. So we obtain

α =
(b− a)·(u× v)

|u× v|2
.

Thus the length of
−→
PQ is

|
−→
PQ| = |w| = |α||u× v| = |(b− a)·(u× v)|

|u× v|
,

and this is the distance between ` and m. This formula does not apply when u and v
are parallel (it becomes 0

0
, which is not helpful).

Example. We calculate the distance between the lines ` and m having vector equations
r = a + λu and r = b + µv respectively, where

a =

 0
4
−1

 , u =

 1
−3
−2

 , b =

 2
−1
0

 and v =

 −3
1
2

 .

We have b− a = 2i− 5j + k and

u× v =

 1
−3
−2

×

−3
1
2

 =

∣∣∣∣−3 1
−2 2

∣∣∣∣ i− ∣∣∣∣ 1 −3
−2 2

∣∣∣∣ j +

∣∣∣∣ 1 −3
−3 1

∣∣∣∣k =

 −4
4
−8

 .
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Thus we get (b−a)·(u×v) = −8−20−8 = −36 and |u×v| =
√

(−4)2 + 42 + (−8)2 =√
16 + 16 + 64 =

√
96 = 4

√
6. Therefore the distance from ` to m is

|(b− a)·(u× v)|
|u× v|

=
| − 36|√

96
=

36

4
√

6
=

9√
6

[
=

3
√

3√
2

=
3
√

6

2

]
.

6.8.3 Equations of planes (revisited)

Let Π be a plane, and let u be a nonzero vector. We say that Π is parallel to u (or u is

parallel to Π) if there are points A and B on Π such that
−→
AB represents u.
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Two planes Π and Π′ are parallel if every nonzero vector parallel to one is parallel to the
other. Now suppose that u and v are nonzero non-parallel vectors. Then n := u× v is
a nonzero vector orthogonal to both u and v. Thus if Π is a plane through the point P
and parallel to both u and v then n[6= 0] is orthogonal to Π and a vector equation for
Π is

r·n = p·n,

where p is the position vector of P . (In the diagram below, P can be taken to correspond
to A.)

We are also interested in the equation of a plane determined by three points which
do not all lie on the same line. So let A, B and C be three points which do not all lie
on the same line, let a, b and c be their position vectors, and let Π be the unique plane
containing A, B and C. One possible vector equation of Π is r = a+λ(b−a)+µ(c−a),
and this was given in Section 3.3. But we really want an equation of the form r·n = p·n,
where p is the position vector of a point in Π and n is orthogonal to Π. So we can take
p = a. But how can we determine a suitable normal vector n?

We note that Π is parallel to the vectors u := b − a and v := c − a represented

by
−→
AB and

−→
AC respectively. Then u and v are nonzero non-parallel vectors. Therefore

u×v is a nonzero (proof exercise) vector perpendicular to u and v, and thus orthogonal
to Π, and so we can take n = u× v.
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Finally, we find the plane determined by two points and a vector. So let A and B
be points having position vectors a and b respectively. We now examine the plane Π
containing points A and B and parallel to v, where u := b− a and v are not collinear
(which in particular means that v 6= 0 and A 6= B). Then Π has vector equation
r·n = a·n where n = u× v = (b− a)× v. (The diagram is relevant to this case too.)

Example 1. We determine a Cartesian equation for the plane Π through the point

A = (3, 4, 1) and parallel to u =

 1
3
−1

 and v =

 2
1
3

. We have

n = u× v =

∣∣∣∣ 3 1
−1 3

∣∣∣∣ i− ∣∣∣∣ 1 2
−1 3

∣∣∣∣ j +

∣∣∣∣ 1 2
3 1

∣∣∣∣k = 10i− 5j− 5k =

 10
−5
−5

 .

A vector equation for Π is

r ·

 10
−5
−5

 =

 3
4
1

·

 10
−5
−5

 ,

and so a Cartesian equation is 10x− 5y − 5z = 5, which is equivalent to 2x− y − z = 1
(after dividing through by 5).

Example 2. We determine a Cartesian equation for the plane Π through the points
A = (1, 2, 4), B = (2, 4, 1) and C = (4, 1, 2). Then Π is parallel to:

u = b−a =

 2
4
1

−

 1
2
4

 =

 1
2
−3

 and v = c−a =

 4
1
2

−

 1
2
4

 =

 3
−1
−2

,
and so Π is orthogonal to n = u× v = −7i− 7j− 7k. Since A is also on Π a Cartesian

equation for Π is −7x − 7y − 7z = a·n =

 1
2
4

·

 −7
−7
−7

 = −49, or equivalently

x + y + z = 7. Since we can take n to be a nonzero scalar multiple of u × v, we could
have taken n = i + j + k, which would have led directly to the Cartesian equation
x + y + z = 7. (As a check, we can verify that A, B and C lie on the plane defined by
this equation.)
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6.9 Is the cross product commutative or associative?

We have already indicated that it is neither. For example, i × j = k 6= −k = j × i and
i × (i × j) = −j 6= 0 = (i × i) × j. It is important to give explicit examples when the
equalities fail to hold (or to somehow establish by stealth that such examples exist). In
particular, we should not use the anti-commutative law (Theorem 6.2) to prove that
the vector product is not commutative. This is because:

(i) It could be the case that u × v = 0 for all u and v, in which case the vector
product would be both commutative and anti-commutative. (It may seem obvious
that the vector product is not always zero; the point is that this property must
still be explicitly checked [once].)

(ii) Even if u × v 6= 0, it could still be the case that u × v is equal to a vector w
having the properties that w = −w and w 6= 0. (There are mathematical systems
in which this can happen. However, R3 is not one of them, see Lemma 6.10 below.)

We shall classify all pairs u,v of vectors such that u× v = v× u and all triples u,v,w
of vectors such that u× (v ×w) = (u× v)×w.

Lemma 6.10. Let w be a vector (in R3, or even Rn) such that w = −w. Then w = 0.

Proof. Adding w to both sides of w = −w gives 2w = 0, and then multiplying both
sides by 1

2
gives w = 0, as required.

Theorem 6.11. Let u and v be vectors. Then u × v = v × u if and only if u and v
are collinear, which is if and only if u× v = 0.

Proof. If u and v are collinear then u × v = v × u = 0. If u and v are not collinear
u 6= 0, v 6= 0, and the angle θ between u and v satisfies 0 < θ < π, and so sin θ > 0.
Thus, from the definition of u× v, we get |u× v| = |u||v| sin θ > 0, whence u× v 6= 0.
Then the previous lemma (Lemma 6.10) gives us that u× v 6= −(u× v) = v × u.

6.9.1 The triple vector product(s)

Definition. The triple vector products of the ordered triple of vectors u, v, w are defined
to be u× (v ×w) and (u× v)×w.

Theorem 6.12. For all vectors u, v, w we have u× (v ×w) = (u·w)v − (u·v)w and
(u× v)×w = (u·w)v − (v·w)u

Proof. A somewhat tedious calculation using coördinates can prove this result, and this
is left as an exercise for the reader.
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Some aspects of this result can be proved geometrically. We let p = v × w and q =
u× (v×w), and suppose that v and w are not collinear. (It is annoying that the case
when v, w are collinear must be treated separately. But the first equality is fairly easy
to prove in this case.) Since p = v × w is orthogonal to v, w and q = u × p, we see
that the point with position vector q must be in the plane determined by O, v and w.
That is q = αv + βw for some scalars α and β. The requirement that q be orthogonal
to u determines the ratio between α and β.

Theorem 6.13. Let u, v and w be vectors. Then u × (v ×w) = (u × v) ×w if and
only (u·v)w = (v·w)u. The latter condition holds if and only if one (or both) of the
following hold:

1. u and w are collinear; or

2. v is orthogonal to both u and w.

Proof. We take the formulae for u × (v ×w) and (u × v) ×w given in Theorem 6.12.
Thus u× (v ×w) = (u× v)×w if and only if

(u·w)v − (u·v)w = (u·w)v − (v·w)u. (6.3)

We now perform the reversible operations of subtracting (u·w)v from both sides of (6.3)
followed by negating both sides, to get that u × (v × w) = (u × v) × w if and only
if (u·v)w = (v·w)u. If u and w are collinear, then u = 0 or w = 0 or u = λw for
some λ. In the first two cases we get (u·v)w = (v·w)u = 0, and in the last case we get
(u·v)w = (v·w)u = (λ(u·v))u. If u and w are not collinear, then (u·v)w = (v·w)u
if and only if −(v·w)u + (u·v)w = 0, which happens if and only if v·w = u·v = 0 by
the definition of collinear, see Equation 6.1 of Section 6.2. But v·w = u·v = 0 if and
only if v is orthogonal to both u and w.

61



Chapter 7

Matrices

Definition. An m×n matrix is an array of numbers set out in m rows and n columns,
where m,n ∈ N = {0, 1, 2, 3, . . .}. (See Section 7.9 for the case m = 0 or n = 0.)

Examples. 1.

(
1 −1 5
2 0 6

)
has 2 rows and 3 columns, and so it is a 2× 3 matrix.

2.


1 0
7 −1√
2 3

3 1

 is a 4× 2 matrix.

3.

 1 2 3
4 5 6
7 8 9

 is a 3× 3 matrix.

4. A vector

 a
b
c

 is a 3× 1 matrix.

The word matrix was introduced into mathematics in 1850 by James Joseph Sylvester
(1814–1897), though the idea of writing out coefficients of equations as rectangular arrays
of numbers dates back to antiquity (there are Chinese examples from about 200bc),
and Carl Friedrich Gauß (1777–1855) used this notation in his work on simultaneous
equations. Sylvester and Arthur Cayley (1821–1895) developed the theory of matrices
we use today, and which we shall investigate in this chapter.

We write A = (aij)m×n to mean that A is an m× n matrix whose (i, j)-entry is aij,
that is, aij is in the i-th row and j-th column of A. For an m × n matrix A, we write
Aij or Ai,j for the (i, j)-entry of A; thus if A = (aij)m×n then Aij = aij. If A = (aij)m×n
then

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ,

and we say that A has size m× n. An n× n matrix is called a square matrix.
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Example. Let

A = (aij)2×2 =

(
a11 a12

a21 a22

)
=

(
2 −1
4 3

)
.

Then A is a square matrix of size 2 × 2. The (1, 2)-entry of A is a12 = −1, and the
(2, 2)-entry of A is a22 = 3.

Example. We write out in full A = (aij)3×2 with aij = i(i+ j).

A =

 a11 a12

a21 a22

a31 a32

 ,

with
a11 = 1(1 + 1) = 2, a12 = 1(1 + 2) = 3,
a21 = 2(2 + 1) = 6, a22 = 2(2 + 2) = 8,
a31 = 3(3 + 1) = 12, a32 = 3(3 + 2) = 15,

and so

A =

 2 3
6 8

12 15

 .

