
Chapter 5

Gaußian Elimination and Echelon
Form

A linear equation in variables x1, x2, . . . , xn is of the form

a1x1 + a2x2 + · · ·+ anxn = d,

where a1, a2, . . . , an, d are scalars. The x1-term a1x1 is the first term, The x2-term a2x2 is
the second term, and in general the xi-term aixi is the ith term. In the case when n = 3,
we generally use a, b, c, x, y, z instead of a1, a2, a3, x1, x2, x3; thus a1x1 + a2x2 + a3x3 = d
becomes ax + by + cz = d.

A linear equation a1x1+a2x2+· · ·+anxn = d is degenerate if a1 = a2 = · · · = an = 0;
otherwise it is non-degenerate. The equation can be degenerate even if d 6= 0.

5.1 Echelon form (Geometry I definition)

Before defining echelon form we make some comments. Firstly, echelon form is properly
a concept for matrices; we give an equivalent definition for systems of linear equations.
Secondly, there are 3 different definitions of echelon form, of varying strengths, and it is
possible that you may have encountered a different one previously. We use the weakest
of the definitions in this course. For this course, it is important that you understand
and use the definition of echelon form given below.

Definition 5.1. A system of linear equations in x1, x2, . . . , xn is in echelon form if every
non-degenerate equation begins with strictly fewer zero terms than each equation below
it and any degenerate equation occurs after (below) the non-degenerate equations.

Note that any system of linear equations in echelon form has at most n non-degenerate
equations (if any), but can have arbitrarily many degenerate equations (if any). A sys-
tem with no non-degenerate equations (or no equations whatsoever) is automatically
in echelon form. The right-hand sides of a system of linear equations play no rôle in
determining whether that system is in echelon form. We do not insist that the first
nonzero term of each non-degenerate equation be xi for some i. (This extra condition is
currently required in the MTH5112: Linear Algebra I definition of echelon form.)
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Example. As linear equations in the variables x, y, z, we have that:

• x+2y = 8 begins with 0 zero terms (the zero z-term does not begin the equation);

• 3y − 4z = −5 begins with 1 zero term;

• −5z = 2 begins with 2 zero terms;

• 0 = 0 and 0 = 5 both begin with 3 zero terms (the right-hand sides are irrelevant).

Thus the system of equations

x + 2y = 8
3y − 4z = −5

− 5z = 2
0 = 0
0 = 5


is in echelon form.

Also, the following systems of equations are in echelon form:

x + 2y = 3
3y − 4z = −5

− 5z = 4


x + 2y = 3

− 5z = 4
0 = 0


x + 2y = 3

− 5z = 4
0 = −5

 ,

and these are in echelon form too:

3y − 4z = −5
− 5z = 7

}
3y − 4z = −5

0 = 7

}
3y − 4z = −5

0 = 0

}
3y − 4z = −5

}
.

The following systems of equations are not in echelon form.

x + 2y = 7
− 3z = 4

2y − 5z = −3


x + 4y − z = −1

0 = 4
3y − 4z = −5


x + 3y = 1

y + 4z = −2
y − 5z = 3

 .

In the last case, the last two equations commence with the same number (one) of zero
terms but are non-degenerate.

5.2 Gaußian elimination

We now describe the process of Gaußian elimination, which is used to bring a system
of linear equations (in x1, x2, . . . , xn or x, y, z, etc.) into echelon form. You must use
exactly the algorithm described here, even though other ways of reducing to (a
possibly different) echelon form may be mathematically valid.1 In particular, our
algorithm does not use the M-operations of Section 4.3; these are required in general for
reducing to the stronger versions of echelon form.

1The course MTH5112: Linear Algebra I uses a strictly stronger definition of echelon form than we
do, and consequently uses a slightly different version of Gaußian elimination than we do in MTH4103:
Geometry I. This modified version does require the M-operations of Section 4.3. You must not use the
Linear Algebra I version of Gaußian elimination in this course.
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Step 1. If the system is in echelon form then stop. (There is nothing to do.)
If each equation has zero x1-term then go to Step 2. (There are no x1-terms to

eliminate.)
If the first equation has a zero x1-term then interchange it with the first equation

that has nonzero x1-term. (So now the first equation has nonzero x1-term.)
Add appropriate multiples of the first equation to the others to eliminate their x1-

terms.

