Chapter 4

Intersections of Planes and Systems
of Linear Equations

Using coordinates, a plane II is defined by an equation:
ar +by+cz =d,

where a, b, ¢, d are real numbers, and at least one of a, b, ¢ is nonzero. The set of points
on II consists precisely of the points (p, q,r) with ap + bg + cr = d. In set-theoretic
notation, this set is:

{(p,q,7) :p,q,;r €ER | ap+bg+cr=d}.

Suppose we wish to determine the intersection (as a set of points) of k given planes
Iy, Iy, . .., I} given by the respective equations:

a1+ by + 1z = dy

asT + boy 4 coz = dy (4.1)

apr + bry + cpz = di,

Now a point (a,b,c) is in this intersection precisely when it is on each of the planes
ITy, I, ..., II;, which is the case precisely when z = p, y = ¢, 2 = r is a solution to
each of the equations a;x + b;y + ¢;z of (4.1), where 1 < i < k. Thus, to determine
the intersection, we need to determine the solutions to the system of k linear equations
(4.1) in 3 unknowns. The technique we shall use to do this, called Gauflian elimination
or reduction to echelon form can be applied to determine the solutions to a system of &
linear equations in any number of unknowns.

Note. Gauflian elimination is named after Carl Friedrich Gau8 (1777-1855). The sym-
bol  is a special German symbol called Fszett or scharfes S, and is pronounced like
the English word-initial S, and is often rendered into English as ss; thus Gauf is often
written as Gauss in English.
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4.1 Possible intersections of k planes in R’

For k = 0,1,2,3,4,... we detail below various configurations of k¥ planes in R?, and
what their intersections are. (The cases k = 0,1 did not appear in lectures.)

e The intersection of 0 planes of R? is the whole of R3. (See below for why.)
e The intersection of 1 plane(s) II; of R? is simply II;.

e The intersection of 2 planes II;, II, of R? is usually a line. The only exceptions
occur when II; and Ily are parallel. In such a case, if II; # Ily, then II; and Il
intersect nowhere, whereas if II; = I, then II; and Il intersect in the plane II;.
Example 3 below is a case when II; and II, are parallel but not equal.

e In general, 3 planes I1y, Iy, I3 intersect at precisely one point (Example 1 below is
like this). Exceptional situations arise when two (or all) of the planes are parallel.
Assuming that no two of Iy, Iy, I3 are parallel, exceptional situations arise only
when the intersections of Il; with IIy, II; with II3 and II3 with II; are parallel
lines. These lines either coincide, in which case II;, Il,, Il3 intersect in this line
(Example 2 below is like this), or the three lines are distinct, in which case Iy,
Il,, I3 have empty intersection (Example 2" below is like this).

e In general, 4 or more planes intersect at no points whatsoever. Another way of
saying this is that their intersection is &, the empty set. Non-empty intersections
are possible in exceptional cases.

4.1.1 Empty intersections, unions, sums and products

This was not done in lectures. Empty products and so on are somewhat subtle, and
cause a lot of confusion and stress. Take the following as definitions.

e If I intersect 0 sets, each of which is presumed to belong to some “universal” set,
then their intersection is that “universal” set. In the case above, the “universal”
set was R3. A “universal” set is a set that contains (as elements) all the entities
one wishes to consider in a given situation. If no “universal” set is understood (or
exists) in the context in which you happen to be working, then the intersection
of 0 sets is undefined. Taking the complement of a set is only defined when a
“universal” set is around.

e The union of 0 sets is the empty set @. (There is no need to assume the existence
a “universal” set here.)

e The sum of 0 real (or rational or complex) numbers is 0, and the sum of 0 vectors
is 0. [In general, the sum of 0 things is the additive identity of the object these
things are taken to belong to, when such a thing exists and is unique.|

e The product of 0 real (or rational or complex) numbers is 1. [In general, the
product of 0 things is the multiplicative identity of the object these things are
taken to belong to, when such a thing exists and is unique.]
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4.2 Some examples

Before we formalise the notions of linear equation, Gauflian elimination, echelon form
and back substitution in the next chapter, we give some examples of solving systems of
linear equations using these methods.