Definition. Matrices A and B are equal if they have the same size and the same (i, j)-
entry for every possible value of i and j. That is, if A = (aij)m×n and B = (bij)p×q, then
A and B are equal if and only if p = m, q = n and aij = bij for all i, j with 1 6 i 6 m
and 1 6 j 6 n.

Notation. 0mn is the m × n matrix with every entry 0. The matrix 0mn may also be
denoted by 0m,n or 0m×n, especially in cases of ambiguity. (For example, does 0234 mean
023×4 or 02×34?) We call 0mn = 0m,n = 0m×n the zero m× n matrix.

For example, 023 = 02,3 = 02×3 =

(
0 0 0
0 0 0

)
is the zero 2× 3 matrix.

Notation. In is the n×nmatrix with (1, 1)-entry = (2, 2)-entry = · · · = (n, n)-entry = 1
and all other entries 0. We call In the identity n × n matrix. Note that In is always a
square matrix. For example, we have:

I3 =

 1 0 0
0 1 0
0 0 1

 and I2 =

(
1 0
0 1

)
.

Another way to express this definition is that In is the unique n × n matrix having all
its (top-left to bottom-right) diagonal entries equal to 1 and all other entries 0. Note
that by the diagonal of a square matrix, we always mean its top-left to bottom-right
diagonal; we are not generally interested in the bottom-left to top-right diagonal.
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7.1 Addition of matrices

If A = (aij)m×n and B = (bij)m×n then A+ B is defined to be the m× n matrix whose
(i, j)-entry is aij + bij.

Note. We can only add matrices of the same size.

If A = (aij)m×n, the negative of A, written −A, is defined to be the m × n matrix
whose (i, j)-entry is −aij. Thus −A = D, where D = (dij)m×n with dij = −aij.

Examples. We have(
1 2 −3
4 −5 6

)
+

(
1 1 2

−2 1 3

)
=

(
2 3 −1
2 −4 9

)
and

−
(

1 −2
−3 4

)
=

(
−1 2

3 −4

)
.

7.2 Rules for matrix addition

The next theorem states that matrix addition is associative and commutative. Further-
more, the is an identity element for matrix addition, and each matrix has an inverse
under the operation of matrix addition.

Theorem 7.1. Let A, B and C be m× n matrices. Then

(i) (A+B) + C = A+ (B + C),

(ii) A+B = B + A,

(iii) A+ 0mn = 0mn + A = A, and

(iv) A+ (−A) = (−A) + A = 0mn[= 0m×n].

Proof. (i): Let A = (aij)m×n, B = (bij)m×n and C = (cij)m×n. Then A+B is an m× n
matrix whose (i, j)-entry is aij + bij and so (A + B) + C is an m × n matrix whose
(i, j)-entry is (aij + bij) + cij.

Similarly, B+C is an m×n matrix whose (i, j)-entry is bij + cij and so A+(B+C)
is an m× n matrix whose (i, j)-entry is aij + (bij + cij). The result follows, since

(aij + bij) + cij = aij + (bij + cij)

by the associative law for addition of real numbers.

Proofs of (ii), (iii) and (iv): exercises for you.
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7.3 Scalar multiplication of matrices

Let A = (aij)m×n and let α be a scalar (that is, a real number). Then αA is defined to
be the m× n matrix whose (i, j)-entry is αaij. Thus αA := B where B = (bij)m×n with
bij = αaij for all i and j. Note that (−1)A = −A.

Examples. We have

3

−1 3
2 5

−7 6

 =

 −3 9
6 15

−21 18


and

(−2)

(
1 −2
3 4

)
+ 4

(
0 1
1 0

)
=

(
−2 4
−6 −8

)
+

(
0 4
4 0

)
=

(
−2 8
−2 −8

)
.

7.4 Rules for scalar multiplication

Theorem 7.2. Let A and B be m× n matrices and let α and β be scalars. Then:

(i) α(A+B) = αA+ αB,

(ii) (α+ β)A = αA+ βA,

(iii) α(βA) = (αβ)A,

(iv) 1A = A, and

(v) 0A = 0mn[= 0m×n].

Proof. (i): Let A = (aij)m×n, B = (bij)m×n. Then A+B is an m× n matrix with (i, j)-
entry aij+bij and α(A+B) is an m×n matrix with (i, j)-entry α(aij+bij) = αaij+αbij.
But αA is an m×n matrix with (i, j)-entry αaij and αB is an m×n matrix with (i, j)-
entry αbij, and so αA+ αB is an m× n matrix with (i, j)-entry αaij + αbij.

(iii): Let A = (aij)m×n. Then βA is an m×n matrix with (i, j)-entry βaij and so α(βA)
is an m × n matrix with (i, j)-entry α(βaij) = (αβ)aij. But (αβ)A is also an m × n
matrix with (i, j)-entry (αβ)aij.

Proofs of (ii), (iv), (v): exercises for you.

7.5 Matrix multiplication

This is rather more interesting and more complicated than scalar multiplication. It will
become clearer later why we define matrix multiplication in the way that we do.

Let A = (aij)m×n and B = (bij)n×p. Then the product AB is the m× p matrix with
(i, j)-entry

n∑
k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ a1nbnj.
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Thus AB = C, where C = (cij)m×p with

cij =
n∑
k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ a1nbnj.

Observe that to get the (i, j)-entry of AB, we focus on the i-th row of A and the j-th
column of B:  ai1 ai2 . . . ain




bij
b2j
...
bnj

 ,

and we form their dot product, that is the sum ai1b1j + ai2b2j + · · ·+ a1nbnj.

Note. The matrix product AB of matrices A and B is defined if and only if the number
of columns of A is the same as the number of rows of B. In the case when A = (aij)m×n
and B = (aij)n×p we note that A has n columns and B has n rows.

Example 1. Let

A =

(
1 −1
3 7

)
and B =

(
2 9 5
6 4 8

)
.

Now A is a 2 × 2 matrix and B is a 2 × 3 matrix. They can be multiplied since the
number of columns of A equals the number of rows of B. The product AB will be a 2×3
matrix as it will have the same number of rows as A and the same number of columns
as B. Note that BA is not defined since the number of columns (3) of B is not equal to
the number of rows (2) of A.

To get the (1, 3)-entry of AB for example, we pick out the 1st row of A and the 3rd
column of B: (

1 −1
∗ ∗

) (
∗ ∗ 5
∗ ∗ 8

)
,

and we form their dot product, the sum 1× 5 + (−1)× 8 = −3. In full:

AB =

(
1× 2 + (−1)× 6 1× 9 + (−1)× 4 1× 5 + (−1)× 8

3× 2 + 7× 6 3× 9 + 7× 4 3× 5 + 7× 8

)
=

(
−4 5 −3
48 55 71

)
.

Example 2. We have

(
1 0 −2
2 1 4

)  1
−2

3

 =

(
1× 1 + 0× (−2) + (−2)× 3

2× 1 + 1× (−2) + 4× 3

)
=

(
−5
12

)
.

Just as in the first example, the product of the matrices in the reverse order is not
defined.
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Example 3. We have(
−6 4
−9 6

) (
6 −4
9 −6

)
=

(
6 −4
9 −6

) (
−6 4
−9 6

)
=

(
0 0
0 0

)
= 022 = 02×2.

Example 4. Let A =

(
1 0
1 1

)
and B =

(
1 2
3 4

)
. Then

AB =

(
1 2
4 6

)
and BA =

(
3 2
7 4

)
,

and so AB 6= BA.

Note. In general, the case AB 6= BA is more common than the case AB = BA. In any
case, matrix multiplication is not commutative. Also AB can be defined without BA
being defined, and vice-versa. Moreover, AB and BA need not have the same size, for
if we let A = (aij)m×n and B = (bij)n×m then AB is an m ×m matrix while BA is an
n× n matrix, so that AB and BA have different sizes when m 6= n.

7.6 Rules for matrix multiplication

Theorem 7.3. Let A = (aij)m×n, B = (bij)m×n X = (xij)n×p and Y = (yij)n×p. Then:

(i) (A+B)X = AX +BX and A(X + Y ) = AX + AY ; and

(ii) α(AX) = (αA)X = A(αX) for every scalar α.

Now let A = (aij)m×n, B = (bij)n×p and C = (cij)p×q. Then:

(iii) (AB)C = A(BC); and

(iv) ImA = AIn = A.

Proof. (i): Let C = A + B. Then C = (cij)m×n with cij = aij + bij. We have that
(A+B)X = CX is an m× p matrix, with (i, j)-entry∑n

k=1 cikxkj = ci1x1j + ci2x2j + · · ·+ cinxnj
= (ai1 + bi1)x1j + (ai2 + bi2)x2j + · · ·+ (ain + bin)xnj
= (ai1x1j + ai2x2j + · · ·+ ainxnj) + (bi1x1j + bi2x2j + · · · binxnj)
= ((i, j)-entry of AX) + ((i, j)-entry of BX)

Since, in addition, AX +BX has the same size, m× p, as (A+B)X, we conclude that
(A + B)X = AX + BX. The proof that A(X + Y ) = AX + AY is similar, and is left
as an exercise, as is the proof of (ii).
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(iii): Let AB = X, where X = (xij)m×p, and let BC = Y , where Y = (yij)n×q. Then
(AB)C = XC is an m× q matrix with (i, j)-entry

xi1c1j + xi2c2j + · · ·+ xipcpj.

But
xi1 = ai1b11 + ai2b21 + · · ·+ ainbn1,
xi2 = ai1b12 + ai2b22 + · · ·+ ainbn2,

· · ·
xip = ai1b1p + ai2b2p + · · ·+ ainbnp.

Thus the (i, j)-entry of (AB)C is

(ai1b11 + · · ·+ ainbn1)c1j + (ai1b12 + · · ·+ ainbn2)c2j + · · ·+ (ai1b1p + · · ·+ ainbnp)cpj.

Multiplying out all brackets, we get that the (i, j)-entry of (AB)C is

p∑
s=1

n∑
r=1

(airbrs)csj,

which is to say the sum of all terms (airbrs)csj as r varies over 1, 2, . . . , n and s varies
over 1, 2, . . . , p. (There are no issues with how the terms are ordered or grouped since
addition of real numbers is both associative and commutative.)

A similar calculation shows that the (i, j)-entry of the m× q matrix AY = A(BC) is

n∑
r=1

p∑
s=1

air(brscsj).