Step 2. (At this point, all equations except perhaps the first should have zero x1-term.)
If the system is in echelon form then stop.
If each equation with zero x1-term also has zero x2-term then go to Step 3.
If the first equation with zero x1-term has a zero x2-term then interchange it with

the first equation that has zero x1-term and nonzero x2-term. (So now the first equation
with zero x1-term has nonzero x2-term.)

Add appropriate multiples of the first equation with zero x1-term to the equations
below it to eliminate their x2-terms.

Step m for 3 6 m 6 n. (At this point, all equations except perhaps the first up to
m− 1 should have zero x1-, x2-, . . . , xm−1-terms. Each of these first 6 m− 1 equations
should begin with strictly more zero terms than their predecessors.)

If the system is in echelon form then stop.
If each equation with zero x1-, x2-, . . . , xm−1-terms also has zero xm-term then go to

Step m + 1. (This situation should only arise in the case when m < n; if m = n this
case should only ‘arise’ if you are already in echelon form [in which case you should have
stopped already].)

If the first equation with zero x1-, x2-, . . . , xm−1-terms also has zero xm-term, then
interchange it with the first equation having zero x1-, x2-, . . . , xm−1-terms and nonzero
xm-term.

Add appropriate multiples of the first equation with zero x1-, x2-, . . . , xm−1-terms to
the equations below it to eliminate their xm-terms.

If m = n then the system of equations should now be in echelon form, so you can
stop.

5.2.1 Notes on Gaußian elimination

1. If a degenerate equation of the form 0 = 0 is created at any stage, it can be
discarded, and the Gaußian elimination continued without it.

2. If a degenerate equation of the form 0 = d, with d 6= 0, is created at any stage
then the system of equations has no solutions, and the Gaußian elimination can
be stopped.

3. The operations required to bring a system of equations into echelon form are
independent of the right-hand sides of the equations. (Compare Examples 2 and
2′ in Section 4.2.)

37



Example. We perform Gaußian elimination on the following system of equations.

x + 2y + z = 2
x + 2y + 3z = −8

3x + 5y + 2z = 6
−2x− 2y + z = 0

 . (5.1)

Step 1. To eliminate the x-term in all equations but the first, we add −1 times the
first equation to the second, −3 times the first equation to the third, and 2 times the
first equation to the fourth. This gives:

x + 2y + z = 2
2z = −10

− y − z = 0
2y + 3z = 4

 .

Step 2. The first equation having zero x-term (the second) also has zero y-term. The
first equation having zero x-term and nonzero y-term is the third, so interchange the
second and third equations, to get:

x + 2y + z = 2
− y − z = 0

2z = −10
2y + 3z = 4

 .

Now that the second equation has zero x-term and nonzero y-term, use this to eliminate
y from the equations below it. To do this we need only add twice the second equation
to the fourth, to obtain:

x + 2y + z = 2
− y − z = 0

2z = −10
z = 4

 .

Step 3. We are still not in echelon form, and the first equation with zero x-term and
y-term has nonzero z-term. (This is the third equation.) We use the third equation to
eliminate z from all equations after the third (by adding −1

2
times the third equation to

the fourth). This gives:
x + 2y + z = 2
− y − z = 0

2z = −10
0 = 9

 .

This system of equations is now in echelon form, but has no solutions (as 0 = 9 has no
solutions). Hence the original system (5.1) has no solutions. Geometrically, this reflects
the fact that four planes of R3 generally have empty intersection.
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5.3 Solving systems of equations in echelon form

We now show how to find all solutions to a system of linear equations in echelon form.
If the system contains an equation an equation of the form 0 = d with d 6= 0, then
the system has no solutions, and we have nothing more to do. If the system has any
equations of the form 0 = 0, then throw these out, since they contribute no restriction on
the solution set whatsoever. Thus we may now only consider systems of linear equations
in echelon form which have no degenerate equations.

Definition. In a non-degenerate linear equation (written in standard form), the first
variable, reading left to right, in a nonzero term is called the leading variable of the
equation.

Example. In these examples, we assume that we have three variables x, y, z, in that
order. In the first three cases, the linear equation is in standard form; in the latter two
cases it is not.