Example 1. We determine all solutions to the system of equations:

r+ y+ 2= 1
—2r+2y+ z=-1 ,. (4.2)
x4+ y+oz2= T

We use the first equation to eliminate x in the second and third equations. We do this
by adding twice the first equation to the second, and —3 times the first equation to the
third, to get:
r+ y+ z=1
dy+3z2=1
—2y+2z=4

We now use the second equation to eliminate y in third by adding % times the second
equation to the third, which gives:

T+ y+ z=
4y + 3z =

7., _
2% =

N[O = =

We have now reduced the system to something called echelon form, and this is easy to

solve by a process known as back substitution. The third equation gives z = ?—g = %.
Then the second equation gives 4y + 3(%) =1, and so 4y = —?, whence y = —%. Then

the first equation gives x — % + % =1, whence x = %

We conclude that the only solution to the system of equations (4.2) is z = %, y = —%,
z = 2. Thus the three planes defined by the equations of (4.2) intersect in the single
point (%, —g, %) Recall that, in general, three planes intersect in precisely one point.

It is always good practice to check that any solution you get satisfies the original
equations. You will probably pick up most mistakes this way. If your ‘solution’ does not
satisfy the original equations then you have certainly made a mistake. If the original
equations are satisfied, then you have possibly made a mistake and got lucky, and you
could still have overlooked some solution(s) other than the one(s) you found. Naturally,

the check works fine here.
Example 2. We determine all solutions to the system of equations:

— y—3z=—7
20 — y+2z2= 4 . (4.3)
—4dxr + 3y — 2z = —1
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We want a nonzero z-term (if possible) in the first equation, so we interchange the first
two equations, to get:
2r — y+2z= 4
— y—3z=—7
—4dr+3y— z=-1

We now use the first equation to eliminate the z-term from the other equations. To do
this we add twice the first equation to the third equation; we leave the second equation
alone, since its z-term is already zero. We now have:

20 —y+22= 4
—y—3z2=-7
y+3z= 7

We now use the second equation to eliminate y from the third equation. We do this by
adding the second equation to the third equation, which gives:

20 —y+2z2= 4
—y—3z2=-7 . (4.4)
0= 0 (!

This system of equations is in echelon form, but has the rather interesting equation
0 = 0. This prompts the following definition.

Definition. An equation ax + by + cz = d is called degenerate if a = b =c =0 (NB:
we do allow d # 0 as well as d = 0). Otherwise it is non-degenerate.

There are two types of degenerate equations.

1. The degenerate equation 0 = 0 (in 3 variables x, y, z) has as solutions = = p,
y =q, z =r, for all real numbers p, q, r.

2. The degenerate equation 0 = d, with d # 0, has no solutions. Note that the =
sign is being used in two different senses in the previous sentence: the first use
relates two sides of an equation, and the second use is as equality. This may be
confusing, but I am afraid you are going to have to get used to it.

Since the equation 0 = 0 yields no restrictions whatsoever, we may discard it from the
system of equations (4.4) to obtain:

(4.5)

20 —y+22= 4
—y—3z=-7["

This system of equations is in echelon form, and has no degenerate equations, and we
solve this system of equations using the process of back substitution. The variable z can
be any real number ¢, since z is not a leading variable in any of the equations of (4.5),
where we define the term leading variable in the next chapter. Then the second equation
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gives —y—3t = —7, and so y = 7—3t. Then the first equation gives 2x— (7—3t)+2t = 4,
and so 2z = 11 — 5¢, and hence = = % — gt.

We have that x = % — gt, y=7—3t, z=1is a solution for all real numbers ¢ (this
is infinitely! many solutions). Therefore, the intersection of the three planes defined by
(4.3) is

{(B—-32t,7-3tt):teR}.

2 2

This intersection is a line, with parametric equations:

x:%—g)\
y= T7—3\
z= A

When we take a cross-section through the configuration of planes defined by the original
equations, we get a diagram like the following, where all the planes are perpendicular to
the page.