But by the associative law for multiplying real numbers we have

(airbrs)csj = air(brscsj)

for all i, j, r and s. Thus (AB)C and A(BC) are both m × q matrices and their
(i, j)-entries are the same for all possible i and j. Hence (AB)C = A(BC).

(iv): We prove that ImA = A, and leave the proof that AIn = A as an exercise. Now Im
is an m×m matrix and so ImA is an m× n matrix. The i-th row of Im has zero entries
everywhere except for the (i, i)-entry, which is 1. Thus ImA has (i, j)-entry

0a1j + · · ·+ 0ai−1,j + 1aij + 0ai+1,j + · · ·+ 0amj = aij,

which is also the (i, j)-entry of A.

Note. Since (AB)C = A(BC) we can just write ABC for this product. In fact, matrix
multiplication is associative in the strong sense that if one of (AB)C and A(BC) exists,
then so does the other, and they are equal. But matrix multiplication is not commu-
tative: we have seen examples where AB exists but BA does not, and also examples
where both AB and BA exist and AB = BA (Example 3) and AB 6= BA (Example 4).
There is also no anti-commutativity property for matrix multiplication.
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Example. Let

A =

(
1 2
3 4

)
, B =

(
1 −1
0 1

)
and C =

(
−1 −1

2 3

)
.

We compute (AB)C and A(BC) and check that they are the same:

(AB)C =

((
1 2
3 4

) (
1 −1
0 1

)) (
−1 −1

2 3

)
=

(
1 1
3 1

) (
−1 −1

2 3

)
=

(
1 2

−1 0

)
;

and

A(BC) =

(
1 2
3 4

) ((
1 −1
0 1

) (
−1 −1

2 3

))
=

(
1 2
3 4

) (
−3 −4

2 3

)
=

(
1 2

−1 0

)
.

Note. There is a different matrix product, known as the Hadamard product or pointwise
product, which takes two m×n matrices A and B and produces the m×n matrix A◦B,
where (A◦B)ij = AijBij for all i and j. While this alternative matrix product has some
mathematical utility, it is nowhere near as useful as the standard (and more complicated)
matrix product. I leave it you to discern what properties hold for the operation ◦.

There also yet another type of matrix product, known as the Kronecker product or
tensor product, which can be applied to any two matrices. I am not going to tell you
how to define this product, but the interested reader can easily find this information on
the World Wide Web.

7.7 Some useful notation

For an n × n matrix A we define A0 = In, A
1 = A, A2 = AA, A3 = AAA, and so on.

As a consequence of the (generalised) associative law for matrix multiplication we have
ApAq = Ap+q and (Ap)q = Apq for all p, q ∈ N = {0, 1, 2, . . .}. Note that ApAq means
(Ap)(Aq). For m× n matrices B and C we write B − C for B + (−C).

7.8 Inverses of matrices

Every nonzero real number α has a multiplicative inverse, that is, if 0 6= α ∈ R there
exists β ∈ R such that αβ = βα = 1. What about matrices?

Definition 7.4. An n×n matrix A is said to be invertible if there is some n×n matrix
B such that AB = BA = In.

Example 1. We have (
2 3
1 2

) (
2 −3

−1 2

)
=

(
1 0
0 1

)
= I2
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and (
2 −3

−1 2

) (
2 3
1 2

)
=

(
1 0
0 1

)
= I2.

Thus A =

(
2 3
1 2

)
is invertible (and so is B =

(
2 −3

−1 2

)
by the same calculation).

Example 2. The matrix

(
1 2
0 0

)
is not invertible, because no matter what entries we

take for the matrix B =

(
p q
r s

)
we get

(
1 2
0 0

)
B =

(
p+ 2r q + 2s

0 0

)
6= I2 and B

(
1 2
0 0

)
=

(
p 2p
r 2r

)
6= I2.

Theorem 7.5. Let A be an n× n matrix and let B and C be n× n matrices such that
AB = BA = In and AC = CA = In. Then B = C.

Proof. We have B = BIn = B(AC) = (BA)C = InC = C.

Definition. If A is an invertible n × n matrix then the unique matrix B such that
AB = BA = In is called the inverse of A. We denote the inverse of A by A−1. For
n ∈ N+ we define A−n := (A−1)n, the n-th power of the inverse of A. (This definition is
consistent for n = 1.)

Note. If A is invertible, then AA−1 = A−1A = In, and so by the definitions of invertible
and inverse, we see that A−1 is invertible and (A−1)−1 = A. If A is invertible then
ApAq = Ap+q and (Ap)q = Apq for all p, q ∈ Z. In particular, (Am)−1 = A−m for all
m ∈ Z. Also, In is always invertible (we have In

−1 = In), as is any nonzero scalar
multiple of In. We have In

m = In for all n ∈ N and m ∈ Z.

Fact. If A and B are n × n matrices with AB = In, then BA = In. Thus if a square
matrix has a 1-sided “inverse” it is actually invertible. Now let m > n (the case m < n
is similar), and let A be an m×n matrix and B an n×m matrix. Then AB is an m×m
matrix, and can never be Im, and BA is an n × n matrix, and sometimes we can have
BA = In.

Theorem 7.6. If A,B are invertible n×n matrices then AB is invertible, and (AB)−1 =
B−1A−1.

Proof. Using the associative law of matrix multiplication implicitly throughout, we have:

AB(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In

and
(B−1A−1)AB = B−1(A−1A)B = B−1InB = B−1B = In.
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7.9 Matrices with no rows or no columns

Somewhat surprisingly, it makes sense mathematically to consider matrices having no
rows or no columns (or both). Since such matrices have no entries then (vacuously)
all entries in such matrices are equal to 0. Thus such matrices are 00×m or 0m×0 for
some m ∈ N = {0, 1, 2, . . . , }. We also have 00×0 = I0. Among these matrices, only I0
is invertible, with I0

−1 = I0. The following relations hold (which are the only possible
products involving these matrices):

1. 0m×000×n = 0m×n, with mn entries;

2. 00×m0m×0 = 00×0 = I0;

3. 00×mA = 00×n, where A = (aij)m×n; and

4. B0n×0 = 0m×0, where B = (bij)m×n.

Note that in the case 0m×000×n = 0m×n, with m,n > 1, we have taken the product of
two matrices having no entries to produce a matrix with a nonzero (mn) number of
entries (all of which are 0).

7.10 Transposes of matrices

Let A be an m× n matrix. The tranpose of A is the n×m matrix denoted AT, where
AT = (aT

ij)n×m with aT
ij = aji for all i and j where 1 6 i 6 n and 1 6 j 6 m. Thus

we see that transposition interchanges the rôles of rows and columns in a matrix. To
transpose a matrix A, we read off the rows of A and write them down as the columns
of AT.

Examples. We have In
T = In for all n. Also, we have

(
1 2 3
4 5 6

)T

=

 1 4
2 5
3 6

 and

 2 3 5
7 11 13

17 19 23

T

=

 2 7 17
3 11 19
5 13 23

 .

The properties of the transposition operator are summarised below.

Theorem 7.7. Let A = (aij)m×n, B = (aij)m×n and C = (cij)n×p. Then:

(i) (AT)T = A;

(ii) (A+B)T = AT +BT;

(iii) (−A)T = −(AT);

(iv) (λA)T = λ(AT) for all scalars λ;
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(v) (AC)T = CTAT; and

(vi) if A is an invertible n× n matrix, then so is AT, and (AT)−1 = (A−1)T.

Proof. (i), (ii), (iii) and (iv): Exercises for the reader.

(v): Firstly, we note that A, C, AC, (AC)T, CT, AT and CTAT have sizes m×n, n× p,
m× p, p×m, p× n, n×m and p×m respectively, so that (AC)T and CTAT both have
the same size, namely p×m. Now we calculate, for 1 6 i 6 p and 1 6 j 6 m, that:

(i, j)-entry of (AC)T = (j, i)-entry of AC =
n∑
k=1

ajkcki.

Moreover, we have

(i, j)-entry of CTAT =
n∑
k=1

cTika
T
kj =

n∑
k=1

ckiajk =
n∑
k=1

ajkcki.

Since (AC)T and CTAT have the same size and identical (i, j)-entries for all i and j they
are equal.

(vi): Using Part (v), we see that (A−1)TAT = (AA−1)T = In
T = In and AT(A−1)T =

(A−1A)T = In
T = In. Thus AT is invertible, with inverse (A−1)T.

Note. In view of the above theorem, we write −AT instead of (−A)T or −(AT); λAT

instead of (λA)T or λ(AT); and A−T instead of (AT)−1 or (A−1)T. Also, if A and B are
invertible n× n matrices then (AB)−T = A−TB−T.

72



Chapter 8

Determinants

The founder of the theory of determinants is usually taken to be Gottfried Wilhelm
Leibniz (1646–1716), who also shares the credit for inventing calculus with Sir Isaac
Newton (1643–1727)1. But the idea of 2 × 2 determinants goes back at least to the
Chinese around 200bc. The word determinant itself was first used in its present sense
in 1812 by Augustin-Louis Cauchy (1789–1857), and he developed much of the general
theory we know today.

8.1 Inverses of 2× 2 matrices, and determinants

Let A =

(
a b
c d

)
be a 2× 2 matrix. Recall that the determinant of A is∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc = ad− cb.

We also denote this determinant by det(A) or detA or |A|. (Just as with other operators,
such as cos, we avoid using the brackets except to resolve ambiguity. Thus we prefer
cos θ and detA in preference to cos(θ) and det(A), and detAT means det(AT).)

Examples. Let A =

(
2 3
2 −1

)
. Then detA = −2− 6 = −8. Also, we have∣∣∣∣ 1 2

3 4

∣∣∣∣ = −2, det I2 =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 and

∣∣∣∣ 2 −1
−4 2

∣∣∣∣ = 4− 4 = 0.

Lemma 8.1. Let A be any 2× 2 matrix. Then detAT = detA.

Proof. If AT =

(
a b
c d

)
then AT =

(
a c
b d

)
, and so detAT = ad− cb = detA.

1His dates by the Gregorian calendar are 4th January 1643 – 31st March 1727. But the Julian
calendar was in use in England at the time, and his Julian dates are 25th December 1642 – 20th March
1727. At the time, the year in England started on 25th March, so that legally he died in 1726.
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Now let A =

(
a b
c d

)
and let ∆ := detA = ad− bc. We note that if ∆ 6= 0 and

B =

(
d/∆ −b/∆
−c/∆ a/∆

)
then

AB =

(
(ad− bc)/∆ (−ab+ ba)/∆
(cd− dc)/∆ (−cb+ da)/∆

)
=

(
1 0
0 1

)
,

and

BA =

(
(da− bc)/∆ (db− bd)/∆

(−ca+ ac)/∆ (−cb+ ad)/∆

)
=

(
1 0
0 1

)
,

so that A is invertible and A−1 = B. Thus if A is a 2 × 2 matrix and detA 6= 0, then
A is invertible. What if detA = 0? We shall show that in this case A is not invertible,
but first we show the following.