• The leading variable of −x + y = 3 is x.

• The leading variable of 3y − 2z = 7 is y.

• The leading variable of −4z = 8 is z.

• The standard form of z− y +2x− y = 4 is 2x− 2y + z = 4, so the leading variable
is x.

• The equation x+(−1)x−3 = 4 is degenerate (it is equivalent to −3 = 4, or 0 = 7),
and so has no leading variable defined.

5.3.1 Back substitution

Back substitution is an algorithm to determine all the solutions to a system of non-
degenerate equations in echelon form. It proceeds as follows.

Step 1. Variables which are not leading variables of any of the equations in the system
can take arbitrary (real) values. Assign a symbolic value to each such non-leading
variable.2

Step 2. Given symbolic values for the non-leading variables, solve for the leading
variables, starting from the bottom and working up.

2In general, we shall want to apply this procedure when the equations are defined over fields F other
than R. In this case, the non-leading variables should take arbitrary values in F . You should see the
concept of field defined in MTH4104: Introduction to Algebra. (MTH4104 is compulsory for about half
of you this year, and strongly recommended for the rest of you next year.) Examples of fields are Q,
R and C (but not N or Z). You should have met all these sets in MTH4110: Mathematical Structures,
and gained some extra familiarity with C in MTH4101: Calculus II.
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Example 1. We apply back substitution to the following system of equations, which is
in echelon form:

x + 3y − z = 7
z = 0

}
.

There is just one non-leading variable, namely y. Thus y can take any real value, say
y = t. We now solve for the leading variables x and z, starting with z.

The last equation gives z = 0. Therefore, the first equation gives x + 3t + 0 = 7, and
so x = 7 − 3t. Thus, the solutions of the system are x = 7 − 3t, y = t, z = 0, where t
can be any real number.

We remark that the intersection of the planes defined by these equations is thus
{ (7−3t, t, 0) : t ∈ R }, which is the set of points on the line having parametric equations:

x = 7− 3λ
y = λ
z = 0

 ,

and Cartesian equations x−7
−3

= y, z = 0.

Example 2. We apply back substitution to the following system of equations, which is
in echelon form:

x + 3y + 5z = 9
2y + 4z = 6

3z = 3

 .

All the variables are leading in one of the equations. So we start immediately on Step 2.
The (third) equation 3z = 3 gives z = 1. Then the second equation becomes 2y +4 = 6,
whence we get that y = 1. Then the first equation becomes x + 3 + 5 = 9, and so x = 1.
Therefore the only solution of this system of equations is x = y = z = 1.

Example 3. We apply back substitution to the following system of just one equation,
which is in echelon form:

2x− y + 3z = 5
}

.

The non-leading variables y and z can take arbitrary real values, say y = s and z = t.
We now solve for the only leading variable, x, using the only equation of the system. We
have 2x− s + 3t = 5, so 2x = 5 + s− 3t, and hence x = 5

2
+ s

2
− 3t

2
. Thus the solutions

of the system are x = 5
2

+ s
2
− 3t

2
, y = s, z = t, where s and t can be any real numbers.

We remark that is follows that { (5
2

+ s
2
− 3t

2
, s, t) : s, t ∈ R } is the set of points on

the plane defined by 2x− y + 3z = 5.

5.4 Summary

To solve a system of linear equations, first use Gaußian elimination to bring the system
into echelon form, and then use back substitution to the system in echelon form, re-
membering to deal appropriately with degenerate equations along the way. You should
review your notes, starting at the beginning of Chapter 4, to see many examples of this.
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5.5 Intersection of a line and a plane

Consider a line ` defined by the parametric equations:

x = p1 + u1λ
y = p2 + u2λ
z = p3 + u3λ

 ,

and a plane Π defined by
ax + by + cz = d.

We find the intersection of ` and Π by determining the λ for which

a(p1 + u1λ) + b(p2 + u2λ) + c(p3 + u3λ) = d. (5.2)

This gives one linear equation in one unknown λ. The solution is unique, except in the
degenerate case when au1 + bu2 + cu3 = 0, in which case ` is parallel to Π. In this case,
there are 0 or infinitely many solutions, depending on whether ` is in Π or not (which
is if and only if ap1 + bp2 + cp3 = d or not). Note that rearranging Equation 5.2 to
standard form for a linear equation in λ yields

(au1 + bu2 + cu3)λ = d− (ap1 + bp2 + cp3). (5.3)

So if Π and ` have vector equations r·n = d and r = p + λu respectively, we find that

(n·u)λ = d− n·p. (5.4)

(You should be able to work out what n, p and u are here.) Thus if n·u 6= 0 we get the
unique solution λ = (d− n·p)/(n·u).

