
Chapter 8

Determinants

The founder of the theory of determinants is usually taken to be Gottfried Wilhelm
Leibniz (1646–1716), who also shares the credit for inventing calculus with Sir Isaac
Newton (1643–1727)1. But the idea of 2 × 2 determinants goes back at least to the
Chinese around 200bc. The word determinant itself was first used in its present sense
in 1812 by Augustin-Louis Cauchy (1789–1857), and he developed much of the general
theory we know today.

8.1 Inverses of 2 × 2 matrices, and determinants

Let A =

(
a b
c d

)
be a 2 × 2 matrix. Recall that the determinant of A is∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc = ad − cb.

We also denote this determinant by det(A) or det A or |A|. (Just as with other operators,
such as cos, we avoid using the brackets except to resolve ambiguity. Thus we prefer
cos θ and det A in preference to cos(θ) and det(A), and det AT means det(AT).)

Examples. Let A =

(
2 3
2 −1

)
. Then det A = −2 − 6 = −8. Also, we have∣∣∣∣ 1 2

3 4

∣∣∣∣ = −2, det I2 =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 and

∣∣∣∣ 2 −1
−4 2

∣∣∣∣ = 4 − 4 = 0.

Lemma 8.1. Let A be any 2 × 2 matrix. Then det AT = det A.

Proof. If AT =

(
a b
c d

)
then AT =

(
a c
b d

)
, and so det AT = ad − cb = det A.

1His dates by the Gregorian calendar are 4th January 1643 – 31st March 1727. But the Julian
calendar was in use in England at the time, and his Julian dates are 25th December 1642 – 20th March
1727. At the time, the year in England started on 25th March, so that legally he died in 1726.
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Now let A =

(
a b
c d

)
and let ∆ := det A = ad − bc. We note that if ∆ 6= 0 and

B =

(
d/∆ −b/∆
−c/∆ a/∆

)
then

AB =

(
(ad − bc)/∆ (−ab + ba)/∆
(cd − dc)/∆ (−cb + da)/∆

)
=

(
1 0
0 1

)
,

and

BA =

(
(da − bc)/∆ (db − bd)/∆

(−ca + ac)/∆ (−cb + ad)/∆

)
=

(
1 0
0 1

)
,

so that A is invertible and A−1 = B. Thus if A is a 2 × 2 matrix and det A 6= 0, then
A is invertible. What if det A = 0? We shall show that in this case A is not invertible,
but first we show the following.

Theorem 8.2. If A and B are 2 × 2 matrices then det(AB) = det(A) det(B).

Notation. Our conventions for bracketing the determinant operator are similar to
those used for trigonometric functions. Thus det AB means det(AB), even though
(det A)B makes sense, and det A det B means det(A) det(B) = (det A)(det B), though
det(A det B) makes less sense since we write the scalar first when notating scalar multi-
plication of matrices. Similarly, if λ is a scalar then det λA means det(λA). Note that
while notations like det 3A and det A det B are often used, we should never write things
like det−A or det−2A or det A + B. Also, det AB is seldom seen.

Proof. We prove this by direct computation. Let A =

(
a b
c d

)
and B =

(
p q
r s

)
.

Then AB =

(
ap + br aq + bs
cp + dr cq + ds

)
and

det(AB) = (ap + br)(cq + ds) − (cp + dr)(aq + bs)
= apcq + apds + brcq + brds − cpaq − cpbs − draq − drbs
= apds + brcq − cpbs − draq
= (ad − cb)(ps − rq)
= det A det B.

Example. Let A =

(
1 −2
1 3

)
and B =

(
2 3
4 −1

)
. Then

det(AB) =

∣∣∣∣ −6 5
14 0

∣∣∣∣ = 0 − 70 = −70,

which is the same as det A det B = (3 − (−2))(−2 − 12) = 5 × (−14) = −70.
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Theorem 8.3. Let A =

(
a b
c d

)
be a 2 × 2-matrix. Then A is invertible if and only

if det A 6= 0, and when ∆ := det A 6= 0, then A−1 =

(
d/∆ −b/∆
−c/∆ a/∆

)
.