Theorem 8.2. If A and B are 2× 2 matrices then det(AB) = det(A) det(B).

Notation. Our conventions for bracketing the determinant operator are similar to
those used for trigonometric functions. Thus detAB means det(AB), even though
(detA)B makes sense, and detA detB means det(A) det(B) = (detA)(detB), though
det(A detB) makes less sense since we write the scalar first when notating scalar multi-
plication of matrices. Similarly, if λ is a scalar then detλA means det(λA). Note that
while notations like det 3A and detA detB are often used, we should never write things
like det−A or det−2A or detA+B. Also, detAB is seldom seen.

Proof. We prove this by direct computation. Let A =

(
a b
c d

)
and B =

(
p q
r s

)
.

Then AB =

(
ap+ br aq + bs
cp+ dr cq + ds

)
and

det(AB) = (ap+ br)(cq + ds)− (cp+ dr)(aq + bs)
= apcq + apds+ brcq + brds− cpaq − cpbs− draq − drbs
= apds+ brcq − cpbs− draq
= (ad− cb)(ps− rq)
= detA detB.

Example. Let A =

(
1 −2
1 3

)
and B =

(
2 3
4 −1

)
. Then

det(AB) =

∣∣∣∣ −6 5
14 0

∣∣∣∣ = 0− 70 = −70,

which is the same as detA detB = (3− (−2))(−2− 12) = 5× (−14) = −70.
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Theorem 8.3. Let A =

(
a b
c d

)
be a 2× 2-matrix. Then A is invertible if and only

if detA 6= 0, and when ∆ := detA 6= 0, then A−1 =

(
d/∆ −b/∆
−c/∆ a/∆

)
.

Proof. We have already seen that when ∆ = detA 6= 0 then A is invertible with inverse
as above. It therefore just remains to show that when ∆ = 0 then A is not invertible.
So suppose that detA = 0. Then det(AB) = detA detB = 0 for every 2× 2 matrix B.
But since det I2 = 1 this means there cannot exist a matrix B with AB = I2. Hence A
is not invertible.

Examples. 1. Let A =

(
2 −1

−4 2

)
. Then detA = 0, so A is not invertible.

2. Let A =

(
1 2
3 4

)
. Then detA = −2 6= 0, so A is invertible, and

A−1 =
1

detA

(
4 −2

−3 1

)
=

(
−2 1
3/2 −1/2

)
.

Let us check this:

AA−1 =

(
1 2
3 4

) (
−2 1
3/2 −1/2

)
=

(
1 0
0 1

)
= I2,

A−1A =

(
−2 1
3/2 −1/2

) (
1 2
3 4

)
=

(
1 0
0 1

)
= I2.

We conclude this section by introducing the adjugate of a 2× 2 matrix. This might
not seem to be a terribly exciting or useful concept for 2 × 2 matrices, but is far more
useful for 3× 3 matrices, and in general for n × n matrices (n ∈ N+). The adjugate of
a square matrix A is denoted adjA (or adj(A)), and for 2× 2 matrices is defined by

adj

(
a b
c d

)
:=

(
d −b

−c a

)
.

Direct calculation shows that we have A(adjA) = (adjA)A = (detA)I2 for all 2 × 2
matrices A. Thus if detA 6= 0 (precisely the conditions needed for A to be invertible)
we have A−1 = 1

detA
(adjA). These relations generalise to n× n matrices for all n > 1.

We emphasise that the adjugate of a matrix is not the same as its adjoint, and you
must be careful not to confuse the two terms. (Unfortunately, what we now call the
adjugate has in the past been termed the adjoint!) The adjoint of a matrix over C
is defined to the transpose of its complex conjugate, and is denoted A∗ or A†, though
sometimes A∗ simply means the complex conjugate of A. Thus the adjoint of matrix
over R is the same as its transpose. (If you have not yet met complex numbers and the
complex conjugate, you will have done so by the time you take your first year exams.)
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8.2 Determinants of 3× 3 matrices

Consider the 3× 3 matrix

A =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 .

We define the determinant of A by:

detA =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ := a·(b× c)

where

a =

 a1

a2

a3

 , b =

 b1
b2
b3

 and c =

 c1
c2
c3

 .

Thus

detA =

 a1

a2

a3

·

 b1
b2
b3

×

 c1
c2
c3


=

 a1

a2

a3

·
(∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ i− ∣∣∣∣ b1 c1
b3 c3

∣∣∣∣ j +

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣k)

= a1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣− a2

∣∣∣∣ b1 c1
b3 c3

∣∣∣∣ + a3

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣
= a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1).

Example. Let

A =

 3 2 −1
2 0 −3

−2 1 1

 .

Then

detA = 3

∣∣∣∣ 0 −3
1 1

∣∣∣∣− 2

∣∣∣∣ 2 −1
1 1

∣∣∣∣− 2

∣∣∣∣ 2 −1
0 −3

∣∣∣∣
= 3(3)− 2(3)− 2(−6) = 15.

Remark. Notice that the right-hand side of our equation

a·(b× c) = a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

can be rearranged to give a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3). Thus we
can also write:∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣− b1

∣∣∣∣ a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣ a2 b2
a3 b3

∣∣∣∣
= a1(b2c3 − b3c2)− b1(a2c3 − a3c2) + c1(a2b3 − a3b2)
= a1(b2c3 − c2b3)− b1(a2c3 − c2a3) + c1(a2b3 − b2a3).

76



This formula (“expanding along the first row”) is often used to define a 3×3 determinant
(even by me!), and is more frequently seen than the triple scalar product definition
(“expanding along the first column”) used in this course. The reason for our seemingly
strange approach is that we can easily prove many properties of 3×3 determinants using
results we have already established for triple scalar products (see Theorem 8.5). Note
that it also follows from this rearrangement that∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ .
In other words, the determinant of a 3 × 3 matrix A is equal to the determinant of its
transpose AT, a result we record as Theorem 8.4.

Another helpful rearrangement of the terms in detA is to group those terms with
positive and negative coefficients together, to get

detA = a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1.

The products having positive coefficient correspond to diagonals going in the direction
top-left to bottom-right in the diagram below.

a1 a2 a3

b3 b1 b2 b3 b1
c2 c3 c1 c2 c3 c1 c2

The top-right to bottom-left ‘diagonals’ in the above diagram correspond to those prod-
ucts with negative coefficient.

Theorem 8.4. For all 3× 3 matrices A we have detAT = detA.

Proof. See above.

Theorem 8.5. Let A =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

. Then

(i) Interchanging two columns of A negates detA. For example∣∣∣∣∣∣
b1 a1 c1
b2 a2 c2
b3 a3 c3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = − detA.

(ii) Multiplying any column of A by λ multiplies detA by λ.

(iii) Adding a scalar multiple of any column of A to any other column does not change
the determinant.
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Proof. These all follow very easily from properties we have already proved for the scalar
triple product.

(i): This follows at once from Theorem 6.6, which gives detA = a·(b×c) = b·(c×a) =
c·(a× b) = −a·(c× b) = −b·(a× c) = −c·(b× a).

(ii): We have λ detA = λ(a·(b× c)) = (λa)·(b× c) = a·((λb)× c) = a·(b× (λc)), by
Theorem 6.3 and Section 3.2.

(iii): Let B be the matrix obtained by adding λ times the second column to the first
column of A. Then standard results on the dot and cross product, such as b·(b×c) = 0,
give us detB = (a + λb)·(b × c) = a·(b × c) + λb·(b × c) = a·(b × c) = detA. The
other cases are similar.

Example. We can use these properties to compute determinants quickly.∣∣∣∣∣∣
6 10 13
2 20 4

−1 −20 −2

∣∣∣∣∣∣ = 10

∣∣∣∣∣∣
6 1 13
2 2 4

−1 −2 −2

∣∣∣∣∣∣ = 10

∣∣∣∣∣∣
6 1 1
2 2 0

−1 −2 0

∣∣∣∣∣∣ = 10

∣∣∣∣∣∣
0 1 1
2 2 0

−1 −2 0

∣∣∣∣∣∣
= 10

(
0

∣∣∣∣ 2 0
−2 0

∣∣∣∣− 2

∣∣∣∣ 1 1
−2 0

∣∣∣∣− 1

∣∣∣∣ 1 1
2 0

∣∣∣∣) = 10(0(0)− 2(2)− 1(−2)) = −20.

Here to get the first equality we have applied Part (ii) of the theorem to take out a factor
of 10 from the second column, to get the second equality we have applied Part (iii) of
the theorem to subtract twice the first column from the third column, and for the 3rd
equality we have applied Part (iii) to subtract 6 times the third column from the first
column. (Note that we can use the theorem to simplify the matrix even more, so that
we end up computing det I3, which is 1.)

Remark. Since detAT = detA for all 3 × 3 matrices A, Theorem 8.5 holds with the
word ‘column’ replaced by ‘row’ throughout. Thus we can just as well use row operations
as column operations when simplifying determinants.

The rest of this section is presented without proof. In particular, the next theorem
is rather difficult to prove. (The one after that is not too hard.)

Theorem 8.6. For all 3× 3 matrices A and B we have det(AB) = detA detB.

Proof. In theory, we can expand det(AB), which has 3! × 33 = 6 × 27 = 162 terms,
perform all the cancellations to be left with (3!)2 = 62 = 36 terms, and observe that this
is detA detB. This is not very satisfactory, and new ideas are needed, which will also
extend to general n× n determinants. However, this is beyond the scope of this course,
though I may write up the proof as an appendix in the hope that some of you might
understand it after having completed MTH4104: Introduction to Algebra.

In view of the above theorem, it is evident that the 3× 3 matrix A is not invertible
if detA = 0, since det I3 = 1. It turns out that A is invertible whenever detA 6= 0. But
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first, we define the adjugate, adjA, of a 3 × 3 matrix A. Let Aij be the 2 × 2 matrix
obtained by removing the i-th row and j-th column from A. (Note that this notation
conflicts with what we used earlier.) Then

adjA :=

 detA11 − detA21 detA31

− detA12 detA22 − detA32

detA13 − detA23 detA33

 .

Theorem 8.7. For all 3×3 matrices A we have A(adjA) = (adjA)A = (detA)I3. Thus
if detA 6= 0 then A is invertible, and we have A−1 = 1

detA
(adjA).