The sceptic will wonder whether we have lost any information during the working of
this example. We shall discover that the method we use preserves all the information
contained in the original equations. Nevertheless, it is still prudent to check, for all real

numbers ¢, that (z,y, z) = (3 — 3¢,7 — 3t,t) is a solution to all of the original equations

(4.3). C

Example 2. The equations here have the same left-hand sides as those in Example 2.
However, their right-hand sides are different (I may have made a different alteration in
lectures).
— y—3z=-5
20— y+2z2= 4 ). (4.6)
—dr+3y— z=-1

The steps one must perform to bring the equations into echelon form are the same as
in Example 2. In all cases, the left-hand sides should all be the same. However, the

'In 2010, the BBC broadcast a Horizon programme about Infinity, including contributions from
Professor P.J. Cameron of our department. One thing we learned in the programme is that there are
different sizes of infinite set. The sets N, Z and Q all have the same size, denoted X (the countably
infinite cardinality), while R has a strictly bigger size, denoted 2%°. The symbol X is the first letter of
the Hebrew alphabet, is called ’aleph, and traditionally stands for a glottal stop.
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right-hand sides will differ. Echelonisation proceeds as follows. First swap the first and
second equations:
2r — y+2z= 4
— y—3z=-5
—4dr+3y— z=-1

Add twice the first equation to the third:

20 —y+22= 4
—y—3z=-95
y+3z= 7

Add the second equation to the third:

20 —y+2z2= 4
—y—32=-5
0= 2

But 0 = 2 is a degenerate equation with no solutions, so the whole system of equations
has no solutions, and thus the original system of equations has no solutions. There is
no need to engage in back substitution for this example.

When we take a cross-section through the configuration of planes defined by the origi-
nal equations, we get a diagram like the following, where all the planes are perpendicular
to the page.

Checking all the solutions we obtain is vacuous in this example. A better bet is to follow
through the echelonisation to try to figure out how to obtain the equation 0 = 2 from
the original equations (4.6). In this case, we find that we obtain 0 = 2 by adding the
first and third equations of (4.6) to twice the second equation of (4.6).

Example 3. We determine the intersection of the two planes defined by:

r+2y— 2=2
—2z -4y +2z=1 } (4.7)

Add twice the first equation to the second to get:

r+2y—z=2
0=5]"
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But 0 = 5 is a degenerate equation with no solutions, so the whole system of equations
has no solutions, and thus the original system of equations has no solutions. So the
intersection of the planes is @ = {}, the empty set, which is the only set that has no
elements. In this case, the original two planes were parallel, but not equal.

Example 4. [Not done in lectures.] If we have a system of & = 0 equations in unknowns
x, Yy, z, then the solutions to this system of equations is x = r, y = s, z = t, where 7, s,
t can be any real numbers. The solution set is thus:

{(r,s,t) :r,s,teR}:Rg,

which corresponds to my earlier assertion that the intersection of 0 planes in R? is the
whole of R3.

4.3 Notes

We have been solving systems of linear equations by employing two basic types of oper-
ations on these equations to bring them into an easy-to-solve form called echelon form.
These operations are:

(A) adding a multiple of one equation to another;
(I) interchanging two equations; and
(M) [not used by us] multiplying an equation by a nonzero number.

These are called elementary operations on the system of linear equations, and the cor-
responding operations on matrices (we define matrices later) are called elementary row
operations.

These elementary operations (including (M)) are all invertible, and as a consequence
never change the set of solutions of a system of linear equations (see Coursework 4). It is
for this reason that we kept writing down equations we had seen previously, and not just
the new equations we had found. The whole system of linear equations is important, and
if we did not keep track of the whole system this then we might lose some information
on the way and inadvertently deduce more solutions to our equations than the original
equations had.

One should be careful how one annotates row operations. Please bear in mind that
we are operating on systems of equations, which should thus be linked by a brace (you
will lose marks for forgetting this). Writing R; + 2R, does not tell me the row operation
you have performed. Does this mean add 2 copies of Row 2 to Row 1 (an operation you
would never use)? In that case, you could write Ry — Ry + 2Ry or R} = Ry + 2R,. Or
does Ry + 2R, replace Row 27 (This is not one of our basic operations, but I have still
seen it in work I had to mark.) During Gauflian elimination, failure to indicate the row
operations used, or indicating them ambiguously, is also liable to lose marks.
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