Proof. We have already seen that when ∆ = det A 6= 0 then A is invertible with inverse
as above. It therefore just remains to show that when ∆ = 0 then A is not invertible.
So suppose that det A = 0. Then det(AB) = det A det B = 0 for every 2 × 2 matrix B.
But since det I2 = 1 this means there cannot exist a matrix B with AB = I2. Hence A
is not invertible.

Examples. 1. Let A =

(
2 −1

−4 2

)
. Then det A = 0, so A is not invertible.

2. Let A =

(
1 2
3 4

)
. Then det A = −2 6= 0, so A is invertible, and

A−1 =
1

det A

(
4 −2

−3 1

)
=

(
−2 1
3/2 −1/2

)
.

Let us check this:

AA−1 =

(
1 2
3 4

) (
−2 1
3/2 −1/2

)
=

(
1 0
0 1

)
= I2,

A−1A =

(
−2 1
3/2 −1/2

) (
1 2
3 4

)
=

(
1 0
0 1

)
= I2.

We conclude this section by introducing the adjugate of a 2 × 2 matrix. This might
not seem to be a terribly exciting or useful concept for 2 × 2 matrices, but is far more
useful for 3 × 3 matrices, and in general for n × n matrices (n ∈ N+). The adjugate of
a square matrix A is denoted adj A (or adj(A)), and for 2 × 2 matrices is defined by

adj

(
a b
c d

)
:=

(
d −b

−c a

)
.

Direct calculation shows that we have A(adj A) = (adj A)A = (det A)I2 for all 2 × 2
matrices A. Thus if det A 6= 0 (precisely the conditions needed for A to be invertible)
we have A−1 = 1

det A
(adj A). These relations generalise to n × n matrices for all n > 1.

We emphasise that the adjugate of a matrix is not the same as its adjoint, and you
must be careful not to confuse the two terms. (Unfortunately, what we now call the
adjugate has in the past been termed the adjoint!) The adjoint of a matrix over C
is defined to the transpose of its complex conjugate, and is denoted A∗ or A†, though
sometimes A∗ simply means the complex conjugate of A. Thus the adjoint of matrix
over R is the same as its transpose. (If you have not yet met complex numbers and the
complex conjugate, you will have done so by the time you take your first year exams.)
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8.2 Determinants of 3 × 3 matrices

Consider the 3 × 3 matrix

A =

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 .

We define the determinant of A by:

det A =

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ := a·(b× c)

where

a =

 a1

a2

a3

 , b =

 b1

b2

b3

 and c =

 c1

c2

c3

 .

Thus

det A =

 a1

a2

a3

·

 b1

b2

b3

 ×

 c1

c2

c3


=

 a1

a2

a3

·
(∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ i− ∣∣∣∣ b1 c1

b3 c3

∣∣∣∣ j +

∣∣∣∣ b1 c1

b2 c2

∣∣∣∣k)

= a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ − a2

∣∣∣∣ b1 c1

b3 c3

∣∣∣∣ + a3

∣∣∣∣ b1 c1

b2 c2

∣∣∣∣
= a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + a3(b1c2 − b2c1).

Example. Let

A =

 3 2 −1
2 0 −3

−2 1 1

 .

Then

det A = 3

∣∣∣∣ 0 −3
1 1

∣∣∣∣ − 2

∣∣∣∣ 2 −1
1 1

∣∣∣∣ − 2

∣∣∣∣ 2 −1
0 −3

∣∣∣∣
= 3(3) − 2(3) − 2(−6) = 15.