8.3 Systems of linear equations as matrix equations

We can write any system ofm simultaneous linear equations in n unknowns x1, x2, . . . , xn
as a matrix equation

Ax = d (8.1)

where A is an m × n matrix, x is an n × 1 matrix and d is an m × 1 matrix, with the

entries of A = (aij)m×n and d =

 d1
...
dm

 being known and the entries of x =

 x1
...
xn


being the unknowns. The linear equations are aj1x1 + · · ·+ ajnxn = dj for 1 6 j 6 m.

I commented previously that properly echelon form is a property of matrices. We
define the matrix A to be echelon form if the corresponding system Ax = d of linear
equations is in echelon form. So A is in echelon form (Geometry I version) if each
nonzero row of A commences with strictly fewer 0s than those below it. (This forces all
zero rows to occur at the ‘bottom’ of A.) We do not insist (for Geometry I) that the
first nonzero entry in a nonzero row be 1.

If A is a square n×n matrix (so now m = n) such that detA 6= 0 then the matrix A
has a (unique) inverse A−1, and by multiplying both sides of the matrix equation (8.1)
by A−1 we see that

A−1Ax = A−1d.

Since A−1Ax = Inx = x we deduce that

x = A−1d

is a solution of the simultaneous equations, and indeed that it is the unique solution.

8.4 Determinants and inverses of n× n matrices

Notation. Throughout this section, Aij will denote the (m−1)×(n−1) matrix obtained
from m × n matrix A by deleting the i-th row and j-column. The notation Aij only
makes sense when m,n > 1. The (i, j)-entries of the matrices A, Ã and B shall be
denoted aij, ãij and bij respectively.

79



8.4.1 Determinants of n× n matrices

In general, if A = (aij)n×n is an n × n matrix the determinant of A is a sum of n! =
1·2· · · · ·n numbers (summands), where each summand is the product of n entries of A
multiplied by a sign (+1 or −1). Also, in each summand, the n entries of A used in the
product come from distinct rows and columns. <UndefinedConcepts> Using concepts
you will meet in MTH4104: Introduction to Algebra, we have

detA :=
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i), (8.2)

where Sn denotes the set (group) of all n! permutations of {1, 2, . . . , n} and sgnσ, the
sign or parity of σ, is +1 if this is even and −1 if this is odd. </UndefinedConcepts>

From the above formula, we see that the 0 × 0 matrix I0 has determinant 1, and the
1 × 1 matrix

(
a

)
has determinant a. (The notation

∣∣ a ∣∣ should not be used for the
determinant of the

(
a

)
because of its confusion with the absolute value function |a|.)

The following table summarises n× n determinants for small n.

n #terms determinant of A
0 1 1
1 1 a11

2 2 a11a22 − a12a21

3 6 a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

4 24 a11a22a33a44 + · · ·
5 120 a11a22a33a44a55 + · · ·

For n ∈ N we can define the n × n determinant recursively (that is in terms of
smaller determinants) as follows. Firstly, to gives us a foundation, we define the 0 × 0
determinant to be 1. Then for n > 1 we can calculate (or even define) detA as

detA = a11 detA11 − a12 detA12 + a13 detA13 − · · ·+ (−1)n+1a1n detA1n

=
n∑
k=1

(−1)k+1a1k detA1k.

Note that this definition agrees with the formulae above for n = 1, 2 and 3 (as it should).
Instead of expanding along the first row (as above), we can expand along (down) the
first column to get

detA =
n∑
k=1

(−1)k+1ak1 detAk1.

In fact, we can expand along arbitrary rows and columns. For all i and j, we have

detA =
n∑
k=1

(−1)i+kaik detAik =
n∑
k=1

(−1)k+jakj detAkj.

It is possible to use the formula of (8.2) in order to show the following.
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Theorem 8.8. For all n ∈ N and all n× n matrices A, we have detAT = detA.

Theorem 8.9. For all n ∈ N, all n×n matrices A and all scalars λ, the following hold.

1. If B is obtained from A by swapping two of its rows, then detB = − detA.

2. If B is obtained from A by multiplying one of its rows by λ, then detB = λ detA.
Thus detλA = λn detA.

3. If B is obtained from A by adding λ times one of its rows to another row, then
detB = detA.

Theorem 8.10. Let A, Ã and B be n× n matrices differing only in the j-th row, such
that bjk = ajk + ãjk for all k. Then detB = detA+ det Ã.

In view of Theorem 8.8, Theorem 8.9 holds with the word ‘row’ replaced by ’column’,
as does Theorem 8.10 with the understanding that now bkj = akj + ãkj for all k. Note
that if n > 2 and A and B are n×n matrices then det(A+B) 6= detA+detB in general
(but not universally). Another consequence of the above theorems is that if two rows
(or columns) of A are equal, or even scalar multiples of each other, then detA = 0. The
following is far trickier to prove.

Theorem 8.11. For all n ∈ N and all n × n matrices A and B, we have det(AB) =
detA detB.

8.4.2 Adjugates and inverses of n× n matrices

The 0 × 0 matrix I0 has inverse I0. From now on we let n > 1. If A =
(
a

)
then

adjA =
(

1
)
, and if a = detA 6= 0 then A is invertible and A−1 =

(
1
a

)
, and if

a = detA = 0 then A is not invertible. We have already seen the adjugate and inverse
of a 2× 2 and a 3× 3 matrix.

In general, we let A = (aij)n×n for some n > 1, and let Aij be the result of removing
the i-th row and j-th column from A. The (i, j)-minor of A is mij := detAij. The
cofactor matrix of A is C = (cij)n×n where cij := (−1)i+jmij = (−1)i+j detAij. The
adjugate of A is the transpose of the cofactor matrix. That is adjA := CT, and so adjA
has (i, j)-entry (−1)i+j detAji.

The following two theorems hold, and show one way (not always very efficient) to
compute A−1 in the case when A is invertible.

Theorem 8.12. For all n > 1 we have A(adjA) = (adjA)A = (detA)In for all n × n
matrices A.

Theorem 8.13. For all n > 1, the n× n matrix A is invertible if and only if detA 6= 0,
and if detA 6= 0 we have A−1 = 1

detA
(adjA).
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Chapter 9

Linear Transformations

9.1 The vector space Rn

As we saw in Chapter 2, once we have chosen an origin and unit vectors i, j, k, we can
assign a position vector v = xi + yj + zk to each point in 3-space. From now on we
shall represent this position vector by the column vector of coefficients of i, j, k, that

is to say the column vector

 x
y
z

, though we shall continue to represent the points of

3-space by triples (row vectors) (x, y, z).
For any given n ∈ N, we let Rn denote the set of all column n-vectors (n×1 matrices):

Rn =




a1

a2
...
an

 : a1, a2, . . . , an ∈ R

 .

The same notation Rn is also often used to denote the set of all n-tuples (row vectors)
(a1, a2, . . . , an), but as most of our computations from now on will involve column vectors,
for the rest of this module we shall reserve the notation Rn for these. For the special
case when n = 0, we note that R0 has just a single vector (which is necessarily the zero
vector). We denote by 0n the column vector which has n entries, all of which are 0; this
is the zero vector of Rn.

Addition and scalar multiplication of vectors in Rn is componentwise, entirely anal-
ogous to the situation for R3 as detailed in Section 2.1, and also for matrices, as given
in Sections 7.1 and 7.3. For all λ ∈ R we have

a1

a2
...
an

 +


b1
b2
...
bn

 =


a1 + b1
a2 + b2

...
an + bn

 and λ


a1

a2
...
an

 =


λa1

λa2
...

λan

 .

82



From the properties of addition and multiplication by scalars that we have already
proved for matrices, we observe that for all u,v,w ∈ Rn and all α, β ∈ R we have the
following ten properties.

(a.0) u + v ∈ Rn.
(a.1) u + (v + w) = (u + v) + w.
(a.2) u + v = v + u.
(a.3) There exists e ∈ Rn such that v + e = v = e + v for all v ∈ Rn. [e = 0n.]
(a.4) For every v ∈ Rn there is a −v ∈ Rn such that (−v) + v = v + (−v) = e.

(m.0) αv ∈ Rn.
(m.1) (α+ β)v = αv + βv.
(m.2) α(u + v) = αu + αv.
(m.3) α(βv) = (αβ)v.
(m.4) 1v = v.

This shows that Rn satisfies the rules to be an algebraic structure called a vector space
(over R). These are studied in detail in the module MTH5112: Linear Algebra I. You
will come across many other examples of vector spaces, for example the set of all m× n
matrices for a given m and n, as well as some more exotic examples such as the set of
all continuous functions from R to R.

Properties (a.0)–(a.4) are for vector addition, while properties (m.0)–(m.4) are those
for scalar multiplication. We call (a.0) and (m.0) closure properties, with the axioms
of a vector space regarded as being (a.1)–(a.4) and (m.1)–(m.4).1 I have told you the
names of Properties (a.1)–(a.4), (m.1) and (m.2) before. Can you remember them? The
symbol e in (a.3) and (a.4) is usually wriiten as 0 in this context.2 Note also that the
element e of (a.3) is unique, and that for any v, the element −v of (a.4) is unique.

Vector subtraction is defined as you might expect (see earlier chapters), namely that
u− v is defined to be u + (−v). It is also possible to define the division of a vector by
a nonzero scalar by v/λ := (1/λ)v where v is a vector and λ 6= 0 is a scalar. However,
this notation is rather ugly and should be avoided.

9.2 Linear transformations

Definition 9.1. A function t : Rn → Rm is called a linear transformation if for all
u,v ∈ Rn and all α ∈ R we have:

(i) t(u + v) = t(u) + t(v), and

(ii) t(αu) = αt(u).

If m = n we call t a linear transformation of Rn. Linear transformations are also called
linear maps.

1Any vector space must by definition also satisfy (a.0) and (m.0), but the definition of a vector space
is usually stated in such a way that they are not regarded as axioms.

2Apparently the letter ‘e’ comes from a German word, but nobody seems to be quite sure which one.
Possibilities include Eins meaning 1 (the digit), Einheit meaning unit(y), or a compound word such as
Einselement or Einheitselement.
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Example 1. Let t : R2 → R2 be the function

t

(
a
b

)
=

(
a
−b

)
.

If u =

(
u1

u2

)
and v =

(
v1

v2

)
, and α ∈ R, we have

t(u + v) = t

(
u1 + v1

u2 + v2

)
=

(
u1 + v1

−u2 − v2

)
=

(
u1

−u2

)
+

(
v1

−v2

)
= t(u) + t(v)

and

t(αu) = t

(
αu1

uα2

)
=

(
αu1

−αu2

)
= α

(
u1

−u2

)
= αt(u).

For each point (a, b) in the plane, tmaps its position vector

(
a
b

)
to

(
a
−b

)
, the position

vector of (a,−b). Geometrically, t is a reflexion in the x-axis.