Example. For example, let ` be the line with parametric equations:

x = 1 + 2λ
y = 2 + 3λ
z = −1− 4λ

 ,

and let Π be the plane defined by x − y + 2z = 3. To determine the intersection Π ∩ `
of Π and ` we solve

(1 + 2λ)− (2 + 3λ) + 2(−1− 4λ) = 3.

This gives −3 − 9λ = 3, or −9λ = 6, with unique solution λ = −2
3
. (If we wish to

use the formula below Equation 5.4 to calculate λ we note that d = 3, n·p = −3 and
n·u = −9.) Thus ` and Π intersect in the single point (x0, y0, z0), with

x0 = 1 + 2(−2
3
) = −1

3
,

y0 = 2 + 3(−2
3
) = 0,

z0 = −1− 4(−2
3
) = 5

3
.

As a set of points, the intersection ` ∩ Π of ` and Π is {(−1
3
, 0, 5

3
)}.
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Notation. Let A and B be sets. Then the intersection of A and B is denoted A ∩ B,
and is the set of elements that are in both A and B. The union of A and B is denoted
A ∪ B, and is the set of elements that are in A or B (or both). As a mnemonic, the
symbol ∩ resembles a lower case N, which is the second letter of intersection, and the
symbol ∪ resembles a lower case U, the first letter of union.

The following properties hold for ∩ and ∪, for all sets A, B, C. The last pair of
properties only makes sense in the presence of a ‘universal’ set E .

• A ∩B = B ∩ A and A ∪B = B ∪ A.

• A ∩ (B ∩ C) = (A ∩B) ∩ C and A ∪ (B ∪ C) = (A ∪B) ∪ C.

• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

• A ∩ A = A ∪ A = A.

• A ∩ ∅ = ∅ and A ∪ ∅ = A.

• A ∩ E = A and A ∪ E = E .

5.6 Intersection of two lines

Consider lines ` and m defined (respectively) by the parametric equations:

x = p1 + u1λ
y = p2 + u2λ
z = p3 + u3λ

 and
x = q1 + v1µ
y = q2 + v2µ
z = q3 + v3µ

 .

We find the intersection of ` and m by determining the λ and µ for which:

p1 + u1λ = q1 + v1µ,
p2 + u2λ = q2 + v2µ,
p3 + u3λ = q3 + v3µ.

This is equivalent to solving the following system of linear equations:

u1λ− v1µ = q1 − p1

u2λ− v2µ = q2 − p2

u3λ− v3µ = q3 − p3

 .

Note that, in general, we expect this system of equations to have no solution.

Example. In this example, the lines ` and m are defined (respectively) by the parametric
equations:

x = 1 + λ
y = 2 + 3λ
z = 1− 4λ

 and
x = 2 + 3µ
y = 1− µ
z = 3 + 2µ

 .
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Thus we must solve (for λ and µ) the following equations:

1 + λ = 2 + 3µ,
2 + 3λ = 1− µ,
1− 4λ = 3 + 2µ.


This is equivalent to the following system of linear equations:

λ− 3µ = 1
3λ + µ = −1

−4λ− 2µ = 2

 .

We now apply Gaußian elimination. Adding −3 times the first equation to the second
and 4 times the first equation to the third gives:

λ− 3µ = 1
10µ = −4

− 14µ = 6

 .

We now need to eliminate µ in the third equation. To do this add 7
5
[= −(−14

10
)] times

the second equation to the third, to get:

λ− 3µ = 1
10µ = −4

0 = 2
5

 .

There is no solution to this system (because of the equation 0 = 2
5
). Thus we conclude

that the lines ` and m do not meet. As a set of points, the intersection of ` and m is ∅,
the empty set.

Here, the lines ` and m are skew, that is, they do not meet in any point, but they are
not parallel either (since their direction vectors are not scalar multiples of each other).
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