Remark. Notice that the right-hand side of our equation

a·(b× c) = a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

can be rearranged to give a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3). Thus we
can also write:∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ − b1

∣∣∣∣ a2 c2

a3 c3

∣∣∣∣ + c1

∣∣∣∣ a2 b2

a3 b3

∣∣∣∣
= a1(b2c3 − b3c2) − b1(a2c3 − a3c2) + c1(a2b3 − a3b2)
= a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3).
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This formula (“expanding along the first row”) is often used to define a 3×3 determinant
(even by me!), and is more frequently seen than the triple scalar product definition
(“expanding along the first column”) used in this course. The reason for our seemingly
strange approach is that we can easily prove many properties of 3×3 determinants using
results we have already established for triple scalar products (see Theorem 8.5). Note
that it also follows from this rearrangement that∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ .

In other words, the determinant of a 3 × 3 matrix A is equal to the determinant of its
transpose AT, a result we record as Theorem 8.4.

Another helpful rearrangement of the terms in det A is to group those terms with
positive and negative coefficients together, to get

det A = a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1.

The products having positive coefficient correspond to diagonals going in the direction
top-left to bottom-right in the diagram below.

a1 a2 a3

b3 b1 b2 b3 b1

c2 c3 c1 c2 c3 c1 c2

The top-right to bottom-left ‘diagonals’ in the above diagram correspond to those prod-
ucts with negative coefficient.

Theorem 8.4. For all 3 × 3 matrices A we have det AT = det A.

Proof. See above.

Theorem 8.5. Let A =

 a1 b1 c1

a2 b2 c2

a3 b3 c3

. Then

(i) Interchanging two columns of A negates det A. For example∣∣∣∣∣∣
b1 a1 c1

b2 a2 c2

b3 a3 c3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = − det A.

(ii) Multiplying any column of A by λ multiplies det A by λ.

(iii) Adding a scalar multiple of any column of A to any other column does not change
the determinant.
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Proof. These all follow very easily from properties we have already proved for the scalar
triple product.

(i): This follows at once from Theorem 6.6, which gives det A = a·(b×c) = b·(c×a) =
c·(a× b) = −a·(c× b) = −b·(a× c) = −c·(b× a).

(ii): We have λ det A = λ(a·(b× c)) = (λa)·(b× c) = a·((λb) × c) = a·(b× (λc)), by
Theorem 6.3 and Section 3.2.

(iii): Let B be the matrix obtained by adding λ times the second column to the first
column of A. Then standard results on the dot and cross product, such as b·(b×c) = 0,
give us det B = (a + λb)·(b × c) = a·(b × c) + λb·(b × c) = a·(b × c) = det A. The
other cases are similar.

Example. We can use these properties to compute determinants quickly.∣∣∣∣∣∣
6 10 13
2 20 4

−1 −20 −2

∣∣∣∣∣∣ = 10

∣∣∣∣∣∣
6 1 13
2 2 4

−1 −2 −2

∣∣∣∣∣∣ = 10

∣∣∣∣∣∣
6 1 1
2 2 0

−1 −2 0

∣∣∣∣∣∣ = 10

∣∣∣∣∣∣
0 1 1
2 2 0

−1 −2 0

∣∣∣∣∣∣
= 10

(
0

∣∣∣∣ 2 0
−2 0

∣∣∣∣ − 2

∣∣∣∣ 1 1
−2 0

∣∣∣∣ − 1

∣∣∣∣ 1 1
2 0

∣∣∣∣) = 10(0(0) − 2(2) − 1(−2)) = −20.

Here to get the first equality we have applied Part (ii) of the theorem to take out a factor
of 10 from the second column, to get the second equality we have applied Part (iii) of
the theorem to subtract twice the first column from the third column, and for the 3rd
equality we have applied Part (iii) to subtract 6 times the third column from the first
column. (Note that we can use the theorem to simplify the matrix even more, so that
we end up computing det I3, which is 1.)

Remark. Since det AT = det A for all 3 × 3 matrices A, Theorem 8.5 holds with the
word ‘column’ replaced by ‘row’ throughout. Thus we can just as well use row operations
as column operations when simplifying determinants.