Example 2. The function t : R2 → R2 defined by

t

(
a
b

)
=

(
a

b+ 1

)
is not a linear transformation, since, for example,

t

((
0
0

)
+

(
1
1

))
= t

(
1
1

)
=

(
1
2

)
but

t

(
0
0

)
+ t

(
1
1

)
=

(
0
1

)
+

(
1
2

)
=

(
1
3

)
.

9.3 Properties of linear transformations

Theorem 9.2. Let t : Rn → Rm be a linear transformation. then for all u,v ∈ Rn and
for all scalars α, β we have:

(i) t(αu + βv) = αt(u) + βt(v);

(ii) t(0n) = 0m;

(iii) t(−u) = −t(u).

Proof. (i). t(αu+βv) = t(αu)+t(βv) = αt(u)+βt(v) (since t is a linear transformation).

(ii). t(0n) = t(0n + 0n) = t(0n) + t(0n). Adding −t(0n) to both sides gives 0m = t(0n).

(iii). t(−u) = t((−1)u) = (−1)t(u) = −t(u).
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Notice that Part (ii) of this theorem gives us an alternative proof that the map t
in Example 2 (above) is not a linear transformation, since it tells us that every linear
transformation sends the origin in Rn to the origin in Rm. Notice also that Part (i)
of the theorem tells us that if t is a linear transformation then t maps every straight
line {λu + (1 − λ)v : λ ∈ R } in Rn to either a straight line (if t(u) 6= t(v)) or a
point (if t(u) = t(v)) in Rm. In either case, the image of the straight line under t is
{λt(u) + (1− λ)t(v) : λ ∈ R }.

Notice also, that Theorem 9.2 (i) combines both conditions (as per Definition 9.1)
for t to be a linear transformation into a single condition (with more variables). It is
also possible for a map t : Rn → Rn to satisfy both Parts (ii) and (iii) of Theorem 9.2
and still not be a linear transformation. One example is given by the map from R2 to
itself given by

t

(
a
b

)
=

(
a3

b3

)
.

9.4 Matrices and linear transformations

Let A be an m× n matrix. We define tA to be the function

tA : Rn → Rm, u 7→ tA(u) := Au.

By properties of multiplication of matrices we have proved earlier, we know that for all
u,v ∈ Rn and for all α ∈ R, we have:

tA(u + v) = A(u + v) = Au + Av = tA(u) + tA(v)
and tA(αu) = A(αu) = α(Au) = αtA(u).

So tA is a linear transformation: we call tA the linear transformation represented by A.

Example. Let A be the 3× 3 matrix u1 v1 w1

u2 v2 w3

u3 v3 w3

 .

Then tA : R3 → R3, defined by tA(u) = Au is a linear transformation. It has

tA

 1
0
0

 =

 u1

u2

u3

 , tA

 0
1
0

 =

 v1

v2

v3

 and tA

 0
0
1

 =

 w1

w2

w3

 .

Is every linear transformation t : Rn → Rm represented by some matrix? The answer is
yes. Rather than write out a formal proof for general m and n, let us think about the
case of a linear transformation t : R3 → R3. Suppose that

t

 1
0
0

 =

 u1

u2

u3

 , t

 0
1
0

 =

 v1

v2

v3

 and t

 0
0
1

 =

 w1

w2

w3

 .
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But then, since t is a linear transformation, we know that for any

 a
b
c

 ∈ R3 we have

t

 a
b
c

 = t

a
 1

0
0

 + b

 0
1
0

 + c

 0
0
1

 = at

 1
0
0

 + bt

 0
1
0

 + ct

 0
0
1


= a

 u1

u2

u3

 + b

 v1

v2

v3

 + c

 w1

w2

w3

 =

 u1 v1 w1

u2 v2 w2

u3 v3 w3

  a
b
c

 ,

and so the linear transformation t is represented by the matrix which has as its columns

t

 1
0
0

 , t

 0
1
0

 and t

 0
0
1

 .

9.5 Composition of linear transformations and mul-

tiplication of matrices

Suppose that s : Rn → Rm and t : Rp → Rn are linear transformations. Define their
composition s ◦ t : Rp → Rm by:

(s ◦ t)(u) = s(t(u)) for all u ∈ Rp.

Now suppose s is represented by the m× n matrix A and t is represented by the n× p
matrix B. Then for all u ∈ Rp we have

(s ◦ t)(u) = s(t(u)) = A(Bu) = (AB)u,

where the last equality follows from the associativity of matrix multiplication. We
conclude the s ◦ t is a linear transformation, and that it is represented by the m × p
matrix AB, which explains why we define matrix multiplication the way that we do!

Example. Let s : R3 → R2 be the linear transformation which has

s

 1
0
0

 =

(
1
2

)
, s

 0
1
0

 =

(
1
−3

)
and s

 0
0
1

 =

(
−1
0

)
,

and let t : R2 → R3 be the linear transformation which has

t

(
1
0

)
=

 2
0
1

 and t

(
0
1

)
=

 1
2
3

 .
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Then s is represented by A =

(
1 1 −1
2 −3 0

)
, and t is represented by B =

 2 1
0 2
1 3

.

Moreover, s ◦ t : R2 → R2 is represented by AB =

(
1 0
4 −4

)
.

Thus if

(
x
y

)
∈ R2, then

s

(
t

(
x
y

))
= (s ◦ t)

(
x
y

)
= (AB)

(
x
y

)
=

(
1 0
4 −4

) (
x
y

)
=

(
x

4x− 4y

)
.

9.6 Rotations and reflexions of the plane

Let rθ denote a rotation of the plane, keeping the origin fixed, through an angle θ. If θ > 0
this is an anticlockwise rotation. (In mathematics the convention is that anticlockwise is
the positive direction when it comes to measuring angles.) It is relatively easy to prove
that rθ is a linear transformation of the plane, as follows:

(i) Consider the parallelogram defining the sum u + v of the position vectors u and
v of any two points in the plane R2. If we rotate this parallelogram through an
angle θ we obtain a new parallelogram, congruent to the original one. This new
parallelogram has vertices with position vectors 0, rθ(u), rθ(v), rθ(u + v), and the
very fact that it is a parallelogram tells us that rθ(u + v) = rθ(u) + rθ(v).

(ii) Given any vector u and scalar λ ∈ R, we must show that rθ(λu) = λrθ(u). If λ = 0
or u = 0 then rθ(λu) = 0 = λrθ(u), as required. Now suppose that u 6= 0 and
λ 6= 0, and consider the line ` through the origin in the direction of u. Let P be the
point on this line with position vector u and Q be the point with position vector
λu. Now rθ sends O,P,Q to the points O′ = O,P ′, Q′ (respectively) on rθ(`),
which is also a straight line. So we get that |OQ′|/|OP ′| = |OQ|/|OP | = |λ|, since
rotation preserves distances.

Rotations also preserve betweenness: that is if X, Y, Z are points on ` such that
Y is between X and Z then rθ(Y ) is between rθ(X) and rθ(Z). Thus O = O′ is
(strictly) between P ′ and Q′ if and only if O is between P and Q, which is if and
only if λ < 0. Hence rθ(λu) = λrθ(u) for all λ ∈ R and u ∈ R2.

Since rθ sends (1, 0) to (cos θ, sin θ) and sends (0, 1) to (− sin θ, cos θ) (see the picture
overleaf, or draw your own picture), it is the linear transformation represented by the
matrix:

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

It is easily checked that (Rθ)
−1 = R−θ and that Rφ+θ is the product of the matrices

Rφ and Rθ. (For those of you who know about polar coördinates, the transformation rθ
maps the point with polar coördinates (r, ψ) to (r, ψ + θ).)
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For this year [as I was away], we denote by sθ the linear transformation which reflects
the (x, y)-plane, with mirror the line through the origin at (anticlockwise) angle θ to the
x-axis. Just as with a rotation rθ, it is easy to prove geometrically that sθ is a linear
transformation (the details are left as an exercise for you).
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From the illustration above it is apparent that sθ(1, 0) = (cos 2θ, sin 2θ) and that
sθ(0, 1) = (cosφ,− sinφ), where φ is the angle shown. But φ+ 2θ = π

2
, so cosφ = sin 2θ

and sinφ = cos 2θ. Hence sθ(0, 1) = (sin 2θ,− cos 2θ), and we deduce that the reflexion
sθ is represented by the matrix

Sθ =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

(In terms of polar coördinates, sθ maps (r, ψ) to (r, 2θ − ψ).)

Exercise. Check that (Sθ)
−1 = Sθ by showing that (Sθ)

2 = I2. (This verifies that
applying the same reflexion twice brings every point of the (x, y)-plane back to itself.)

Remark. My preferred notation is that the mirror of the reflexion sθ should have angle
θ/2 with the x-axis. The matrix of sθ would then be the same as Sθ/2 above, but would
now be denoted Sθ, and we would have

Sθ =

(
cos θ sin θ
sin θ − cos θ

)
.

In terms of polar coördinates, this version of sθ maps (r, ψ) to (r, θ − ψ).
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Remark. Rotations and reflexions are examples of orthogonal linear transformations of
the plane, that is to say linear transformations s that have the property that for every
u and v the dot products u·v and s(u)·s(v) are equal. In geometric terms this means
that s preserves lengths of vectors and angles between vectors: in other words s is a
‘rigid motion’ of the plane (with the origin a fixed point). It can be shown that a linear
transformation s of Rn is orthogonal if and only the matrix S that represents it has
the property that SST = In = STS (where ST is the transpose of S). In the module
MTH5112: Linear Algebra I you will study orthogonal matrices, but we remark here
that every 2 × 2 matrix which is orthogonal is the matrix either of a rotation or of a
reflexion (depending on whether its determinant is +1 or −1).

9.7 Other linear transformations of the plane

We consider some examples. Other examples may obtained by composing linear trans-
formations already listed. (This new linear transformation need not be one of the types
we have listed.) For example, the composition sφ ◦ sθ of two reflexions is a rotation rψ,
as you can check by multiplying the corresponding matrices (as an exercise, compute
the angle ψ in terms of θ and φ). The composition rφ ◦ t2I2 is not in general one of listed
types of linear transformation of R2.

9.7.1 Linear ‘stretches’ of axes and dilations

The linear transformation tA of the plane represented by the matrix

A =

(
a 0
0 d

)
sends the point (x, 0) on the x-axis to the point (ax, 0) on the x-axis, so it sends the x
axis to itself, stretching it by a factor a (or contracting it if |a| < 1, and reflecting it
if a < 0). We say that the x-axis is a fixed line of tA, since every point on this line is
mapped to a point on the same line. Similarly the y-axis is a fixed line for this tA: it is
stretched by a factor d. If a 6= d, the x-axis and the y-axis are the only fixed lines for
this tA. When a = d, every line through the origin is a fixed line and the effect of tA is
to apply the same stretching factor in all directions: such a tA is called a dilation when
a = d > 0. More generally, one can have stretches which fix some pair of lines other
than the axes.