The rest of this section is presented without proof. In particular, the next theorem
is rather difficult to prove. (The one after that is not too hard.)

Theorem 8.6. For all 3 × 3 matrices A and B we have det(AB) = det A det B.

Proof. In theory, we can expand det(AB), which has 3! × 33 = 6 × 27 = 162 terms,
perform all the cancellations to be left with (3!)2 = 62 = 36 terms, and observe that this
is det A det B. This is not very satisfactory, and new ideas are needed, which will also
extend to general n× n determinants. However, this is beyond the scope of this course,
though I may write up the proof as an appendix in the hope that some of you might
understand it after having completed MTH4104: Introduction to Algebra.

In view of the above theorem, it is evident that the 3 × 3 matrix A is not invertible
if det A = 0, since det I3 = 1. It turns out that A is invertible whenever det A 6= 0. But
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first, we define the adjugate, adj A, of a 3 × 3 matrix A. Let Aij be the 2 × 2 matrix
obtained by removing the i-th row and j-th column from A. (Note that this notation
conflicts with what we used earlier.) Then

adj A :=

 det A11 − det A21 det A31

− det A12 det A22 − det A32

det A13 − det A23 det A33

 .

Theorem 8.7. For all 3×3 matrices A we have A(adj A) = (adj A)A = (det A)I3. Thus
if det A 6= 0 then A is invertible, and we have A−1 = 1

det A
(adj A).

8.3 Systems of linear equations as matrix equations

We can write any system of m simultaneous linear equations in n unknowns x1, x2, . . . , xn

as a matrix equation
Ax = d (8.1)

where A is an m × n matrix, x is an n × 1 matrix and d is an m × 1 matrix, with the

entries of A = (aij)m×n and d =

 d1
...

dm

 being known and the entries of x =

 x1
...

xn


being the unknowns. The linear equations are aj1x1 + · · · + ajnxn = dj for 1 6 j 6 m.

I commented previously that properly echelon form is a property of matrices. We
define the matrix A to be echelon form if the corresponding system Ax = d of linear
equations is in echelon form. So A is in echelon form (Geometry I version) if each
nonzero row of A commences with strictly fewer 0s than those below it. (This forces all
zero rows to occur at the ‘bottom’ of A.) We do not insist (for Geometry I) that the
first nonzero entry in a nonzero row be 1.

If A is a square n×n matrix (so now m = n) such that det A 6= 0 then the matrix A
has a (unique) inverse A−1, and by multiplying both sides of the matrix equation (8.1)
by A−1 we see that

A−1Ax = A−1d.

Since A−1Ax = Inx = x we deduce that

x = A−1d

is a solution of the simultaneous equations, and indeed that it is the unique solution.

8.4 Determinants and inverses of n × n matrices

Notation. Throughout this section, Aij will denote the (m−1)×(n−1) matrix obtained
from m × n matrix A by deleting the i-th row and j-column. The notation Aij only
makes sense when m, n > 1. The (i, j)-entries of the matrices A, Ã and B shall be
denoted aij, ãij and bij respectively.
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8.4.1 Determinants of n × n matrices

In general, if A = (aij)n×n is an n × n matrix the determinant of A is a sum of n! =
1·2· · · · ·n numbers (summands), where each summand is the product of n entries of A
multiplied by a sign (+1 or −1). Also, in each summand, the n entries of A used in the
product come from distinct rows and columns. <UndefinedConcepts> Using concepts
you will meet in MTH4104: Introduction to Algebra, we have

det A :=
∑
σ∈Sn

sgn(σ)
n∏

i=1

ai,σ(i), (8.2)

where Sn denotes the set (group) of all n! permutations of {1, 2, . . . , n} and sgn σ, the
sign or parity of σ, is +1 if this is even and −1 if this is odd. </UndefinedConcepts>

From the above formula, we see that the 0 × 0 matrix I0 has determinant 1, and the
1 × 1 matrix

(
a

)
has determinant a. (The notation

∣∣ a
∣∣ should not be used for the

determinant of the
(

a
)

because of its confusion with the absolute value function |a|.)
The following table summarises n × n determinants for small n.

n #terms determinant of A
0 1 1
1 1 a11

2 2 a11a22 − a12a21

3 6 a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

4 24 a11a22a33a44 + · · ·
5 120 a11a22a33a44a55 + · · ·

For n ∈ N we can define the n × n determinant recursively (that is in terms of
smaller determinants) as follows. Firstly, to gives us a foundation, we define the 0 × 0
determinant to be 1. Then for n > 1 we can calculate (or even define) det A as

det A = a11 det A11 − a12 det A12 + a13 det A13 − · · · + (−1)n+1a1n det A1n

=
n∑

k=1

(−1)k+1a1k det A1k.

Note that this definition agrees with the formulae above for n = 1, 2 and 3 (as it should).
Instead of expanding along the first row (as above), we can expand along (down) the
first column to get

det A =
n∑

k=1

(−1)k+1ak1 det Ak1.

In fact, we can expand along arbitrary rows and columns. For all i and j, we have

det A =
n∑

k=1

(−1)i+kaik det Aik =
n∑

k=1

(−1)k+jakj det Akj.

It is possible to use the formula of (8.2) in order to show the following.
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Theorem 8.8. For all n ∈ N and all n × n matrices A, we have det AT = det A.

Theorem 8.9. For all n ∈ N, all n×n matrices A and all scalars λ, the following hold.

1. If B is obtained from A by swapping two of its rows, then det B = − det A.

2. If B is obtained from A by multiplying one of its rows by λ, then det B = λ det A.
Thus det λA = λn det A.

3. If B is obtained from A by adding λ times one of its rows to another row, then
det B = det A.

Theorem 8.10. Let A, Ã and B be n× n matrices differing only in the j-th row, such
that bjk = ajk + ãjk for all k. Then det B = det A + det Ã.

In view of Theorem 8.8, Theorem 8.9 holds with the word ‘row’ replaced by ’column’,
as does Theorem 8.10 with the understanding that now bkj = akj + ãkj for all k. Note
that if n > 2 and A and B are n×n matrices then det(A+B) 6= det A+det B in general
(but not universally). Another consequence of the above theorems is that if two rows
(or columns) of A are equal, or even scalar multiples of each other, then det A = 0. The
following is far trickier to prove.

Theorem 8.11. For all n ∈ N and all n × n matrices A and B, we have det(AB) =
det A det B.

8.4.2 Adjugates and inverses of n × n matrices

The 0 × 0 matrix I0 has inverse I0. From now on we let n > 1. If A =
(

a
)

then
adj A =

(
1

)
, and if a = det A 6= 0 then A is invertible and A−1 =

(
1
a

)
, and if

a = det A = 0 then A is not invertible. We have already seen the adjugate and inverse
of a 2 × 2 and a 3 × 3 matrix.

In general, we let A = (aij)n×n for some n > 1, and let Aij be the result of removing
the i-th row and j-th column from A. The (i, j)-minor of A is mij := det Aij. The
cofactor matrix of A is C = (cij)n×n where cij := (−1)i+jmij = (−1)i+j det Aij. The
adjugate of A is the transpose of the cofactor matrix. That is adj A := CT, and so adj A
has (i, j)-entry (−1)i+j det Aji.

The following two theorems hold, and show one way (not always very efficient) to
compute A−1 in the case when A is invertible.

Theorem 8.12. For all n > 1 we have A(adj A) = (adj A)A = (det A)In for all n × n
matrices A.

Theorem 8.13. For all n > 1, the n× n matrix A is invertible if and only if det A 6= 0,
and if det A 6= 0 we have A−1 = 1

det A
(adj A).
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