9.7.2 Shears (or transvections)

The linear transformation tB represented by

B =

(
1 1
0 1

)
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is an example of a shear. In some areas of Mathematics (such abstract algebra) shears are
known as transvections instead. Here each point (x, y) is mapped to the point (x+y, y).
So each line y = c (constant) is a fixed line for the transformation. Each point on the
line y = c is translated to the right by a distance c (which of course is negative when c is
negative). Notice that the x-axis is fixed pointwise (every point on this axis is mapped
to itself), and the y-axis is not even a fixed line: it is mapped to the line with equation
x = y which passes through the origin and has angle π

4
with the x-axis. More generally,

for any nonzero constants b and c

B =

(
1 b
0 1

)
and C =

(
1 0
c 1

)
are shears. The most general form of a shear in 2 dimensions is the matrix

T =

(
a b
c d

)
,

where a+d = 2 and ad−bc = 1, except that (by convention) the case T = I2 is excluded.
There is some line that T fixes pointwise; this line is unique (since T 6= I2), and need
not be one of the axes.

Shears of R3 fix a plane Π pointwise and send a (particular) vector x /∈ Π to x + u
where 0 6= u ∈ Π. The general vector v ∈ R3 has form v = λx + w for some (unique)
λ ∈ R and w ∈ Π. Since shears are linear maps, the shear must send v to v + λu,
and I leave it as an exercise for you to verify this. (I write w ∈ Π to mean that the
position vector of w is in Π.) Shears of Rn are like shears of R3, except that Π is now a
hyperplane that is fixed pointwise.

9.7.3 Singular transformations

The n × n matrix A is called non-singular if detA 6= 0 and singular if detA = 0. So
a non-singular matrix is invertible, and a singular matrix is not. We call the linear
transformation tA : Rn → Rn non-singular if A is a non-singular matrix, and we call it
singular if A is a singular matrix. So far all our examples of linear transformations of
the plane have been non-singular. What about the case that A is singular?

The simplest singular case is when A is the zero 2× 2 matrix (or zero n× n matrix
for any n > 1). There is not much to say about this case geometrically, just that the
corresponding linear transformation sends every point of the plane to the origin. But
what about the case when

A =

(
a b
c d

)
with ad − bc = 0 but a, b, c, d not all zero? Suppose for example that the first column
of A is nonzero. Then ad − bc = 0 implies that b = (d/c)a, d = (d/c)c if c 6= 0 and
b = (b/a)a, d = (b/a)c if a 6= 0. So the second column of A is a scalar multiple of the
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first column. Writing u for first column of A (so that u 6= 0 = 02) and λu for the second
column of A we see that

Ai = A

(
1
0

)
= u and Aj = A

(
0
1

)
= λu

and so

A

(
x
y

)
= A

(
x

(
1
0

)
+ y

(
0
1

))
= (x+ λy)u

for every point (x, y) of the plane. Thus we find that

A(xv) = A

(
λx
−x

)
= 0 for all x ∈ R, where v =

(
λ
−1

)
.

So the whole of the plane is mapped onto the straight line through the origin which
consists of the set of all scalar multiples of u. If we take any point c = αu on this line
then the equations Ax = c have infinitely many solutions (all the points on the straight
line r = αi + µv through αi parallel to v), and if we take any point c not on this line
[r = µu] then the equations Ax = c have no solution. (Note that in general u and v are
neither perpendicular nor parallel, though of course they may be sometimes.)

A similar situation arises when A : R3 → R3 is a singular matrix. Then it can be
shown that A maps the whole of R3 onto a plane through the origin, a line through the
origin, or a single point (the origin).

9.7.4 Translations and affine maps

In general, these are not linear maps, but are a slight generalisation thereof. An affine
(linear) transformation or affine map of Rn is a map from Rn to itself of the form:

f(A,b) : r 7→ Ar + b,

where A is an n×n real matrix and b, r ∈ Rn with b fixed. Despite the use of the word
‘linear’ in the terminology, the map f(A,b) is linear only when b = 0[= 0n]. Composing
two affine maps gives us an affine map, for we can calculate that f(A,b) ◦ f(C,d) =
f(AC,Ad + b), which I leave it to you to check. The map f(A,b) is invertible if and
only if A is, and in that case f(A,b) = f(A−1,−A−1b).

A special case of affine maps occurs when A = In. Such maps are translations of
Rn. The most general form of a translation is Tb : Rn → Rn defined by Tb : r 7→ r + b,
that is Tb has the effect of adding b to each vector of Rn. So Tb = f(In,b). It is
linear if and only if b = 0. Composing two translations gives a translation: we have
Tb ◦ Tc = Tc ◦ Tb = Tb+c. Also, (Tb)−1 = T−b for all b ∈ Rn.

In fact, translations and affine maps of Rn can be regarded as linear maps of Rn+1.
A standard way in which this can achieved is to let f(A,b) correspond to the following
(n+ 1)× (n+ 1) real matrix: (

A b
0 . . . 0 1

)
.
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Chapter 10

Eigenvectors and Eigenvalues

10.1 Definitions

Let A be an n × n matrix. An eigenvector of A is a vector v ∈ Rn, with v 6= 0n, such
that Av = λv for some scalar λ ∈ R (which might be 0). The scalar λ is called the
eigenvalue of A associated to the eigenvector v.

Example. Let A =

(
1 2
4 3

)
. The vector v =

(
1
2

)
is an eigenvector of A, with

corresponding eigenvalue 5, since(
1 2
4 3

) (
1
2

)
=

(
5
10

)
= 5

(
1
2

)
.

Geometrically, it is clear that the eigenvectors of the linear transformation tA : x 7→ Ax
are the position vectors of points on fixed lines through the origin (except for the origin
itself), and the eigenvalues are the corresponding stretch factors, at least in the case of
eigenvalues λ 6= 0.

10.2 Eigenvectors corresponding to the eigenvalue 0

From the definitions, saying that 0 is an eigenvalue of A means the same as saying that
there exists a nonzero vector v such that Av = 0n. But this implies that A is not
invertible (since if A is invertible then Ax = 0n has unique solution x = A−10n = 0n).
In fact the converse is also true, namely that if A is not invertible then Ax = 0n has a
nonzero solution x (we are not going to prove this here, but we saw it was true in the
case n = 2, when we examined singular 2× 2 matrices). Thus we have the

Useful Fact. An n × n matrix has 0 as one of its eigenvalues if and only if A is not
invertible.
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10.3 Finding all eigenvalues

Given a matrix, it turns out to be easiest to first calculate the eigenvalues, and then the
eigenvectors.

Theorem 10.1. Let A be an n × n matrix. Then the eigenvalues of A are those real
numbers λ which have the property that det(A− λIn) = 0.

Proof. Strictly speaking, we have only proved all properties of determinants (namely
that A is invertible if and only if detA = 0) we need for n 6 2, and stated that the same
holds for n = 3, and for general n if you read the optional section (§8.4) of Chapter 8.
So strictly speaking we will only have proved this theorem for n 6 2, though the same
argument works for general n, as you will see in MTH5112: Linear Algebra I:

λ is an eigenvalue of A ⇐⇒ ∃v 6= 0n such that Av − λv = (A− λIn)v = 0n
⇐⇒ (A− λIn) is not invertible
⇐⇒ det(A− λIn) = 0.

The expression det(A − xIn) is called the characteristic poynomial of A (it is a
polynomial in x, of degree n), so another way to state the Theorem above is to say that
the eigenvalues of A are the zeros of the characteristic polynomial of A. (Recall that the
zeros of a function f(x) are the values of x such that f(x) = 0.) Eigenvalues are usually
counted by multiplicity, so that if the characteristic polynomial is, say, −(x− 4)2(x+ 3)
we would say that the eigenvalues are −3, 4, 4.

Example 1. Let A =

(
1 2
4 3

)
. Then the characteristic polynomial of A is

f(x) = det(A− xI2) = det

((
1 2
4 3

)
−

(
x 0
0 x

))
= det

(
1− x 2

4 3− x

)
= (1− x)(3− x)− 8 = x2 − 4x− 5 = (x+ 1)(x− 5).

The only zeros of f(x) are −1 and 5, so by Theorem 10.1 the only eigenvalues of A are
−1 and 5.

Example 2. Let A =

 1 2 −1
0 1 4
0 0 3

. Then the characteristic polynomial of A is

f(x) = det(A− xI3) =

∣∣∣∣∣∣
1− x 2 −1

0 1− x 4
0 0 3− x

∣∣∣∣∣∣ = (1− x)

∣∣∣∣ 1− x 4
0 3− x

∣∣∣∣− 0 + 0

= (1− x)((1− x)(3− x)− 0) = −(x− 1)2(x− 3).

The only zeros of f(x) are 1 and 3, so by Theorem 10.1 the only distinct eigenvalues of
A are 1 and 3. In this example, the characteristic polynomial has a repeated root, and
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the eigenvalues of A are actually 1, 1, 3. This does have some mathematical significance.
Using language that will be defined in MTH5112: Linear Algebra I, this means that the
eigenvectors having eigenvalue 1, together with the zero vector, could potentially form
a 2-dimensional subspace of R3, though in this example they only form a 1-dimensional
subspace.

Remarks.

1. Let n = 2 or 3, and let A be an n×n matrix, with characteristic polynomial f(x).
It is not difficult to see that f(x) is a polynomial with coefficients in R, and that
the degree of f(x) is n (the highest degree term in f(x) comes from the product
of the terms down the main diagonal of A, so the coefficient of xn is ±1 [(−1)n in
fact]). Such an f(x) has at most n real zeros, and so A has at most n distinct real
eigenvalues.

2. A polynomial of odd degree with coefficients in R always has at least one real
zero. (This follows from the Intermediate Value Theorem [see your MTH4100:
Calculus I notes], since the graph of y = f(x) is either above the x-axis as x tends
to +∞ and below the x-axis as x tends to −∞, or vice versa.) Hence it follows
that every 3 × 3 (real) matrix has at least one (real) eigenvalue, and so every
linear transformation of R3 (except for zero transformation) fixes at least one line
through the origin.

10.4 Finding eigenvectors

Let n = 2 or 3, and let A be an n× n matrix with an eigenvalue λ. How do we find one
(or all) eigenvectors v of A with Av = λv? The answer is that we solve a system of n
equations in n unknowns. We have:

Av = λv ⇐⇒ Av − λv = 0n
⇐⇒ Av − λInv = 0n
⇐⇒ (A− λIn)v = 0n.

If n = 2, to obtain the eigenvectors of A corresponding to the eigenvalue λ we solve

(A− λI2)

(
x
y

)
=

(
0
0

)
for

(
x
y

)
∈ R2 with

(
x
y

)
6=

(
0
0

)
.

If n = 3, to obtain the eigenvectors of A corresponding to the eigenvalue λ we solve

(A− λI3)

 x
y
z

 =

 0
0
0

 for

 x
y
z

 ∈ R3 with

 x
y
z

 6=

 0
0
0

.

Example 1. Let

A =

(
1 2
4 3

)
.
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In the previous subsection we found that the eigenvalues of A are −1 and 5. We now
determine the eigenvectors corresponding to eigenvalue −1. We solve:

(A− (−1)I2)

(
x
y

)
=

(
0
0

)
,

that is to say, ((
1 2
4 3

)
−

(
−1 0

0 −1

)) (
x
y

)
=

(
0
0

)
,

in other words, (
2 2
4 4

) (
x
y

)
=

(
0
0

)
.

This is the system of equations:

2x+ 2y = 0
4x+ 4y = 0

}
,

which, when reduced to echelon form is:

2x+ 2y = 0
0 = 0

}
.

Thus y can be any real number r, and then 2x+ 2r = 0, so x = −r. Thus the set of all
eigenvectors of A corresponding to the eigenvalue −1 is{ (

−r
r

)
: r ∈ R

∣∣∣∣ r 6= 0

}
.

One such eigenvector is

(
−1
1

)
. We can check our calculation, as shown below.

A

(
−1
1

)
=

(
1 2
4 3

) (
−1
1

)
=

(
1
−1

)
= (−1)

(
−1
1

)
.

It is left as an exercise for you to compute the eigenvectors of A corresponding to the
other eigenvalue, 5.

Example 2. Let

A =

 1 2 −1
0 1 4
0 0 3

 .

We have found that the characteristic polynomial of A is f(x) = −(x− 1)2(x− 3), and
thus that the eigenvalues of A are 1 and 3 (the real zeros of f(x)), with 1 being repeated.
We now find all the eigenvectors of A corresponding to the eigenvalue 3. We solve:

(A− 3I3)

 x
y
z

 =

 0
0
0

 ,
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that is to say,  1− 3 2 −1
0 1− 3 4
0 0 3− 3

  x
y
z

 =

 0
0
0

 ,

which, in other words, is  −2 2 −1
0 −2 4
0 0 0

  x
y
z

 =

 0
0
0

 .

This is the system of equations:

−2x + 2y − z = 0
− 2y + 4z = 0

0 = 0

 .

These equations are already in echelon form, so we can solve them by setting z to be
r (representing any real number) and deducing by back substitution that y = 2r (from
the second equation) and then that x = 3

2
r from the first equation. Thus the set of all

eigenvectors of A corresponding to the eigenvalue 3 is
 3

2
r

2r
r

 : r ∈ R

∣∣∣∣∣∣ r 6= 0

 .

One such eigenvector is b :=

 3
4
2

. (Check this!)

Thus the line through the origin with vector equation r = µb (µ ∈ R) is fixed by the
linear transformation tA represented by A, and a point on this line with position vector
v is mapped by tA to the point that has position vector 3v.

It is left as an exercise for you to compute the eigenvectors of A corresponding to
the other eigenvalue, 1.

10.5 Eigenvectors and eigenvalues for linear trans-

formations of the plane

We revisit rotations and reflexions, axes stretches, dilations and shears in R2, to see how
eigenvectors and eigenvalues are involved.

Rotations. No real eigenvalues, as no fixed lines, except for the case of a rotation
through mπ for some m ∈ Z, when every nonzero vector is an eigenvector with eigen-
value (−1)m, and the rotation matrix is (−1)mI2. (In general, an anticlockwise rotation
through θ has complex eigenvalues eiθ and e−iθ.)
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Reflexions. Here every (nonzero) vector in the direction u of the mirror is an eigen-
vector with eigenvalue +1, and every (nonzero) vector orthogonal to u is an eigenvector
with eigenvalue −1.

Axes stretches. The matrix

(
a 0
0 d

)
(with a and d nonzero and a 6= d) has the

position vector of every point on the x-axis (except the origin) as an eigenvector with
eigenvalue a, and the position vector of every point on the y-axis (except the origin) as
an eigenvector with eigenvalue d.

Dilations. The matrix

(
a 0
0 a

)
(with a > 0) has a as an eigenvalue and every

nonzero vector as an eigenvector corresponding to a.

Shears. Consider for example

(
1 1
0 1

)
. By an easy calculation the only eigen-

value is +1, and the eigenvectors corresponding to this eigenvalue are the vectors{ (
t
0

)
: t ∈ R

∣∣∣∣ t 6= 0

}
, that is, the position vectors of all points on the x-axis other

than the origin. In general, all shears (in 2 dimensions) have characteristic polynomial
x2 − 2x + 1 = (x − 1)2, and thus eigenvalues 1, 1. However, all eigenvectors of a shear
lie along a single line (origin excluded).

10.6 Rotations and reflexions in R3

It was mentioned in an earlier remark (without proof) that every rigid motion of R3

which fixes the origin is represented by an orthogonal matrix, that is to say a matrix
A with the property that AAT = I3 = ATA (where AT denotes the transpose of A). It
follows that (detA)2 = 1 and hence that detA = ±1.

Rigid motions of R3 represented by matrices A which have detA = +1 are called
orientation-preserving (they send right-handed triples of vectors to right-handed triples
of vectors), and those which have detA = −1 are called orientation-reversing.

As was mentioned in another earlier remark, every linear transformation of R3 has a
fixed line (since the characteristic polynomial is a cubic and therefore has a real root).
If the linear transformation is a rigid motion, the corresponding eigenvalue must be +1
or −1, since rigid motions preserve distances.

Let A be a 3× 3 matrix representing a rigid motion of R3 fixing the origin.

Case 1. A has +1 as an eigenvalue.

Let u 6= 03 be an eigenvector with eigenvalue +1. Now A maps the plane Π through the
origin orthogonal to u to itself. If this map of Π to itself is a rotation then A represents
a rotation of R3 around the axis which has direction u. If the map of Π to itself is a
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reflexion, with mirror a line in Π having direction v, then A represents a reflexion of R3

with mirror the plane containing u and v.

Case 2. A has −1 as an eigenvalue.

Let u 6= 03 be an eigenvector with eigenvalue −1. Once again, A maps the plane Π
through the origin orthogonal to u to itself. If this map of Π to itself is a reflexion, then
Π contains an eigenvector v of A with eigenvalue +1, corresponding to the direction
of the mirror in Π, and an eigenvector w orthogonal to v with eigenvalue −1. Thus
u, v, w are an orthogonal set of vectors and A sends u 7→ −u, v 7→ v, w 7→ −w,
and so A is a rotation about the direction of v through an angle π. If, on the other
hand, the map of Π to itself is a rotation, there is not much more to say except that
A represents the composition of a reflexion in the plane Π followed by a rotation about
the axis orthogonal to Π.

Remark. It follows from the analysis above that every orientation-preserving rigid mo-
tion of R3 which fixes the origin is a rotation about some axis, but that (unlike the
case for R2) an orientation-reversing rigid motion of R3 which fixes the origin is not
necessarily a reflexion.

We finish by exhibiting examples of 3×3 matrices representing rotations and reflexions.

Example 1. The 3× 3 matrix which represents a rotation through angle θ around the
z-axis is  cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 ,

and similarly the 3 × 3 matrices which represent rotations through angle θ around the
x- and y-axes are respectively. 1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 and

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .

In these examples we look at the origin from a point somewhere along the positive
portion of the relevant axis. These are rotations through an angle of θ anticlockwise
from this point of view. (If we look the origin from the opposite direction then these
rotations have an anticlockwise angle of −θ.)

Example 2. The reflexion sn = sΠ in the plane Π through the origin with normal vector
n 6= 0 = 03 sends each vector x to:

sΠ(x) = x− 2
(x·n)

|n|2
n.

To see this, draw a picture like the one we used in our calculation of the distance from the
point X with position vector x, to the plane Π (the point with position vector x− (x·n)

|n|2 n

is the point of Π which is closest to X).
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If the equation of the plane Π is ax+ by+ cz = 0, we can take n = ai + bj + ck, and so:

sΠ(xi + yj + zk) = xi + yj + zk− 2
ax+ by + cz

a2 + b2 + c2
(ai + bj + ck).

Thus in particular

sΠ(i) = i− 2
a

a2 + b2 + c2
(ai + bj + ck) =

1

a2 + b2 + c2
(
(b2 + c2 − a2)i− 2abj− 2ack

)
,

and so the first column of the matrix SΠ representing sΠ is

1

a2 + b2 + c2

 b2 + c2 − a2

−2ab
−2ca

 .

Similarly, one can compute the second and third columns, to give the following matrix,
which you are not expected to memorise for the examination for this module!

SΠ =
1

a2 + b2 + c2

 b2 + c2 − a2 −2ab −2ac
−2ab c2 + a2 − b2 −2bc
−2ac −2bc a2 + b2 − c2

 .

Note that

Sπ(n) = SΠ

 a
b
c

 =

 −a
−b
−c

 = −n,

which is exactly what one would expect since n is orthogonal to the plane Π. Now each
vector x in R3 can be written uniquely as x = u+v where u and n are collinear and v is
parallel to (and thus in) Π, so that v is orthogonal to n. (We have u = (x·n)

|n|2 n = (x·n̂)n̂

and v = x− (x·n̂)n̂, where n̂ is the unit vector in the direction of n. You should prove
the assertions of the previous sentence, and also try to prove that u and v are the unique
vectors with this property.) Then sΠ(u) = −u and sΠ(v) = v, so that u is an eigenvector
of sΠ with corresponding eigenvalue −1 (unless u = 0), and v is an eigenvector of sΠ

with corresponding eigenvalue 1 (unless v = 0). Moreover, sΠ(x) = sΠ(u+v) = −u+v,
so that (exercise for you) x is an eigenvector of sΠ when exactly one of the conditions
u = 0 and v = 0 holds.

All of what we have done above generalises readily to reflexions in a hyperplane Π
of Rn orthogonal to the vector n 6= 0n. I leave the reader to work out the necessary
details.

Exercise. Check that the formula for SΠ gives the right answer when Π is the (x, y)
plane (the plane defined by the equation z = 0). Also check that the transformation sΠ

defined at the start of Example 2 is indeed a linear map.
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